
Feature-Consistent 4D Gaussian Splatting
for Realistic Dynamic View Synthesis

—Supplementary Material—

Anonymous Author(s)
Affiliation
Address
email

A Overview1

In the supplementary, we provide additional experiments, analyses, and implementation details2

to complement the main paper. We organize the content into three parts: extended quantitative3

comparisons, qualitative ablation studies, and implementation details.4

In Section B, we present comprehensive quantitative evaluations of our method (F4DGS) across multi-5

ple challenging dynamic scene datasets, including Plenoptic Video, D-NeRF, and HyperNeRF. These6

results validate our proposed framework’s robustness, generalizability, and high-fidelity performance7

under diverse motion patterns and visual conditions.8

In Section C, we conduct qualitative ablation studies focusing on the impact of the 4D motion-9

depth consistency regularization. We visually demonstrate how this component improves temporal10

coherence, motion realism, and fine-detail preservation through side-by-side comparisons on dynamic11

sequences from the Plenoptic Video dataset.12

Third, Section D details the hyperparameter and training settings used in our experiments. This13

includes data preprocessing and architectural configurations to facilitate reproducibility.14

• Comparative Results Comparison in Section B15

• Qualitative Ablation Study Results in Section C16

• Hyperparameter Settings in Section D17

B Comparative Results Comparison18

B.1 Quantitative Comparison on the Plenoptic Video Dataset19

To evaluate the performance of our method under realistic dynamic scenarios, we compare F4DGS20

with several state-of-the-art dynamic neural rendering baselines on the Plenoptic video dataset [4],21

as summarized in Table A. The dataset includes challenging real-world scenes with fast motion and22

complex appearance.23

Our method achieves the highest average PSNR across all evaluated scenes, outperforming recent24

strong baselines such as NeRFPlayer, HyperReel, HexPlane, and MixVoxels-X. Notably, F4DGS25

delivers consistently superior or competitive results across all scenes, especially excelling in Cut26

Roasted Beef, Sear Steak, and Cook Spinach, where detailed motion and appearance changes are27

prominent.28

Importantly, our method operates with sparse point cloud input reconstructed from COLMAP, whereas29

comparison methods rely on dense grids or voxel-based representations that require higher computa-30

tional overhead. This highlights the efficiency and robustness of our spatiotemporal regularization31

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



Table A: Quantitative Results for Different Scenes in PSNR on the Plenoptic Video Dataset.

Model Coffee Martini Cook Spinach Cut Roasted Beef Flame Salmon Flame Steak Sear Steak Average MB Hours

HyperReel [1] 27.63 31.56 32.18 27.52 31.46 31.83 30.36 360 9
Neural Volumes [2] N/A N/A N/A 22.80 N/A N/A 22.80 N/A N/A
LLFF [3] N/A N/A N/A 23.24 N/A N/A 23.24 N/A N/A
DyNeRF [4] N/A N/A N/A 29.58 N/A N/A 29.58 28 1344
HexPlane [5] N/A 32.04 32.55 29.47 32.08 32.39 31.71 200 12
K-Planes [6] 29.09 31.71 30.93 29.55 31.49 31.63 30.73 311 1.8
MixVoxels-L [7] 29.14 31.76 31.91 29.32 31.34 31.61 30.85 500 1.3
MixVoxels-X [7] 30.39 32.31 32.63 30.60 32.10 32.33 31.73 500 N/A
Im4D [8] N/A N/A 32.58 N/A N/A N/A 32.58 N/A N/A
4K4D [9] N/A N/A 32.86 N/A N/A N/A 32.86 N/A N/A

Sparse COLMAP point cloud input
STG‡ [10] 27.50 31.61 31.21 27.84 31.96 32.45 30.43 109 1.3
RealTime4DGS [11] 26.27 31.87 31.50 26.69 31.20 32.18 29.95 6057 4.2
Deformable4DGS [12] 26.48 31.68 25.67 27.33 27.86 31.52 28.42 34 1.5
Ours 29.57 33.20 34.18 30.16 33.73 34.16 32.50 5 0.42

Table B: Quantitative Results for Different Scenes on D-Nerf Dataset.
Method T-Rex Jumping Jacks Hell Warrior Stand Up Bouncing Balls Mutant Hook Lego Avg

D-NeRF [13] 31.45 32.56 24.70 33.63 38.87 21.41 28.95 21.76 29.17
TiNeuVox [14] 32.78 34.81 28.20 35.92 40.56 33.73 31.85 25.13 32.87
K-Planes [6] 31.44 32.53 25.38 34.26 39.71 33.88 28.61 22.73 31.07

Deformable4DGS [12] 33.12 34.65 25.31 36.80 39.29 37.63 31.79 25.31 32.99
Ours 37.93 39.19 32.64 41.96 44.31 41.43 36.41 28.53 37.80

framework under sparse observation conditions. Experimental results demonstrate the effectiveness of32

our 4D hierarchical OT-semantics and motion-depth regularization in enhancing both geometric and33

temporal consistency. By jointly modeling semantic structure and physical motion, F4DGS enables34

high-fidelity rendering with improved temporal stability, validating its suitability for real-world35

dynamic scene rendering tasks.36

B.2 Quantitative Results on the D-NeRF Dataset37

38

We further evaluate the performance of F4DGS on the D-NeRF dataset [13], which consists of diverse39

dynamic scenes with non-rigid motion and complex temporal deformation. As shown in Table B, our40

method achieves the highest PSNR across all evaluated scenes, with an average score of 34.37 dB,41

substantially outperforming strong baselines including Deformable4DGS, TiNeuVox, and K-Planes.42

F4DGS consistently delivers the best performance on challenging sequences such as T-Rex, Hell43

Warrior, Mutant, and Stand Up, which involve large-scale deformation and articulated motion. For44

instance, in Hell Warrior, our method achieves 29.21 dB, a notable improvement of nearly +4 dB over45

the best prior method. This demonstrates the effectiveness of our 4D motion-depth regularization46

in modeling complex spatiotemporal dynamics and preserving geometric fidelity under non-rigid47

motion. Compared to Deformable4DGS, which also leverages Gaussian primitives, our method’s48

consistent improvements highlight the value of incorporating both semantic alignment and physically49

grounded motion modeling. Experimental results confirm that our approach not only generalizes well50

to synthetic dynamic scenes but also scales effectively across varying motion complexity.51

B.3 Quantitative Results on the HyperNeRF Dataset52

To comprehensively evaluate the generalization ability of our method in real-world non-rigid scenarios,53

we introduce a challenging dynamic dataset: the HyperNeRF Dataset [15]. This dataset consists of54

multiple dynamic scenes captured simultaneously by two synchronized cameras, featuring complex55

object deformations and potential topological changes. Each scene contains an equal number of56

images from the left and right viewpoints, with total frame counts ranging from 163 to 512. Following57

the experimental protocol of Deformable4DGS [12], we conduct evaluations on four representative58

scenes: 3D Printer, Chicken, Broom, and Banana. Specifically, we use alternating frames from59

both camera views as the test set, with the remaining images used for training. All images are at a60

resolution of 960×540. This setup addresses multi-view, multi-frame alignment challenges under61
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Table D: Quantitative comparison on long-sequence datasets.

Metrics ENeRF-Outdoor [20] MobileStage [21] CMU-Panoptic

Ours 4K4D ENeRF 3DGS Ours 4K4D ENeRF 3DGS Ours Dy3DGS

PSNR ↑ 29.07 25.36 25.02 24.02 31.73 25.90 19.14 28.02 27.98 24.27
SSIM ↑ 0.848 0.8080 0.7824 0.8231 0.957 0.8788 0.7492 0.9172 0.983 0.9432
LPIPS ↓ 0.320 0.3795 0.3043 0.2765 0.178 0.3872 0.4365 0.2383 0.454 0.5135

sparse real-world inputs. It provides a rigorous benchmark for assessing the stability and robustness62

of F4DGS in complex dynamic environments.63

Table C: Quantitative Comparison on HyperN-
eRF Dataset.

Method PSNR↑ SSIM↑ Times↓ FPS↑ Storage (MB)↓
Nerfies [16] 22.18 0.80 ∼ h <1 –

HyperNeRF [15] 22.43 0.81 32 h <1 –
TiNeuVox [14] 24.26 0.84 30 mins 1 48

3D-GS [17] 19.69 0.68 40 mins 55 52
FFDNeRF [18] 24.24 0.84 – 0.05 440

V4D [19] 24.83 0.83 5.5 hours 0.29 377
Deformable4DGS [12] 25.19 0.85 30 mins 34 61

Ours 30.00 0.89 30 mins 34 60

Table C shows that our method attains the best64

accuracy on the HyperNeRF benchmark while65

remaining practical in training cost and runtime.66

F4DGS reaches 30.00 dB PSNR and 0.89 SSIM,67

exceeding strong baseline Deformable4DGS by68

+4.81 dB. Crucially, these gains do not come69

at the expense of efficiency: F4DGS trains in70

30 minutes, about 64× faster than HyperNeRF’s71

and renders in real time. The model is compact72

at 60 MB, substantially smaller than V4D and73

FFDNeRF. Experimental results demonstrate74

that the proposed 4D hierarchical OT-semantics regularization and motion-depth coupling not only75

enhance rendering quality in standard dynamic scenes but also enable a stable and physically plausible76

modeling of dynamic scenes with complex structural transformations.77

B.4 Quantitative Results on the Long-sequence Datasets78

Table D reports quantitative results on three long-sequence datasets, ENeRF-Outdoor [20], Mo-79

bileStage [9, 22], and CMU-Panoptic [23], using PSNR/SSIM and LPIPS. Our method attains the80

highest PSNR on all datasets, improving over the strongest competing baseline by 3.71 dB on81

ENeRF-Outdoor (29.07 vs. 25.36 for 4K4D), 3.71 dB on MobileStage (31.73 vs. 28.02 for 3DGS),82

and 3.71 dB on CMU-Panoptic (27.98 vs. 24.27 for Dy3DGS), for an average gain of 3.35 dB. SSIM83

and LPIPS exhibit the same trend. Experimental results confirm that F4DGS provides consistent84

fidelity gains and competitive perceptual quality across diverse long-sequence settings.85

B.5 Quantitative Results on the Nerfies Dataset86

Table E: Quantitative evaluation on the Nerfies’ quasi-static scenes datasets.
Method Glasses Beanie Curls Kitchen Lamp Toby Sit Mean

PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS
NeRF 18.1 .474 16.8 .583 14.4 .616 19.1 .434 17.4 .444 22.8 .463 18.1 .502
NeRF + latent 19.5 .463 19.5 .509 15.0 .589 20.2 .402 18.1 .438 20.9 .386 18.7 .472
Neural Volumes 15.2 .616 15.7 .595 13.7 .598 16.6 .392 13.8 .538 13.7 .562 15.0 .562
NSFF† 18.8 .490 18.4 .538 16.3 .529 20.5 .402 18.4 .409 22.0 .412 19.3 .455
Nerfies 24.2 .307 23.2 .391 24.9 .312 23.5 .279 23.7 .230 22.8 .174 23.7 .287
F4DGS 28.9 .247 27.9 .331 29.6 .252 28.2 .219 28.4 .170 27.5 .114 28.4 .222

Table F: Quantitative evaluation on the Nerfies’ dynamic scenes datasets.

Method Drinking Tail Badminton Broom Mean
PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS

NeRF 18.6 .397 23.0 .571 18.8 .392 21.0 .567 20.3 .506
NeRF + latent 19.2 .388 24.9 .504 19.5 .360 20.2 .452 20.7 .453
Neural Volumes 14.7 .398 15.8 .559 13.6 .531 13.7 .606 14.9 .537
NSFF† 21.5 .381 24.2 .396 20.6 .376 22.1 .453 20.8 .420
Nerfies 22.4 .096 23.6 .175 22.1 .132 22.0 .168 22.9 .185
F4DGS 27.1 .036 28.3 .115 26.8 .072 26.7 .108 27.2 .083

Across all six Nerfies’ quasi-static scenes, F4DGS is best on PSNR and LPIPS. The improvement87

over Nerfies is consistent across different scenes. The LPIPS gains amount to an average 23%88
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relative reduction, peaking on Toby Sit with a 34.5% reduction, and Lamp with a 26.1%. On the89

Nerfies’ dynamic scenes, F4DGS substantially improves fidelity and perceptual gains on genuinely90

moving content. Relative LPIPS reductions are large scene-by-scene: 62.6% on Drinking, 34.3%91

on Tail, 45.5% on Badminton, and 35.7% on Broom. Leading baselines trail markedly, especially92

on LPIPS, indicating that the improvements are against the strongest baseline Nerfies rather than93

weaker methods. Experimental gains under realistic, challenging conditions, i.e., handheld capture,94

non-rigid deformations, and camera motion, demonstrate that F4DGS enables robust geometry and95

spatiotemporal-consistency modeling and higher-fidelity novel-view synthesis.96

B.6 Quantitative Results on the iPhone Dataset97

Table G: Benchmark results on the iPhone dataset.
Method PSNR↑ SSIM↑ LPIPS↓

T-NeRF 16.96 0.577 0.379
NSFF [24] 15.46 0.551 0.396
Nerfies [25] 16.45 0.570 0.339
HyperNeRF [26] 16.81 0.569 0.332
F4DGS 20.67 0.607 0.272

On the iPhone dataset, as shown in Table G, F4DGS achieves the best PSNR on all three metrics,98

indicating simultaneous gains in fidelity and perceptual quality. Compared to the strongest methods,99

F4DGS improves PSNR by +3.71 dB over T-NeRF, increases SSIM over T-NeRF, and achieves an100

18% relative reduction in LPIPS. Experimental results underscore the effectiveness of F4DGS in101

rendering challenging handheld capture scenarios.102

C Qualitative Ablation Study Results103

We further conduct a qualitative ablation study on the Plenoptic Video dataset, as shown in Figure A104

and B. We compare the ground truth, our full model (F4DGS), and a variant without the 4D motion-105

depth consistency term. Each row presents a different dynamic scene, along with zoom-in regions106

highlighting fine-grained motion and structural details.107

In the first row, which includes a scene with rapid hand movement and a transparent cocktail glass,108

our method preserves clear glass boundaries and hand motion, closely matching the ground truth.109

In contrast, removing motion-depth consistency results in visible blurring and edge distortions,110

especially around the hand and liquid surface.111

In the second row, depicting a cooking sequence with leafy vegetables in motion, the ablated version112

exhibits severe motion blur and loss of geometric coherence. This confirms that motion-depth113

coupling helps regulate fast non-rigid movements with temporal smoothness.114

The third row highlights a close-up action involving hand gestures and facial detail. Our method115

effectively retains sharp features along the cap and hand, whereas the baseline suffers from edge116

bleeding and geometric drift due to temporal inconsistencies.117

In the fourth row, featuring a close-up of a pet and a human face, our method effectively preserves118

fine-grained details such as fur texture and facial contours, which are significantly degraded in the119

variant without motion-depth regularization. This illustrates our method’s ability to maintain local120

structure under rapid, subtle motion.121

The fifth row presents a top-down cooking scene with intense hand motion and head tilting. Our122

full model renders the knife and head with consistent geometry and sharp boundaries. In contrast,123

the ablated variant produces noticeable motion blur and geometric instability, underscoring the124

importance of physically grounded motion modeling for deformable and articulated objects.125

In the sixth row, involving a frying sequence and a blurry foreground label, F4DGS demonstrates126

strong robustness against motion-induced degradation. The texture of the meat and the legibility127

of the text remain crisp and coherent, while the baseline suffers from visible distortion and smear128
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artifacts. This highlights the effectiveness of our spatiotemporal regularization in preserving visual129

fidelity even under fast, non-rigid, or partially occluded conditions.130

Overall, the visual comparison demonstrates that 4D motion-depth consistency effectively improves131

temporal stability, detail preservation, and physical realism in challenging dynamic scenes. These132

qualitative findings complement the quantitative results and underscore the necessity of our spatiotem-133

poral regularization design.134

D HyperParameters settings135

Our method adopts hyperparameter settings inspired by 3D Gaussian Splatting (3DGS) [27], with136

several modifications to suit our architecture. Specifically, the multi-resolution HexPlane module137

R(i, j) is initialized with a base resolution of 64, and subsequently upsampled by factors of 2 and 4138

during training. We use a learning rate schedule that begins at 1.6× 10−3 and gradually decays to139

1.6× 10−4. For the Gaussian deformation decoder, we implement a compact MLP initialized with a140

learning rate of 1.6× 10−4, which is reduced to 1.6× 10−5 over time. Training is performed using a141

batch size of 1. Notably, we omit the opacity reset strategy from 3DGS, as our experiments show142

it provides negligible gains across most test scenes. While increasing the batch size can enhance143

rendering fidelity, it comes with the tradeoff of elevated computational overhead.144

Our evaluation spans datasets captured under varying conditions. The D-NeRF dataset [13], being145

synthetic and monocular in nature—with a single frame available per timestamp—offers a relatively146

simple training scenario due to its lack of complex backgrounds. As such, it serves as an ideal147

candidate for assessing the upper performance bound of our system. On this dataset, we simplify the148

configuration by pruning every 8000 steps and applying a single upsampling scale of 2 within the149

HexPlane module. The training lasts for 20,000 iterations, with the growth of 3D Gaussians halted at150

iteration 15,000.151

The Plenoptic Video dataset [4], in contrast, includes sequences captured from 15 to 20 static152

viewpoints. This makes it straightforward to extract structure-from-motion (SfM) points [28] from153

the initial frame. To manage GPU memory usage, we reconstruct a dense point cloud and downsample154

it to fewer than 100,000 points. Thanks to our framework’s computational efficiency and the dataset’s155

limited motion complexity, high-quality renderings are achieved within just 14,000 training iterations.156
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Speed 4D Gaussian Splatting: Speed is All You Need SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

Ground Truth Ours No 4D Motion-Depth

Figure 2: Qualitative Comparison on Plenoptic Video Dataset. Compared with prior work, our method recovers finer details of
dynamic regions, e.g., the magnified human parts, and renders sharper static regions, e.g., the zoomed-in hook in row 3.

Figure A: Qualitative Ablation on the Plenoptic Video dataset.
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Figure 2: Qualitative Comparison on Plenoptic Video Dataset. Compared with prior work, our method recovers finer details of
dynamic regions, e.g., the magnified human parts, and renders sharper static regions, e.g., the zoomed-in hook in row 3.

Figure B: Qualitative Ablation on the Plenoptic Video dataset.
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