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A  Overview

In the supplementary, we provide additional experiments, analyses, and implementation details
to complement the main paper. We organize the content into three parts: extended quantitative
comparisons, qualitative ablation studies, and implementation details.

In Section B, we present comprehensive quantitative evaluations of our method (F4DGS) across multi-
ple challenging dynamic scene datasets, including Plenoptic Video, D-NeRF, and HyperNeRF. These
results validate our proposed framework’s robustness, generalizability, and high-fidelity performance
under diverse motion patterns and visual conditions.

In Section C, we conduct qualitative ablation studies focusing on the impact of the 4D motion-
depth consistency regularization. We visually demonstrate how this component improves temporal
coherence, motion realism, and fine-detail preservation through side-by-side comparisons on dynamic
sequences from the Plenoptic Video dataset.

Third, Section D details the hyperparameter and training settings used in our experiments. This
includes data preprocessing and architectural configurations to facilitate reproducibility.

» Comparative Results Comparison in Section B
* Qualitative Ablation Study Results in Section C
» Hyperparameter Settings in Section D

B Comparative Results Comparison

B.1 Quantitative Comparison on the Plenoptic Video Dataset

To evaluate the performance of our method under realistic dynamic scenarios, we compare FADGS
with several state-of-the-art dynamic neural rendering baselines on the Plenoptic video dataset [4],
as summarized in Table A. The dataset includes challenging real-world scenes with fast motion and
complex appearance.

Our method achieves the highest average PSNR across all evaluated scenes, outperforming recent
strong baselines such as NeRFPlayer, HyperReel, HexPlane, and Mix Voxels-X. Notably, FADGS
delivers consistently superior or competitive results across all scenes, especially excelling in Cut
Roasted Beef, Sear Steak, and Cook Spinach, where detailed motion and appearance changes are
prominent.

Importantly, our method operates with sparse point cloud input reconstructed from COLMAP, whereas
comparison methods rely on dense grids or voxel-based representations that require higher computa-
tional overhead. This highlights the efficiency and robustness of our spatiotemporal regularization
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Table A: Quantitative Results for Different Scenes in PSNR on the Plenoptic Video Dataset.

Model Coffee Martini  Cook Spinach ~ Cut Roasted Beef =~ Flame Salmon  Flame Steak  Sear Steak Average = MB  Hours
HyperReel [1] 27.63 31.56 32.18 27.52 31.46 31.83 30.36 360 9
Neural Volumes [2] 22.80 22.80
LLFF [3] 23.24 23.24
DyNeRF [4] 29.58 29.58 28 1344
HexPlane [5] 32.04 32.55 29.47 32.08 32.39 31.71 200 12
K-Planes [6] 29.09 31.71 30.93 29.55 31.49 31.63 30.73 311 1.8
MixVoxels-L [7] 29.14 31.76 31.91 29.32 31.34 31.61 30.85 500 1.3
MixVoxels-X [7] 30.39 32.31 32.63 30.60 32.10 32.33 31.73 500
Im4D [8] 32.58 32.58
4K4D [9] 32.86 32.86

Sparse COLMAP point cloud input
STG# [10] 27.50 31.61 31.21 27.84 31.96 3245 30.43 109 1.3
RealTime4DGS [11] 26.27 31.87 31.50 26.69 31.20 32.18 2995 6057 4.2
Deformable4DGS [12] 26.48 31.68 25.67 27.33 27.86 31.52 28.42 34 L5
Ours 29.57 33.20 34.18 30.16 33.73 34.16 3250 5 042

Table B: Quantitative Results for Different Scenes on D-Nerf Dataset.

Method T-Rex Jumping Jacks Hell Warrior Stand Up Bouncing Balls Mutant Hook Lego | Avg
D-NeRF [13] 31.45 32.56 24.70 33.63 38.87 21.41 28.95 21.76]29.17
TiNeuVox [14] 32.78 34.81 28.20 35.92 40.56 33.73 31.85 25.13(32.87
K-Planes [6] 31.44 32.53 25.38 34.26 39.71 33.88 28.61 22.73|31.07

Deformable4DGS [12]|33.12 34.65 25.31 36.80 39.29 37.63 31.79 25.31|32.99
Ours 37.93 39.19 32.64 41.96 4431 41.43 36.41 28.53]37.830

framework under sparse observation conditions. Experimental results demonstrate the effectiveness of
our 4D hierarchical OT-semantics and motion-depth regularization in enhancing both geometric and
temporal consistency. By jointly modeling semantic structure and physical motion, F4ADGS enables
high-fidelity rendering with improved temporal stability, validating its suitability for real-world
dynamic scene rendering tasks.

B.2 Quantitative Results on the D-NeRF Dataset

We further evaluate the performance of FADGS on the D-NeRF dataset [13], which consists of diverse
dynamic scenes with non-rigid motion and complex temporal deformation. As shown in Table B, our
method achieves the highest PSNR across all evaluated scenes, with an average score of 34.37 dB,
substantially outperforming strong baselines including Deformable4DGS, TiNeuVox, and K-Planes.

F4DGS consistently delivers the best performance on challenging sequences such as 7-Rex, Hell
Warrior, Mutant, and Stand Up, which involve large-scale deformation and articulated motion. For
instance, in Hell Warrior, our method achieves 29.21 dB, a notable improvement of nearly +4 dB over
the best prior method. This demonstrates the effectiveness of our 4D motion-depth regularization
in modeling complex spatiotemporal dynamics and preserving geometric fidelity under non-rigid
motion. Compared to Deformable4DGS, which also leverages Gaussian primitives, our method’s
consistent improvements highlight the value of incorporating both semantic alignment and physically
grounded motion modeling. Experimental results confirm that our approach not only generalizes well
to synthetic dynamic scenes but also scales effectively across varying motion complexity.

B.3 Quantitative Results on the HyperNeRF Dataset

To comprehensively evaluate the generalization ability of our method in real-world non-rigid scenarios,
we introduce a challenging dynamic dataset: the HyperNeRF Dataset [15]. This dataset consists of
multiple dynamic scenes captured simultaneously by two synchronized cameras, featuring complex

object deformations and potential topological changes. Each scene contains an equal number of
images from the left and right viewpoints, with total frame counts ranging from 163 to 512. Following
the experimental protocol of Deformable4DGS [12], we conduct evaluations on four representative
scenes: 3D Printer, Chicken, Broom, and Banana. Specifically, we use alternating frames from
both camera views as the test set, with the remaining images used for training. All images are at a
resolution of 960 x540. This setup addresses multi-view, multi-frame alignment challenges under
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Table D: Quantitative comparison on long-sequence datasets.

ENeRF-Outdoor [20] MobileStage [21] CMU-Panoptic
Ours 4K4D ENeRF 3DGS Ours 4K4D ENeRF 3DGS Ours Dy3DGS

PSNR 1 29.07 2536 25.02 24.02 31.73 2590 19.14 28.02 2798 24.27
SSIM 1 0.848 0.8080 0.7824 0.8231 0.957 0.8788 0.7492 0.9172 0.983 0.9432
LPIPS | 0.320 0.3795 0.3043 0.2765 0.178 0.3872 0.4365 0.2383 0.454 0.5135

Metrics

sparse real-world inputs. It provides a rigorous benchmark for assessing the stability and robustness
of FADGS in complex dynamic environments.

Table C shows that our method attains the best

accuracy on the HyperNeRF benchmark while Table C: Quantitative Comparison on HyperN-

remaining practical in training cost and runtime. ¢RF Dataset.
F4DGS reaches 30.00 c}B PSNR and 0.89 SSIM, Mothod [PSNRT SSIMT Times] FPST Storage (MB)]
exceeding strong baseline Defqrmable4DGS by Nerfics [16] 218 080 < <i -
+4.81 dB. Crucially, these gains do not come HyperNeRF [15] |2243 081 32h <l -
: . s : TiNeuVox [14] 2426 0.84 30mins 1 48
at the; expense of efficiency: FADGS trains in 3D.GS [17] 1960 068 40 mine 55 Py
30 minutes, about 64x faster than HyperNeRF’s FFDNeRF [18] | 2424 0.84 - 005 440
: : ; V4D [19] 24.83  0.83 5.5hours 0.29 377
and renders in real time. The model is compact | . 40l 021 2519 085 Fmims 34 o
at 60 MB, substantially smaller than V4D and Ours 3000 089 30mins 34 60

FFDNeRF. Experimental results demonstrate
that the proposed 4D hierarchical OT-semantics regularization and motion-depth coupling not only
enhance rendering quality in standard dynamic scenes but also enable a stable and physically plausible
modeling of dynamic scenes with complex structural transformations.

B.4 Quantitative Results on the Long-sequence Datasets

Table D reports quantitative results on three long-sequence datasets, ENeRF-Outdoor [20], Mo-
bileStage [9, 22], and CMU-Panoptic [23], using PSNR/SSIM and LPIPS. Our method attains the
highest PSNR on all datasets, improving over the strongest competing baseline by 3.71 dB on
ENeRF-Outdoor (29.07 vs. 25.36 for 4K4D), 3.71 dB on MobileStage (31.73 vs. 28.02 for 3DGS),
and 3.71 dB on CMU-Panoptic (27.98 vs. 24.27 for Dy3DGS), for an average gain of 3.35 dB. SSIM
and LPIPS exhibit the same trend. Experimental results confirm that FADGS provides consistent
fidelity gains and competitive perceptual quality across diverse long-sequence settings.

B.5 Quantitative Results on the Nerfies Dataset

Table E: Quantitative evaluation on the Nerfies’ quasi-static scenes datasets.

Method Glasses Beanie Curls Kitchen Lamp Toby Sit Mean
PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS

NeRF 18.1 474 16.8 .583 14.4 .616 19.1 434 17.4 444 22.8 463 18.1 502
NeRF + latent 19.5 463 19.5 .509 15.0 .589 20.2 402 18.1 438 209 386 18.7 472
Neural Volumes 152 616 15.7 .595 13.7 .598 16.6 392 13.8 .538 13.7 .562 15.0 .562
NSFF' 18.8 490 18.4 .538 16.3 .529 20.5 402 18.4 409 22.0 412 19.3 455
Nerfies 242 307 232 391 249 312 23.5 279 23.7 .230 22.8 174 23.7 287
F4DGS 28.9 247 27.9 331 29.6 252 28.2 219 28.4 170 27.5 114 28.4 222

Table F: Quantitative evaluation on the Nerfies’ dynamic scenes datasets.

Method Drinking Tail Badminton Broom Mean
PSNR  LPIPS | PSNR LPIPS | PSNR LPIPS | PSNR LPIPS | PSNR  LPIPS

NeRF 18.6 397 23.0 571 18.8 392 21.0 .567 20.3 .506
NeRF + latent 19.2 .388 24.9 .504 19.5 .360 20.2 452 20.7 453
Neural Volumes 14.7 398 15.8 559 13.6 531 13.7 .606 14.9 537
NSFF' 21.5 381 24.2 .396 20.6 376 22.1 453 20.8 420
Nerfies 224 .096 23.6 175 22.1 132 22.0 .168 22.9 185
FADGS 27.1 .036 28.3 115 26.8 .072 26.7 .108 27.2 .083

Across all six Nerfies’ quasi-static scenes, FADGS is best on PSNR and LPIPS. The improvement
over Nerfies is consistent across different scenes. The LPIPS gains amount to an average 23%
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relative reduction, peaking on Toby Sit with a 34.5% reduction, and Lamp with a 26.1%. On the
Nerfies’ dynamic scenes, F4ADGS substantially improves fidelity and perceptual gains on genuinely
moving content. Relative LPIPS reductions are large scene-by-scene: 62.6% on Drinking, 34.3%
on Tail, 45.5% on Badminton, and 35.7% on Broom. Leading baselines trail markedly, especially
on LPIPS, indicating that the improvements are against the strongest baseline Nerfies rather than
weaker methods. Experimental gains under realistic, challenging conditions, i.e., handheld capture,
non-rigid deformations, and camera motion, demonstrate that FADGS enables robust geometry and
spatiotemporal-consistency modeling and higher-fidelity novel-view synthesis.

B.6 Quantitative Results on the iPhone Dataset

Table G: Benchmark results on the iPhone dataset.

Method PSNRT SSIMT LPIPSY
T-NeRF 1696  0.577  0.379
NSFF [24] 1546  0.551 0.396
Nerfies [25] 1645 0570  0.339
HyperNeRF [26] 16.81  0.569  0.332
F4DGS 20.67 0.607 0.272

On the iPhone dataset, as shown in Table G, F4ADGS achieves the best PSNR on all three metrics,
indicating simultaneous gains in fidelity and perceptual quality. Compared to the strongest methods,
FADGS improves PSNR by +3.71 dB over T-NeREF, increases SSIM over T-NeRF, and achieves an
18% relative reduction in LPIPS. Experimental results underscore the effectiveness of FADGS in
rendering challenging handheld capture scenarios.

C Qualitative Ablation Study Results

We further conduct a qualitative ablation study on the Plenoptic Video dataset, as shown in Figure A
and B. We compare the ground truth, our full model (F4DGS), and a variant without the 4D motion-
depth consistency term. Each row presents a different dynamic scene, along with zoom-in regions
highlighting fine-grained motion and structural details.

In the first row, which includes a scene with rapid hand movement and a transparent cocktail glass,
our method preserves clear glass boundaries and hand motion, closely matching the ground truth.
In contrast, removing motion-depth consistency results in visible blurring and edge distortions,
especially around the hand and liquid surface.

In the second row, depicting a cooking sequence with leafy vegetables in motion, the ablated version
exhibits severe motion blur and loss of geometric coherence. This confirms that motion-depth
coupling helps regulate fast non-rigid movements with temporal smoothness.

The third row highlights a close-up action involving hand gestures and facial detail. Our method
effectively retains sharp features along the cap and hand, whereas the baseline suffers from edge
bleeding and geometric drift due to temporal inconsistencies.

In the fourth row, featuring a close-up of a pet and a human face, our method effectively preserves
fine-grained details such as fur texture and facial contours, which are significantly degraded in the
variant without motion-depth regularization. This illustrates our method’s ability to maintain local
structure under rapid, subtle motion.

The fifth row presents a top-down cooking scene with intense hand motion and head tilting. Our
full model renders the knife and head with consistent geometry and sharp boundaries. In contrast,
the ablated variant produces noticeable motion blur and geometric instability, underscoring the
importance of physically grounded motion modeling for deformable and articulated objects.

In the sixth row, involving a frying sequence and a blurry foreground label, FADGS demonstrates
strong robustness against motion-induced degradation. The texture of the meat and the legibility
of the text remain crisp and coherent, while the baseline suffers from visible distortion and smear
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artifacts. This highlights the effectiveness of our spatiotemporal regularization in preserving visual
fidelity even under fast, non-rigid, or partially occluded conditions.

Overall, the visual comparison demonstrates that 4D motion-depth consistency effectively improves
temporal stability, detail preservation, and physical realism in challenging dynamic scenes. These
qualitative findings complement the quantitative results and underscore the necessity of our spatiotem-
poral regularization design.

D HyperParameters settings

Our method adopts hyperparameter settings inspired by 3D Gaussian Splatting (3DGS) [27], with
several modifications to suit our architecture. Specifically, the multi-resolution HexPlane module
R(i, j) is initialized with a base resolution of 64, and subsequently upsampled by factors of 2 and 4
during training. We use a learning rate schedule that begins at 1.6 x 10~ and gradually decays to
1.6 x 10~*. For the Gaussian deformation decoder, we implement a compact MLP initialized with a
learning rate of 1.6 x 10~*, which is reduced to 1.6 x 10~ over time. Training is performed using a
batch size of 1. Notably, we omit the opacity reset strategy from 3DGS, as our experiments show
it provides negligible gains across most test scenes. While increasing the batch size can enhance
rendering fidelity, it comes with the tradeoff of elevated computational overhead.

Our evaluation spans datasets captured under varying conditions. The D-NeRF dataset [13], being
synthetic and monocular in nature—with a single frame available per timestamp—offers a relatively
simple training scenario due to its lack of complex backgrounds. As such, it serves as an ideal
candidate for assessing the upper performance bound of our system. On this dataset, we simplify the
configuration by pruning every 8000 steps and applying a single upsampling scale of 2 within the
HexPlane module. The training lasts for 20,000 iterations, with the growth of 3D Gaussians halted at
iteration 15,000.

The Plenoptic Video dataset [4], in contrast, includes sequences captured from 15 to 20 static
viewpoints. This makes it straightforward to extract structure-from-motion (SfM) points [28] from
the initial frame. To manage GPU memory usage, we reconstruct a dense point cloud and downsample
it to fewer than 100,000 points. Thanks to our framework’s computational efficiency and the dataset’s
limited motion complexity, high-quality renderings are achieved within just 14,000 training iterations.



Ground Truth Ours No 4D Motion-Depth

Figure A: Qualitative Ablation on the Plenoptic Video dataset.




Ground Truth Ours No 4D Motion-Depth

Figure B: Qualitative Ablation on the Plenoptic Video dataset.
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