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ABSTRACT

The Transformer architecture has inarguably revolutionized deep learning, over-
taking classical architectures like multi-layer perceptrons (MLPs) and convolu-
tional neural networks (CNNs). At its core, the attention block differs in form
and functionality from most other architectural components in deep learning—
to the extent that, in comparison to MLPs/CNNs, Transformers are more often
accompanied by adaptive optimizers, layer normalization, learning rate warmup,
etc. The root causes behind these outward manifestations and the precise mech-
anisms that govern them remain poorly understood. In this work, we bridge this
gap by providing a fundamental understanding of what distinguishes the Trans-
former from the other architectures—grounded in a theoretical comparison of the
(loss) Hessian. Concretely, for a single self-attention layer, (a) we first entirely
derive the Transformer’s Hessian and express it in matrix derivatives; (b) we then
characterize it in terms of data, weight, and attention moment dependencies; and
(c) while doing so further highlight the important structural differences to the Hes-
sian of classical networks. Our results suggest that various common architectural
and optimization choices in Transformers can be traced back to their highly non-
linear dependencies on the data and weight matrices, which vary heterogeneously
across parameters. Ultimately, our findings provide a deeper understanding of the
Transformer’s unique optimization landscape and the challenges it poses.

1 INTRODUCTION AND RELATED WORK

The Transformer architecture (Vaswani et al., 2017) has shown remarkable success across natural
language processing (Devlin et al., 2018; Radford et al., 2018) and vision (Dosovitskiy et al., 2020)
tasks. In particular, its self-attention mechanism has become a mainstay of modern architectures,
enabling parallelization while effectively capturing long-range and modality-agnostic dependencies.
Yet, despite their impressive performance, a significant gap remains in our understanding of the
properties of Transformer-based models relative to traditional architectures such as multi-layer
perceptrons (MLPs, Rosenblatt, 1958) or convolutional neural networks (CNNs, LeCun et al., 1998).

Transformers’ unique architectural built. Compared to the classical architectures, Transform-
ers are unique in several ways. Firstly, the data (tokens) enters the Transformer, through the self-
attention, multiple times. Secondly, the softmax nonlinearity inside self-attention differs from the
piece-wise linear activations, like ReLU (Glorot et al., 2011). Thirdly, the query-key attention incor-
porates two (instead of one) directly multiplied weight matrices within a single architectural block.

The side-factors making Transformers’ unique architecture work. These architectural dif-
ferences render practical approaches for training a Transformer distinct compared to classical
nets (Popel & Bojar, 2018; Bengio, 2012). E.g., Transformers are usually trained with adaptive op-
timizers like Adam(W) (Kingma & Ba, 2015; Loshchilov & Hutter, 2019) and require architectural
extensions such as skip connections (He et al., 2016) and layer norm (Xiong et al., 2020), learning
rate warm-up (Goyal et al., 2017), and using different weight initializations (Huang et al., 2020).

Aim. Given these outward and indirect manifestations of the Transformer’s presence, it is unclear
how these are explicitly triggered due to particular loss landscape geometry endowed by Transform-
ers. To address this, we theoretically investigate the Transformer’s loss landscape by analyzing, in
detail, the structure of the Hessian matrix as well as its data dependency and behavior across layers.
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1



Published as a conference paper at ICLR 2025

H(WV,WV) H(WQ,WQ)

0

2500

10−7 10−5 10−3

Absolute Entries

0

5000

F
re

qu
en

cy

(a) Histogram of (absolute) en-
tries corresponding to the value
and query diagonal blocks.
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(b) On the left, the Hessian matrix for a minimal Transformer,
and, on the right, the zoomed-in block w.r.t. query, key, and
value parameters.

Figure 1: Disparity in the Hessian blocks of a Transformer seen quantitatively and qualita-
tively. We used a single-block GPT-2 Transformer at initialization applied to the next token predic-
tion task (for details see appendix F). We observe block heterogeneity in the magnitudes of Hessian
entries—those of the query block are significantly smaller than those of the value block.

Prior Hessian-related work. The Hessian matrix is a fundamental object for optimization (Martens,
2010; Schaul et al., 2013; Cohen et al., 2021), generalization (Keskar et al., 2016; Jiang et al.,
2019), and more (LeCun et al., 1989; Singh & Alistarh, 2020). (a) Empirical work: For traditional
architectures, the Hessian has received a lot of attention through empirical studies on its bulk-outlier
spectrum and eigenvalue density (Sagun et al., 2016; 2017; Ghorbani et al., 2019; Papyan, 2020; Yao
et al., 2020) and in turn how it is affected by architectural components and how it changes during
training. (b) Theoretical studies in classical architectures: More recently, several theoretical works
have also analyzed, in detail, the Hessian structure and rank (Singh et al., 2021; 2023), beyond
Random-Matrix-Theory based approximations (Pennington & Bahri, 2017). However, this latter
line of work has been restricted to fully-connected and convolutional architectures.

Transformer-related Hessian studies. Park & Kim (2022) provide empirical evidence that the
multi-head self-attention mechanism in Transformers leads to a more non-convex but smoother
loss landscape than that of CNNs, as the Hessian has more negative eigenvalues, but of smaller
magnitude. Zhang et al. (2024) studied the Hessian spectra of Transformers to explain the need
for adaptive optimizers for successful training. They empirically showed that although the full
Hessian spectra of Transformers are quite similar to those of CNNs, the Hessian diagonal blocks in
Transformers are much more heterogeneous—a possible cause for the need for adaptive optimizers.
Barring these few empirical studies, to the best of our knowledge, a theoretical treatment of the
Hessian in Transformers remains lacking.

Goals and contributions. By theoretically analyzing the Hessian of Transformers, we aim to iden-
tify and explicitly state the differences to classical architectures. We believe this provides the foun-
dation for a deeper understanding of the unique loss landscape features and challenges the Trans-
former poses. Our detailed contributions are:

(i) We derive the Hessian of a single self-attention layer and exhibit the structure contained within
its well-known positive-definite and indefinite parts (theorems 3.1 and 3.2).

(ii) We categorize its dependencies into data, weights, and attention moments, find that the Hessian
is highly non-linear and heterogeneous for different parameter groups within a self-attention block,
and show how various Transformer-related tricks can be understood through these characteristics.

(iii) We explicitly establish how individual components of self-attention, like the softmax and
query-key-parameterization, result in a more non-linear and heterogeneous structure within the
Hessian (see fig. 1), then contrast the Transformer’s Hessian with that of traditional architectures
and uncover pronounced differences.

2 SETUP AND BACKGROUND

Single self-attention layer. We consider a single self-attention layer with a slightly generalized
definition, which will later enable us to investigate the impact of specific components. The layer
maps token embeddings X ∈ RL×dV of a sequence of length L with embedding dimension dV

2



Published as a conference paper at ICLR 2025

F vecr(F)
∂F

∂Wi
:=

∂ vecr F

∂ vecr Wi
vecr

(
∂F

∂Wi

)
∂2F

∂Wi∂Wj
:=

∂ vecr
∂F

∂Wi

∂ vecr Wj

[
• •
• •

] •••
•


→→→
→


↓↓↓
↓


↓ →
↓ →
↓ →
↓ →

1 2 3 4

Figure 2: Construction of the second derivative matrix of a matrix-valued network F. Taking the
second derivative of F using row-wise vectorization and numerator layout is equivalent to computing
the second derivatives of each entry separately and stacking them into a column block matrix.

into a new sequence F(X) ∈ RL×dV by computing the values XWV using value weights WV ∈
RdV ×dV and re-weighting them with the self-attention matrix (or map) A(X) ∈ RL×L, i.e.

F(X) = A(X)XWV where A(X) = a (T(X)) . (1)

Here, we decompose the attention map into two components, the query-key similarity transfor-
mation T(X) ∈ RL×L which may introduce additional trainable parameters, and the activation
function a : RL×L → RL×L. The classical self-attention from Vaswani et al. (2017) uses
T(X) = XWQW

⊤
KX

⊤ /
√
dK , where a = softmax (row-wise) , with learnable query and key

weight matrices WQ,WK ∈ RdV ×dK . Further, our single self-attention layer from eq. (1) feeds
into a loss function ℓ : RL×dV ×RL×dV → R that measures the discrepancy between the predicted
sequence F(X) and the sequence labels Y. We will assume square loss (where ∥ · ∥F denotes the
Frobenius norm of a matrix), ℓ(F(X),Y) = ∥F(X)−Y∥2F/(LdV ) .
Hessian, block structure, and Gauss-Newton decomposition. Our goal is to compute the full
Hessian of the loss w.r.t. the learnable, matrix-shaped, parameters {Wi ∈ Rqi×pi}i of the attention
layer (for instance i ∈ {K,Q,V} for canonical self-attention). To break down this task, first notice
that this matrix consists of blocks ∂2(ℓ ◦ F)/∂Wi∂Wj . Further, the Hessian decomposes into two
components as a consequence of the chain rule applied to the functional split ℓ ◦ F,

∂2 (ℓ ◦ F)
∂Wi∂Wj

(·) = ∂F

∂Wi
(·)⊤ ∂2ℓ

∂F2
(F(·)) ∂F

∂Wj
(·)︸ ︷︷ ︸

F-outer-product Hessian
Ho (Wi,Wj)

+

(
∂ℓ

∂F
(F(·))⊗ Ipiqi

)
∂2F

∂Wi∂Wj
(·)︸ ︷︷ ︸

F-functional Hessian
Hf (Wi,Wj)

. (2)

Equation (2) is known as Gauss-Newton decomposition and such splits can be widely seen in the
literature (Sagun et al., 2017; Kunstner et al., 2019; Martens, 2020; Dangel et al., 2020; Singh
et al., 2021). We adopt the terminology provided in Singh et al. (2021; 2023) by referring to the
term containing second-order derivatives of ℓ as outer-product Hessian (often called generalized
Gauss-Newton (Schraudolph, 2002) matrix), and to the term capturing second-order derivatives
of the network as functional Hessian. To emphasize the split at which the decomposition through
the chain rule was applied, we added the prefix F above. This will later become useful to identify
expressions in the Hessian as stemming from different splits (see section 3 and appendix D). But
until then and unless stated otherwise, we will consider the split ℓ ◦ F and thus omit specifying this
hereafter. For classical self-attention, this yields the Hessian decomposition H = Ho +Hf with

H• =

H• (WQ,WQ) H• (WQ,WK) H• (WQ,WV)
H• (WK,WQ) H• (WK,WK) H• (WK,WV)
H• (WV,WQ) H• (WV,WK) H• (WV,WV)

 (3)

for • ∈ {o, f} and where H• (Wi,Wj) = (H• (Wj ,Wi))
⊤ due to symmetry.

Matrix calculus. So far, we have slightly abused notation and did not define formally what it means
to take derivatives of a matrix-valued object w.r.t. a matrix-shaped argument. We will follow the
recipe of matrix calculus (Magnus & Neudecker, 2019) which reduces those derivatives to the vector
case by introducing a flattening convention (we will use row-stacking, indicated by the operation
vecr). Consider two vectors a ∈ RA and b(a) ∈ RB . The Jacobian ∂b/∂a ∈ RB×A collects
the first-order derivatives such that [∂b/∂a]i,j = ∂bi/∂aj . The Hessian ∂2b/∂a2 ∈ RBA×A

is a column block matrix that concatenates the Hessians for each entry of b w.r.t.a; equivalent
to flattening the Jacobian, then differentiating it a second time. To generalize these definitions
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to matrix-valued objects, we simply flatten all arguments before differentiation (see fig. 2 for a
visualization). Applied to the expressions in eq. (2), we have,

∂F

∂Wi
:=

∂ vecr F

∂ vecr Wi
∈ RLdV ×piqi and

∂2F

∂Wi∂Wj
:=

∂ vecr
∂F

∂Wi

∂ vecr Wj
∈ RLdV piqi×pjqj . (4)

For the square loss discussed above, the Jacobian ∂ℓ/∂F ∈ R1×LdV and Hessian
∂2ℓ/∂2F ∈ RLdV ×LdV w.r.t. the network’s prediction simplify to 2 vecr (F(·)−Y)

⊤
/(LdV ) and

2ILdv
/(LdV ) (i.e., a scaled identity matrix) respectively.

Hessian of MLPs and CNNs. Since one of our main interests is stating explicit differences between
the Transformer Hessian and that of traditional architectures, we briefly recap the Hessian structure
from Singh et al. (2021; 2023), for the case of linear MLPs, F(x) = WL · · ·W1x. As an illustra-
tion, we will only consider the outer-product Hessian and look at its diagonal block corresponding
to the i-th layer parameter matrix, Wi, which takes the form

Ho(Wi,Wi) = W⊤
i+1 · · ·W⊤

LWL · · ·Wi+1 ⊗ Wi−1 · · ·W1 Σxx W
⊤
1 · · ·W⊤

i−1 ,

with Σxx = E [xx⊤], the uncentered data covariance over the dataset. Observe that the above
expression depends quadratically on the data through Σxx. Likewise, the functional Hessian for
MLPs, has a quadratic dependence on the data, but through a different matrix which carries the
covariance of the residuals δx,y = F(x) − y with the input x. Importantly, the Hessian diagonal
blocks are entirely comprised of the contribution from the outer-product Hessian, as the functional
Hessian has a block-hollow structure (zero diagonal blocks), which also extends to any piecewise
nonlinearity in the sense of almost everywhere.

A notable difference from our setup is that these works aggregate the Hessian over the dataset,
while, for brevity, we focus on a single sample setting.1 As a side-benefit, this allows us to cast their
(non-sequential) setup one-to-one here by considering their whole dataset in the form of a single
sequence, where the MLP is applied separately to each element of the sequence. This point of view
helps facilitate a precise comparison between the two settings.

3 EXACT STRUCTURE OF THE SELF-ATTENTION HESSIAN

We start by studying the Hessian of standard self-attention with square loss. We present our main re-
sults regarding the exact Hessian in the form of two theorems, each of them targeting one term in the
Gauss-Newton decomposition from eq. (2), further broken down into parameter blocks from eq. (3).
Later, our goal will be to analyze and interpret them further through simplifications. For brevity,
we omit the blocks w.r.t. the key weight matrix as they are essentially symmetric to the ones w.r.t.
the query weight matrix (modulo differences in arrangement) and defer the proofs to the appendix.

Theorem 3.1. Outer-product Hessian Ho. For a single self-attention layer, eq. (1), with
classical self-attention that feeds into the square loss, the blocks of Ho are

Ho (WV,WV) =
2

LdV
M⊤

1 M1 ⊗ IdV
,

Ho (WQ,WQ) =
2

LdV dK

(
IdV

⊗W⊤
K

)
Z⊤

1

(
IL ⊗WVW

⊤
V

)
Z1 (IdV

⊗WK) ,

Ho (WV,WQ) =
2

LdV
√
dK

(
M⊤

1 ⊗W⊤
V

)
Z1 (IdV

⊗WK) ,

Ho (WQ,WK) =
2

LdV dK

(
IdV

⊗W⊤
K

)
Z⊤

1

(
IL ⊗WVW

⊤
V

)
Z1 (WQ ⊗ IdV

)KdK ,dV
,

with the first attention moment matrix M1 := AX ∈ RL×dV (see section 3.2) and where
Z1 := (IL ⊗X⊤)(∂A/∂T)(X⊗X) ∈ RLdV ×d2

V contains first derivatives of the softmax.

To arrive at these expressions we start from eq. (2), insert ∂2ℓ/∂2F, and use the self-attention Ja-
cobians derived by Noci et al. (2022). See appendix B for details. We note that the value diagonal

1Here we discuss the Hessian in a single data point setting to improve exposition, but our insights translate
directly into a batch setting—one just needs to average the Hessian formulas over the data points.
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block is structurally identical to an MLP’s outer-product Hessian, while the query diagonal and the
mixed query-key blocks display similar Kronecker structures, but with varying weight matrices.

Theorem 3.2. Functional Hessian Hf . For the setup of theorem 3.1, the functional Hessian
w.r.t. the value weight matrix Hf (WV,WV) is zero and the remaining blocks are given by

Hf (WQ,WQ) =
2

LdV dK
RdV dK

(
IL ⊗W⊤

V ⊗ IdV
⊗W⊤

K

)
Z2 (IdV

⊗WK) ,

Hf (WV,WQ) =
2

LdV
√
dK

Rd2
V
(IL ⊗ S) Z1 (IdV

⊗WK) ,

Hf (WQ,WK) =
2

LdV dK
RdV dK

(
IL ⊗W⊤

V ⊗ IdV
⊗W⊤

K

)
Z2 (WQ ⊗ IdV

)KdK ,dV

+
2

LdV
√
dK

RdV

(
IL ⊗W⊤

V ⊗ IdV

)
(Z1 ⊗ IdV

)S⊗ IdK
,

with the duplicated residual Rm := vecr (F(X)−Y)
⊤ ⊗ Im ∈ Rm×mLdV , a shuffling ma-

trix S := (IdV
⊗KdV ,dV

) (vecr IdV
⊗ IdV

) ∈ Rd3
V ×dV where KdV ,dV

is a commutation
matrix (see e.g. lemma B.2), Z1 defined as in theorem 3.1, and Z2 := (IL ⊗ X⊤ ⊗ X⊤ ⊗
X⊤)(∂2A/∂T2)(X⊗X) ∈ RLd3

V ×d2
V containing second-order softmax derivatives.

For theorem 3.2, we differentiate the self-attention Jacobian, and multiply it with the square loss
gradient ∂ℓ/∂F. See appendix B for details. Similarly to the MLP functional Hessian, the diagonal
value block of the self-attention functional Hessian disappears. Again, structurally similar expres-
sions appear in the query-key mixed term, and the query diagonal block, with the query-key mixed
term being the most involved and consisting of two summands.

Categorizing the constituent terms. To simplify the analysis of theorems 3.1 and 3.2, we divide
the terms into four categories. First, the least important are layout matrices that copy or shuffle
entries via Kronecker products with an identity or permutation matrix. These serve to correctly
arrange the entries in the Hessian from our matrix layout in eq. (4) and therefore we will often ignore
them. Second, we have the matrices Z1,Z2, which contain first- and second-order derivatives of the
softmax and have explicit dependencies on the data X (section 3.1). Third, we identify first-order
moments M1 of the attention matrix, as well as higher moments in the attention derivatives in Z1,2

(section 3.2). Fourth, the Hessian depends on the weight matrices WV,WQ,WK (section 3.3).

As one of our main interests is the scaling behavior of blocks w.r.t. different dependencies, we will
simplify expressions using the Landau notation from Martens (2020, Section 14), where for two
matrices A,B, denoting f ∈ O(AB) means all entries of f are O(Ai,jBk,l) for any i, j, k, l. Due
to their boundedness to [0, 1], we can ignore the softmax expressions in the attention matrix.

3.1 DATA DEPENDENCE VARIES ACROSS HESSIAN BLOCKS

One characteristic of self-attention is that the data X enters multiple times: as keys, queries, and
values. This leads to highly non-linear data dependencies in the Hessian. For brevity omitting the
dependence of all the functional Hessian blocks on the residual δXY := vecr (F(X)−Y)

⊤, we
find that for the expressions in theorems 3.1 and 3.2

Ho ∈

Q K V Q O(X6) O(X6) O(X4)

K · O(X6) O(X4)

V · · O(X2)

,Hf ∈

Q K V Q O(X5) O(X5 +X3) O(X3)

K · O(X5) O(X3)

V · · O(1)

. (5)

Data heterogeneity. Throughout different Hessian blocks, we observe a varying depen-
dence on the embedding matrix X. The most data-dependent blocks are the key and query
ones. For the outer-product Hessian Ho, each key and query weight contributes a cubic de-
pendence on X while value weight matrix WV brings a linear dependence on X. This obser-
vation confirms the finding of Noci et al. (2022) who show ∥∂F/∂WV∥F ∈ O(∥X∥F), while
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Figure 3: (Plotted in log-log scale.) Empirical verification with a CE loss confirms derived
growth rates w.r.t. magnitude σ of X from eq. (5). We show the growth rates through the Frobe-
nius norm ∥ · ∥F of value and query diagonal blocks. The dashed lines correspond to the trend (a)
predicted by theory as in eq. (5), (b) estimated from the Frobenius norm measurements on the log-
log scale by the linear regression slope. For details on the experimental setting, see appendix F.
σ < 1 (LHS of the vertical line) corresponds to practical values of σ.

∥∂F/∂WK∥F, ∥∂F/∂WQ∥F ∈ O(∥X∥3F). The block-heterogeneous dependence is also visible in
the functional Hessian Hf, which includes an additional dependence on X through the residual δXY.
If we ignore δXY, then the outer-product Hessian dominates the Hessian for large X.

Empirical validation. We test our theoretical derivations empirically using a single GPT-2 Trans-
former block (Radford et al., 2019) on a digit addition task adapted from Quirke & Barez (2024). The
problem is set up as a next-token prediction task, with cross-entropy (CE) loss (see appendix F)—a
setting closer to a realistic Transformer application. We initialize the embedding X from a distribu-
tion with varying standard deviation σ and measure the Frobenius norm of the Hessian’s diagonal
blocks (fig. 3a). The growth rates from eq. (5) transfer to the dependence of the block Frobenius
norm on σ. We omit the value functional Hessian block Hf (WV,WV) from the plot because it
equals zero in both theory and our empirical evaluation. For the value block, the full Hessian follows
the σ2 trend from the outer-product Hessian from eq. (5), since the functional block is zero. The
query block follows the functional Hessian’s σ5 trend, and not the σ6 trend from the outer-product
Hessian, which is likely suppressed by other non-data dependencies. Overall, this confirms that al-
though our theoretical results were derived for MSE loss and only a single self-attention layer, they
extend faithfully to CE loss and a full Transformer block.

3.2 ATTENTION MOMENTS AFFECT THE HESSIAN

Attention scores induce distributions. Each row of the self-attention matrix A(X) is a normalized
distribution over the input tokens, and we already saw the first moment M1 (i.e. multiplying the
sequence by the attention matrix) of those distributions emerge in theorems 3.1 and 3.2. To further
simplify the Z1,2 matrices, we now introduce the natural generalization to higher-order centered
attention moments. The i-th centered attention moment matrix Mi should be thought of as an
L×dV × . . .×dV tensor (where dV appears i times) that stacks the i-th centered moments for each
distribution, which is then flattened into a Ldi−1

V × dV matrix. In matrix notation, we have:

Definition 3.1. Attention moment matrices. Let A ∈ RL×L be an attention matrix and
X ∈ RL×dV be the token embeddings. We define the first attention moment matrix as

M1 := AX =
[
A⊤

i, :X
]
1≤i≤L

∈ RL×dV .

Similarly, the second and the third central moment matrices are

M2 :=
[∑L

j=1 Ai,j (Xj, : − [M1]i,:) (Xj, : − [M1]i,:)
⊤
]
1≤i≤L

∈ RLdV ×dV

M3 :=
[∑L

j=1 Ai,j(Xj, : − [M1]i,:)⊗ (Xj, : − [M1]i,:)(Xj, : − [M1]i,:)
⊤
]
1≤i≤L

∈ RLd2
V ×dV .
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Transformer Hessian dependency on attention moments. Definition 3.1 allows us to further
simplify the matrices Z1,2 from theorems 3.1 and 3.2. In addition to the dependency on the first
attention moment matrix, we obtain dependencies on the second and third moment matrices.

Remark 3.1. The data terms emerging in the self-attention Hessian can be expressed as func-
tions of the self-attention central moment matrices (proof in appendix C),

Z1 = X ∗M2 , and Z2 = (IL ⊗KdV ,dV
⊗ IdV

)
(
X ∗X⊤ ∗M3

)
,

where ∗ is the Khatri-Rao product (Khatri & Rao, 1968), see definition A.2.

Regarding attention moments, the value outer-product Hessian depends on the first moment, while
the query-key outer-product Hessians are influenced by the second central moment. The query-key
functional Hessian even exhibits a dependency on the third central moment.

Influence of the attention moment matrices on the Hessian. If the attention scores were data-
independent (similar to the uniform attention assumption in Noci et al. (2022)), which happens
almost surely at initialization for large dK , sequences with more similar words will result in a lower
contribution of the query-key block. Considering an orthogonal setting with a fixed input sequence
and studying the influence of varying attention scores, the query-key outer-product Hessian will
dominate if the attention scores are highly dispersed across tokens. If instead, the attention matrix
is sparse and some tokens attend to only one token (attention row is a one-hot vector), the contribu-
tion of the query-key part of the Hessian diminishes because the second and third central moment
matrices of such one-hot self-attention distributions equal zero. To the best of our knowledge, our
work is the first one to notice the relationship between the self-attention Hessian and self-attention
moments. Knowing this dependence can contribute to a better understanding and interpretability of
the Hessian—especially its evolution during training.

3.3 DEPENDENCE ON THE WEIGHT MATRICES

The blocks in the self-attention Hessian vary significantly when it comes to the dependence on the
weight matrices. Among the terms on the diagonal of the outer-product Hessian, only the query
and key components explicitly (and quadratically) depend on the weights beyond their influence
through the attention scores. This dependence is on both the value weight matrix and one of the key
and query matrices. The mixed terms involving queries and keys depend linearly on the keys and
queries weights and quadratically on the value weights. Finally, the mixed terms involving values
depend linearly on the selected weight matrices.

Also, the blocks of the functional Hessian depend on the weight matrix in a varied manner. The
first observation is that the diagonal value functional Hessian block is always zero. Furthermore,
the diagonal query block depends quadratically on the key weight matrix and linearly on the value
weight matrix. The mixed value-query block depends only linearly on the key weight matrix.

 We find highly non-linear dependencies and block heterogeneity in terms of data, de-
grees of attention moments, and weights. We expect that identified sources of heterogeneity
influence different algebraic properties, such as traces, norms, and eigenvalues of blocks—
possibly explaining the varying block spectra, previously observed by Zhang et al. (2024).

4 IMPACT OF TRANSFORMER DESIGN COMPONENTS ON THE HESSIAN

The Transformer architecture has several key components that distinguish it from classical models
like MLPs and CNNs. In the previous section, we analyzed how data dependence is one big distin-
guishing factor between the Hessian for Transformers and classical architectures. Now, we proceed
to the other two significant departures within a Transformer, namely, the effects of having (i) a soft-
max nonlinearity within a layer block and (ii) a quadratic weight interaction through the query-key
parameterization, by disabling them one at a time.
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Figure 4: Softmax results in
heterogeneity in magnitudes of
Hessian block entries. Histogram
of (absolute) entries corresponding
to the value and query diagonal
Hessian blocks of a single block
Transformer. High and low sat-
uration correspond to linear and
classical self-attention respectively.

4.1 SOFTMAX ACTIVATION

Apart from the Transformer architecture, softmax is not a common choice for an internal activation
function. It is usually used as the final layer activation in classification tasks to model a distribution.
It is not an easy activation to work with, as it is prone to numerical instabilities and vanishing
gradient problems Goodfellow et al. (2016); Noci et al. (2022); Wang et al. (2021).

Hessian of linear self-attention. To study the influence of softmax, we compare self-attention to lin-
ear self-attention, i.e. a = id and T(X) = XWQW

⊤
KX

⊤/
√
dK in eq. (1). In theorems 3.1 and 3.2,

we now use that the first and second derivatives of A w.r.t.T are Id2
V

and 0, respectively:

Remark 4.1. Assume a linear self-attention F with a = id and T(X) = XWQW
⊤
KX

⊤/
√
dK

followed by square loss. Then the outer-product Hessian blocks are

Ho (WV,WV) =
2L2

dV dK
ΣXXWKW

⊤
QΣXXWQW

⊤
KΣXX ⊗ IdV

,

Ho (WQ,WQ) =
2L2

dV dK
ΣXX ⊗W⊤

KΣXXWVW
⊤
VΣXXWK,

Ho (WV,WQ) =
2L2

dV dK

(
ΣXXWKW

⊤
QΣXX ⊗W⊤

VΣXXWK

)
,

Ho (WQ,WK) =
2L2

dV dK

(
ΣXXWQ ⊗W⊤

KΣXXWVW
⊤
VΣXX

)
KdK ,dV

,

where ΣXX := X⊤X/L is the empirical (uncentered) intra-sequence covariance.

Moreover, only the off-diagonal functional Hessian blocks are non-zero and equal to

Hf (WV,WQ) =
2

dV
√
dK

(
δ⊤XY ⊗ Id2

V

)
(IL ⊗ S) (X⊗ΣXXWK)

Hf (WQ,WK) =
2

dV
√
dK

(
δ⊤XY

(
X⊗W⊤

VΣXX

)
⊗ IdV

)
S⊗ IdK

where δXY := vecr (F(X)−Y) and S is defined as in theorem 3.2.

Since linear self-attention is simple matrix multiplication, we observe a Kronecker product structure
akin to that emerging from the outer product of matrix multiplication derivatives (eq. (15)).
Moreover, we note that the functional Hessian has a block hollow structure, similar to the MLP
functional Hessian as discussed in section 2.

Softmax makes the Hessian block-heterogenous. Removing the softmax from the self-attention
definition makes the dependence of the Hessian blocks on the data more uniform across blocks.
All blocks of the outer-product Hessian depend cubically on ΣXX, while the non-zero functional
Hessian blocks depend linearly on X⊗ΣXX. Similarly, the number of weight matrices entering the
expressions for the blocks for the Hessian without softmax is the same for the outer-product Hessian
and across non-zero blocks of the functional Hessian.

Figure 4 empirically demonstrates that removing softmax from self-attention makes the magnitudes
of the Hessian entries more homogeneous across blocks. For the classical attention (see also fig. 1a),
we see that the distribution of Hessian block entries varies between query and value blocks—the
entries of the query block are two orders of magnitude smaller than the entries of the value block.
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We could explain this by X being initialized to values < 1 and the query Hessian block having a
higher order dependence on X than the value Hessian block (see section 3.1). After removing the
softmax (fig. 4), we see that both query and value histograms are largely similar as we would expect
from remark 4.1. Figure 4 also informs us that softmax has a particularly strong influence on the
magnitude of the query Hessian block and not on the value Hessian block.

Softmax makes the Hessian diagonal blocks more indefinite. When we remove the softmax
from the self-attention definition, the functional Hessian has a block-hollow structure with zero
blocks on the diagonal. This means that the Hessian blocks are fully defined by the outer-product
Hessian, which ensures that they are positive-semidefinite. Park & Kim (2022) empirically noticed
the more indefinite nature of Transformer Hessian compared to CNNs—our observation suggest that
the reason for that could lie in the ubiquitous use of softmax in Transformers.

Linear self-attention vs MLP. The loss Hessian of an MLP and CNN has been previously theoreti-
cally studied in the setting without nonlinearities, so analyzing the linear self-attention Hessian lets
us compare the two in a similar setting. The Transformer Hessian is much more data-dependent than
that of MLPs and CNNs, and we summarize this in section 4.1 using the matrix big-O notation.

MLP/CNN Transformer

Ho O(ΣXX) O(Σ3
XX)

Hf O(Ωxy) O(ΩxyΣXX)

Table 1: Dependence of the Hessian of a linear
self-attention layer on the intra-sequence covariance
ΣXX and the input-residual covariance Ωxy :=
1
LX

⊤(F(X)−Y) in big-O notation (remark 4.1).

One crucial difference is the asymptotic growth rate w.r.t. depth. If we stack D linear self-attention
layers, the block-diagonal matrices of the Hessian will contain 3D input intra-sequence covariances
ΣXX. This result follows directly from the fact that a D-layer linear self-attention network, as well
as its Jacobian w.r.t. any weight matrix, is a matrix chain involving 3D input sequence matrices X
due to the recurrence that the output of a layer is used three times by the consecutive layer. This is
in stark contrast to a deep linear MLP, whose Jacobian is only linear in x, and therefore a Hessian
diagonal block contains only 2 data instances, independent of depth.

4.2 QUERY-KEY PARAMETERIZATION

In practice, self-attention parameterizes T using two matrices WQ and WK. This ensures having
clearly defined, interpretable token embeddings on the self-attention level and for small dK results
in fewer parameters. From a function class perspective, we could equivalently replace the product
WQW

⊤
K with a single matrix WQK. However, this changes the landscape of loss.

Query-key parameterization induces additional Hessian decomposition. From theorem 3.2 we
know that we can further decompose the query-key blocks of the functional Hessian of classical self-
attention. We present this in detail in appendix D. This decomposition and specifically T-functional
Hessian from remark D.1 are by-products of parameterizing the self-attention matrix with two ma-
trices WQ and WK. To see that, let us consider a self-attention parameterized with a single matrix
as another control model. In the definition of self-attention from eq. (1) we assume a = softmax
applied row-wise and T(X) = XWQKX

⊤. In lemma 4.1 we present the Hessian of this model
w.r.t. WQK.

Lemma 4.1. Hessian of self-attention with single matrix attention parameterization. As-
sume the self-attention definition from eq. (1), where a = softmax is applied row-wise, and
T(X) = XWQKX

⊤ is followed by an MSE loss function. The loss Hessian w.r.t. WQK is

H(WQK,WQK) = Z⊤
1

(
IL ⊗WVW

⊤
V

)
Z1 +

(
δ⊤XY(IL ⊗W⊤

V)⊗ Id2
V

)
Z2

where Z1,Z2, δXY are defined as in theorems 3.1 and 3.2 and remark D.1.

The expression for the Hessian H(WQK,WQK) is part of the T-outer-product Hessian of the clas-
sical self-attention in remark D.1, while there is no counterpart expression to the T-functional Hes-
sian. Double matrix parameterization of self-attention implies also that the query-key Hessian part
explicitly depends on the query and key weight matrices WQ and WK.
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4.3 OTHER COMMON DESIGN CHOICES

The influence of temperature on the Hessian terms varies across blocks. Assume that in the
definition of self-attention from eq. (1) we employ the classical self-attention but with an additional
temperature scaling, namely T(X) = XWQW

⊤
KX

⊤/(t
√
dK). This impacts the scaling factors

in the T-Gauss-Newton decomposition from remark D.1. The T-outer-product Hessian HT
o will

be scaled by 1/t2, and the T-functional Hessian HT
f by 1/t. To see that, note that t is just an

extra multiplier in front of
√
dK and the formulas for HT

f and HT
o depend on 1/

√
dK linearly and

quadratically, respectively. This implies that as t grows, HT
f dominates the query-key part of the

Hessian, and when t → 0, HT
o becomes the more prominent part.

Layer norm can reduce inter-block Hessian data heterogeneity. Layer norm is used either in
the original Post-LN version, where it is applied between residual blocks, or in the Pre-LN version
(see Baevski & Auli (2018); Wang et al. (2019); Xiong et al. (2020)), where it is placed inside the
residual connection and additionally after the final layer. The heavy dependence of the Hessian on
the input matrix X, growing super-exponentially with network depth (see section 4.1), means that,
unless the data is standardized, we can observe exploding or vanishing phenomena, which will be
more pronounced than in MLPs. This highlights the importance of layer norm in the Transformer
architecture. Moreover, the proper placement of layer norm, as in the Pre-LN setting, addresses
the data heterogeneity across Hessian blocks. In fig. 3b we plot the Frobenius norm of the Hessian
blocks for the Transformer block including the Pre-LN. We verify that Pre-LN indeed addresses the
block-heterogeneity w.r.t. data growth rates—the difference between the trend exponent in the two
compared blocks is much smaller than in fig. 3.

5 CONCLUSION

Summary. In this work, we theoretically derived the entire structure of the self-attention Hessian
and discussed, in detail, how it behaves. In particular, we explicitly characterized that the self-
attention Hessian blocks have heterogeneous dependence on the data, weight, and degree of the
attention moment matrices. Further, we identified that Transformer-specific design decisions, such
as query-key parameterization and softmax, result in a more non-linear and heterogeneous Hessian
structure. Thus, theoretical works should be mindful of not discarding these design choices for the
sake of mathematical convenience, as they can significantly alter the Hessian structure across blocks.

Discussion. Our results contribute to the theoretical and practical discussion:

(i) Understanding Transformer optimization. The research community has been exploring why op-
timizing Transformers is more challenging than other architectures (Zhang et al., 2025; Xiong et al.,
2020; Liu et al., 2019; Pan & Li, 2022). Ahn et al. (2024) proposed a linear self-attention model
with a single weight matrix parameterization to examine the Transformer’s loss landscape. Using
this simplified model, they reproduced key optimization phenomena, such as the performance gap
between Adam and SGD. Our work provides a Hessian-based perspective on this model, providing
new hypotheses on which components may drive Transformer optimization challenges.

(ii) Transformer-specific optimizers. We believe that analyzing the block-diagonal structure can
be beneficial for developing optimization algorithms specifically tailored to Transformer models.
For example, there is evidence (Zhang et al., 2024; 2025) suggesting that the memory consumption
of adaptive optimizers can be significantly reduced by assigning a single adaptive learning rate to
parameters corresponding to a homogeneous block on the Hessian diagonal. Knowing the exact
block structure in self-attention layers, we could now use it to adapt the learning rate.

Limitations. While our theoretical setting is limited to a simple, single-layer2 model, we saw that
it displays a rich algebraic structure that is contained within the Hessian. Nevertheless, extending
it to multi-layer networks resembling fully-fledged Transformers, at least along some specific axes,
would be interesting. Moreover, since usually the embedding matrix X is also learned, it would be
worth studying its Hessian blocks.
Notwithstanding, our work lays a crucial foundation for the theoretical analysis of the Transformer
Hessian—to our knowledge, we are the first to study its exact expressions and their dependencies.

2Theorems 3.1 and 3.2 directly generalize to the last layer of any deep self-attention network if we replace
the data matrix X with the output from the penultimate layer. Moreover, thanks to the chain rule, the second
derivatives of self-attention we derive are useful for the analysis of Transformers of any depth.
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REPRODUCIBILITY STATEMENT

We attach proofs of all theorems, lemmas, and more involved remarks presented in this manuscript
in the appendix. Specifically, Appendix A discusses prerequisites, and Appendices B and C outline
the proofs. Appendix F contains details on the experimental setup. The code used to generate
numerical results is available at: https://github.com/dalab/transformer-hessian.
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A KNOWN DEFINITIONS AND PROPERTIES

This manuscript extensively uses the Kronecker product, as introduced in definition A.1. Some of
our results rely on the generalization of the Kronecker product named Khatri–Rao product from def-
inition A.2. This section lists matrix calculus and linear algebra properties used in this manuscript.

Definition A.1. Kronecker product. Let A ∈ Rm×n and B ∈ Rp×q matrix. The Kronecker
product A⊗B ∈ Rmp×nq is a block matrix given by:

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB

 .

Definition A.2. Khatri–Rao product Liu (1999). Let A and B be block matrices with n×m
blocks. The Khatri–Rao product A ∗B is a block matrix with n×m blocks defined as:

A ∗B = (Ai,j ⊗Bi,j)i,j =

A1,1 ⊗B1,1 · · · A1,m ⊗B1,m

...
. . .

...
An,1 ⊗Bn,1 · · · An,m ⊗Bn,m

 ,

where Al,k and Bl,k are the blocks from lth block row and kth block column of A and B,
respectively.
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Basic Kronecker product properties. Here we list some useful properties of the Kronecker prod-
uct. A discussion on the Kronecker product and proofs of the listed properties can be found in
Magnus & Neudecker (2019). For all the listed properties, we assume that the matrices are of the
appropriate dimensions to perform the operations.

A⊗ (B+C) = A⊗B+A⊗C and (B+C)⊗A = B⊗A+C⊗A (6)
(kA)⊗B = A⊗ (kB) = k(A⊗B), k ∈ R (7)

(A⊗B)⊗C = A⊗ (B⊗C) (8)
(A⊗B)(C⊗D) = (AC)⊗ (BD) (9)

(A⊗B)⊤ = A⊤ ⊗B⊤ (10)

For a,b being column vectors
a⊤ ⊗ b = ba⊤ = b⊗ a⊤ (11)

Vector-matrix Kronecker product. Assume that A and B can be multiplied. Based on the mixed
product property and the fact that taking a Kronecker product of a matrix and a scalar is equivalent
to only scaling matrix entries we can write

A(v⊤ ⊗B) = (1⊗A)(v⊤ ⊗B) = (v⊤ ⊗AB). (12)

Vectorization & Kronecker product. Assume that A ∈ Rm×n, then

vecr A = (A⊗ In) vecr In. (13)

Proof. For a column-wise vectorization, theorem 2.2 from Magnus & Neudecker (2019) tells us that
for a matrix B ∈ Rp×q it holds that vecc B = (Iq ⊗B) vecc Iq . Hence, we can write

vecr A = Km,n vecc A = Km,n (In ⊗A) vecc In

= (A⊗ In)Kn,n vecc In = (A⊗ In) vecr In.

Product of a block-diagonal matrix and a Kronecker product. Let for any i ∈ {1, . . . ,m}
A ∈ Rq×r, B ∈ Rm×n and C ∈ Rr×t. Then, thanks to the vector-matrix Kronecker product
property (eq. (12)) the following expression holds

blockdiag (Ai) (B⊗C) =

A1 . . . 0
...

. . .
...

0 . . . Am



B

⊤
1, :
...

B⊤
m, :

⊗C


=

A1 . . . 0
...

. . .
...

0 . . . Am


B

⊤
1, : ⊗C

...
B⊤

m, : ⊗C

 =

 A1

(
B⊤

1, : ⊗C
)

...
Am

(
B⊤

m, : ⊗C
)


=

 B⊤
1, : ⊗A1C

...
B⊤

m, : ⊗AmC

 .

(14)

In the above equation Bi, : is the i-th row of B in column vector format.

Derivative of a matrix product. If F(X) = AXB, then

∇XF = A⊗B⊤. (15)

The proof of the above formula can be found in Singh et al. (2021).
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Derivative of a Kronecker product. Let’s take F(X) = X ⊗ Y, where X ∈ Rn×q and Y ∈
Rp×r. Then

∇XF = (In ⊗Kp,q ⊗ Ir) (Inq ⊗ vecr Y) , (16)
and analogously

∇YF = (In ⊗Kp,q ⊗ Ir) (vecr X⊗ Ipr) . (17)

Proof. The proof makes use of the same formula but for the column-wise definition of derivative
that can be found in Magnus & Neudecker (2019) and states that the column-wise derivative of F
w.r.t. X is given by (Iq ⊗Kr,n ⊗ Ip) (Inq ⊗ vecc Y). We will use the above formula with X⊤,Y⊤

instead of X,Y respectively together with the first identification theorem (theorem 5.6 from Magnus
& Neudecker (2019)).

d(vecr (X⊗Y)) = d(vecc (X⊗Y)⊤) = d(vecc (X
⊤ ⊗Y⊤))

= (In ⊗Kp,q ⊗ Ir)
(
Inq ⊗ vecc Y

⊤) d(vecc X⊤)

= (In ⊗Kp,q ⊗ Ir) (Inq ⊗ vecr Y) d(vecr X),

so again by the first identification theorem, we obtain eq. (16).

To prove eq. (17) we follow similar steps as above and use the formula for column-wise derivative
of F w.r.t. Y from Magnus & Neudecker (2019), namely (Iq ⊗Kr,n ⊗ Ip) (vecc X⊗ Ipr). As for
the previous formula, we again use the first identification theorem.

d(vecr (X⊗Y)) = d(vecc (X⊗Y)⊤) = d(vecc (X
⊤ ⊗Y⊤))

= (In ⊗Kp,q ⊗ Ir)
(
vecc X

⊤ ⊗ Ipr
)
d(vecc Y

⊤)

= (In ⊗Kp,q ⊗ Ir) (vecr X⊗ Ipr) d(vecr Y),

Derivative of transposition. Let F(X) = X⊤ where X ∈ Rn×q . Then

d vecr F(X) = d vecr X
⊤ = Kq,n d vecr X,

so from the first identification theorem (theorem 5.6 from Magnus & Neudecker (2019))

∇XF = Kq,n. (18)

B JACOBIAN AND HESSIAN EXPRESSIONS

In this section, we derive the expression for the self-attention Hessian. Firstly, we focus on the clas-
sical self-attention which we discuss in section 3. Next, we move on to self-attention parameterized
by a single query-key matrix, as discussed in section 4.2. For clarity, in this section, we will refer to
the functional and outer-product Hessians as F-functional and F-outer-product Hessians.

B.1 CLASSICAL SELF-ATTENTION

Knowing the Jacobian of self-attention is a crucial step in deriving the Hessian (the loss gradient’s
Jacobian). We start by recalling the formulas for self-attention Jacobians w.r.t. weight matrices
derived in Noci et al. (2022).
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Lemma B.1. Jacobians of self-attention Noci et al. (2022). The Jacobians of the classical
self-attention layer (Vaswani et al., 2017) have the following form:

∂F

∂WV
= softmax

(
XWQW

⊤
KX

⊤
√
dK

)
X⊗ IdV

,

∂F

∂WQ
=
(
IL ⊗W⊤

VX
⊤) ∂A

∂T

(
X⊗XWK√

dK

)
,

where the Jacobian of the row-wise softmax w.r.t. its inputs is as follows:

∂A

∂T
= blockdiag

(
∂Ai, :

∂Ti, :

)
, (19)

and where
∂Ai, :

∂Ti, :
= diag(Ai, :)−Ai, :A

⊤
i, :,

with Ai, : being the i-th row of A in column vector format.

With the Jacobians of self-attention w.r.t. the weight matrices established, we can introduce the
Hessian. We start with the F-outer-product Hessian and then proceed to the F-functional Hessian.

Theorem 3.1. Outer-product Hessian Ho. For a single self-attention layer, eq. (1), with
classical self-attention that feeds into the square loss, the blocks of Ho are

Ho (WV,WV) =
2

LdV
M⊤

1 M1 ⊗ IdV
,

Ho (WQ,WQ) =
2

LdV dK

(
IdV

⊗W⊤
K

)
Z⊤

1

(
IL ⊗WVW

⊤
V

)
Z1 (IdV

⊗WK) ,

Ho (WV,WQ) =
2

LdV
√
dK

(
M⊤

1 ⊗W⊤
V

)
Z1 (IdV

⊗WK) ,

Ho (WQ,WK) =
2

LdV dK

(
IdV

⊗W⊤
K

)
Z⊤

1

(
IL ⊗WVW

⊤
V

)
Z1 (WQ ⊗ IdV

)KdK ,dV
,

with the first attention moment matrix M1 := AX ∈ RL×dV (see section 3.2) and where
Z1 := (IL ⊗X⊤)(∂A/∂T)(X⊗X) ∈ RLdV ×d2

V contains first derivatives of the softmax.

Proof. Hessian of the mean-square error loss w.r.t. network prediction is an identity matrix scaled
by 2

LdV
. Hence, computing the F-outer-product Hessian block is just taking the outer products of

the appropriate self-attention Jacobians from lemma B.1 and scaling them by 2
LdV

. The expressions
can be further simplified using the mixed-product property of the Kronecker product (eq. (9)).

Let us prove the exact formula for the mixed query-value block. The remaining formulas follow the
same steps.

Ho (WV,WQ) =
2

LdV

∂F

∂WV

⊤ ∂F

∂WQ

=
2

Ldv

(
X⊤A⊤ ⊗ IdV

) (
IL ⊗W⊤

VX
⊤) ∂A

∂T

(
X⊗XWK√

dK

)
=

2

LdV
√
dK

(
X⊤A⊤ ⊗W⊤

VX
⊤) ∂A

∂T

(
X⊗XWK√

dK

)
=

2

LdV
√
dK

(
T⊤

1 ⊗W⊤
V

) (
IL ⊗X⊤) ∂A

∂T
(X⊗X) (IdV

⊗WK)

=
2

LdV
√
dK

(
T⊤

1 ⊗W⊤
V

)
Z1 (IdV

⊗WK) ∈ RLdV ×d2
V .
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Before we derive the F-functional Hessian expressions, we prove two helper lemmas which allow us
to unify the structuring expressions that emerge in the F-functional Hessian. The proof of lemma B.2
is a translation of tensor networks (Bridgeman & Chubb, 2017) to index notation. For a more
transparent presentation, in this lemma, we denote the matrix sizes using capital letters.

First, we briefly discuss commutation matrices. For more information on computation matrices, see
Magnus & Neudecker (2019). Let us consider a matrix A ∈ RM×N and its row-flattened version
vecr A ∈ RMN . The commutation matrix KN,M provides a way to transpose the indices of A
using the flattened convention.

Precisely, if we apply KN,M to the flattened version of A, we get the flattened version of A⊤:

KN,M vecr A = vecr (A
⊤).

The commutation matrix can also be used to permute two indices in a super-index, i.e. suppose
a ∈ RMN is a vector indexed by a super-index (m,n), where 1 ≤ n ≤ N and 1 ≤ m ≤ M . Then
[KN,Ma](n,m) = [a](m,n), i.e. the commutation matrix swaps the index order inside the super-index.
To see this, note that for any a ∈ RMN , we can find A ∈ RM×N such that a = vecr A, and

[KN,Ma](n,m) = [KN,M vecr A](n,m)

= [vecr (A
⊤)](n,m)

= [vecr A](m,n)

= [a](m,n).

Finally, let us note that in index notation, the entries of KN,M are given by

[KN,M ](n,m),(m′,n′) = δn,n′δm,m′ .

Lemma B.2. Let KN,M ∈ RMN×MN denote the commutation matrix, then

(IM ⊗KN,M ) (vecr IM ⊗ IN ) = (KM,N ⊗ IM ) (IN ⊗ vecr IM ) . (20)

Specifically, for M = N we obtain

(IM ⊗KM,M )(vecr IM ⊗ IM ) = (KM,M ⊗ IM )(IM ⊗ vecr IM ).

Proof. Consider the left-hand side of eq. (20) in index notation and simplify, which yields

[(IM ⊗KN,M ) (vecr IM ⊗ IN )](m1,n1,m2),n2

=
∑

m′
1,m

′
2,n

′
1

[IM ⊗KN,M ](m1,n1,m2),(m′
1,m

′
2,n

′
1)
[vecr IM ⊗ IN ](m′

1,m
′
2,n

′
1),n2

=
∑

m′
1,m

′
2,n

′
1

δm1,m′
1
δm2,m′

2
δn1,n′

1
δm′

1,m
′
2
δn′

1,n2

=
∑

m′
1,m

′
2,n

′
1

δm′
1,m1,m′

2,m2
δn′

1,n1,n2
.

Simplifying the right-hand side of eq. (20) in index notation yields the same expression and thereby
establishes the equality:

[(KM,N ⊗ IM ) (IN ⊗ vecr IM )](m1,n1,m2),n2

=
∑

m′
1,m

′
2,n

′
1

[KM,N ⊗ IM ](m1,n1,m2),(n′
1,m

′
1,m

′
2)
[IN ⊗ vecr IM ](n′

1,m
′
1,m

′
2),n2

=
∑

m′
1,m

′
2,n

′
1

δm1,m′
1
δn1,n′

1
δm2,m′

2
δn′

1,n2
δm′

1,m
′
2

=
∑

m′
1,m

′
2,n

′
1

δm′
1,m1,m′

2,m2
δn′

1,n1,n2
.
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Lemma B.3. For any matrix A ∈ Rm×n it holds that

(Im ⊗Km,n) (vecr A⊗A) = (A⊗A⊗ In) (In ⊗Kn,n) (vecr In ⊗ In) .

Proof. The equality follows from the chain of transformations

(Im ⊗Km,n) (vecr A⊗A) = (Im ⊗Km,n) ((A⊗ In) vecr In ⊗A)

= (Im ⊗Km,n) (A⊗ In ⊗A) (vecr In ⊗ In)

= (A⊗Km,n (In ⊗A)) (vecr In ⊗ In)

= (A⊗ (A⊗ In)Kn,n) (vecr In ⊗ In)

= (A⊗A⊗ In) (In ⊗Kn,n) (vecr In ⊗ In) ,

were the first equality comes from eq. (13) and the remaining ones are consequences of the mixed
product property (eq. (9)) and fundamental properties of the commutation matrix.

Theorem 3.2. Functional Hessian Hf . For the setup of theorem 3.1, the functional Hessian
w.r.t. the value weight matrix Hf (WV,WV) is zero and the remaining blocks are given by

Hf (WQ,WQ) =
2

LdV dK
RdV dK

(
IL ⊗W⊤

V ⊗ IdV
⊗W⊤

K

)
Z2 (IdV

⊗WK) ,

Hf (WV,WQ) =
2

LdV
√
dK

Rd2
V
(IL ⊗ S) Z1 (IdV

⊗WK) ,

Hf (WQ,WK) =
2

LdV dK
RdV dK

(
IL ⊗W⊤

V ⊗ IdV
⊗W⊤

K

)
Z2 (WQ ⊗ IdV

)KdK ,dV

+
2

LdV
√
dK

RdV

(
IL ⊗W⊤

V ⊗ IdV

)
(Z1 ⊗ IdV

)S⊗ IdK
,

with the duplicated residual Rm := vecr (F(X)−Y)
⊤ ⊗ Im ∈ Rm×mLdV , a shuffling ma-

trix S := (IdV
⊗KdV ,dV

) (vecr IdV
⊗ IdV

) ∈ Rd3
V ×dV where KdV ,dV

is a commutation
matrix (see e.g. lemma B.2), Z1 defined as in theorem 3.1, and Z2 := (IL ⊗ X⊤ ⊗ X⊤ ⊗
X⊤)(∂2A/∂T2)(X⊗X) ∈ RLd3

V ×d2
V containing second-order softmax derivatives.

Proof. We derive the F-functional Hessian block by block. For each block, we derive the second
derivative matrix of F, as in fig. 2. Each expression can be obtained by multiplying the second
derivative matrix by the gradient of the loss according to the definition of F-functional Hessian.

F-functional Hessian w.r.t. WV & WQ. Let us find the formula for the second derivative of
the Hessian w.r.t. value and key weight matrices WV & WQ. To do that we take the Jacobian of
∂F/∂WV w.r.t. the query weight matrix WQ. To simplify, consider the following assignments

F1 :=
∂F

∂WV
= F2 ⊗ IdV

,

F2 := softmax

(
XWQWK

⊤X⊤
√
dK

)
X.

By the chain rule, we know that
∂2F

∂WV∂WQ
=

∂F1

∂WQ
=

∂F1

∂F2

∂F2

∂WQ
.

From eq. (16) we obtain
∂F1

∂F2
= (IL ⊗KdV ,dV

⊗ IdV
) (ILdV

⊗ vecr(IdV
))

= IL ⊗ (KdV ,dV
⊗ IdV

) (IdV
⊗ vecr(IdV

))︸ ︷︷ ︸
S

,

where S is as in the theorem statement.
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Moreover, by observing that F2 differs from A only by the presence of matrix WV, from lemma B.1
we get the derivative

∂F2

∂WQ
=
(
IL ⊗X⊤) ∂A

∂T

(
X⊗XWK√

dK

)
.

Plugging the formulas together yields the formula for the second derivative. The formula for the
second derivative w.r.t. value and key weight matrices can be derived in the same way, with the only
exception being that we take a derivative of F2 w.r.t. WK instead of w.r.t. WQ.

F-functional Hessian w.r.t. WQ. To obtain the query-query block, we will start by differentiating
the Jacobian to obtain the formula for the second derivative of self-attention w.r.t. query weight
matrix WQ. Let

F1 :=
∂F

∂WQ
=
(
IL ⊗WV

⊤X⊤
)
G

(
X⊗XWK√

dK

)
,

G :=
∂A

∂T
= blockdiag

(
∂Ai, :

∂Ti, :

)
,

T :=
1√
dK

XWQ(XWK)
⊤,

as in lemma B.1. By the chain rule, we obtain

∂2F

∂WQ∂WQ
=

∂F1

∂WQ
=

∂F1

∂G

∂G

∂T

∂T

∂WQ
.

Thanks to eq. (15) and basic properties of the Kronecker product (eqs. (8) and (10)) we can write
that

∂F1

∂G
=
(
IL ⊗WV

⊤X⊤
)
⊗
(
X⊗XWK√

dK

)⊤

=

(
IL ⊗WV

⊤X⊤ ⊗X⊤ ⊗WK
⊤X⊤

√
dK

)
,

∂T

∂WQ
=

(
X⊗XWK√

dK

)
.

Additionally, we note that ∂G/∂T is the second derivative of row-wise softmax

∂G

∂T
=

∂2A

∂T∂T
,

which we describe in detail in appendix C.1. Plugging in the above formulas to the chain rule yields
the formula for the second derivative we were looking for.

F-functional Hessian w.r.t. WQ & WK. We proceed by differentiating the Jacobian of F w.r.t
WQ. Let us again start with defining some helper terms

F1 :=
(
IL ⊗WV

⊤X⊤
)
,

G :=
∂A

∂T
= blockdiag

(
∂Ai, :

∂Ti, :

)
,

F2 :=

(
X⊗XWK√

dK

)
.

Note that only G and F2 depend on WK so by applying the chain rule to the product of functions
and using a derivative of a matrix product formula (eq. (15)) we get

∂2F

∂WQ∂WK
=

∂F1GF2

∂WK
=
(
F1 ⊗ F⊤

2

) ∂G

∂WK
+ (F1G⊗ IdV dK

)
∂F2

∂WK
. (21)
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Now, thanks to the chain rule, a derivative of a matrix product (eq. (15)) and the derivative of a
transposition (eq. (18))

∂G

∂WK
=

∂2A

∂T∂T

(
XWQ ⊗X√

dK

)
KdK ,dV

.

Additionally, due to the chain rule and the formula for the Kronecker product derivative (eq. (17))

∂F2

∂WK
= (IL ⊗KL,dV

⊗ IdK
) (vecr X⊗ ILdK

)

(
X⊗ IdK√

dK

)
=

1√
dK

(IL ⊗KL,dV
⊗ IdK

) (vecr X⊗X⊗ IdK
)

=
1√
dK

(IL ⊗KL,dV
) (vecr X⊗X)⊗ IdK

=
1√
dK

(X⊗X⊗ IdV
) (IdV

⊗KdV ,dV
) (vecr IdV

⊗ IdV
)⊗ IdK

=
1√
dK

(X⊗X⊗ IdV
) (KdV ,dV

⊗ IdV
) (IdV

⊗ vecr(IdV
))︸ ︷︷ ︸

S

⊗IdK

where the first two transformations follow from the mixed product property (eqs. (9) and (12)) and
the remaining two from lemmas B.2 and B.3. Plugging in all the terms we obtain the Hessian
block.

B.1.1 THE JACOBIAN

We highlight that our observations regarding the Hessian made throughout the paper align well with
those concerning the loss gradient w.r.t. self-attention parameters and the self-attention Jacobian.
Liu et al. (2020) observed that the gradient w.r.t. the self-attention parameters is unbalanced, with
the gradients w.r.t. the key and query parameters being of a smaller norm than those w.r.t. the
value weight matrix. From the self-attention Jacobian formulas derived by Noci et al. (2022) (see
lemma B.1), we observe a heterogeneous data dependence in the self-attention Jacobians. These
formulas suggest that the Frobenius norm of the Jacobian w.r.t. the query parameter should scale
cubically with the magnitude of X , whereas the Jacobian w.r.t. the value parameter only linearly.
Moreover, the value Jacobian depends on the first moment of attention, while the query and key
Jacobian depend on the second moment matrix. Finally, the Jacobians exhibit heterogeneous de-
pendence on the scale of the weight matrices, as previously noted by Noci et al. (2022) in theorem
3.1.

B.2 SELF-ATTENTION WITH SINGLE-MATRIX PARAMETERIZATION

Lemma 4.1. Hessian of self-attention with single matrix attention parameterization. As-
sume the self-attention definition from eq. (1), where a = softmax is applied row-wise, and
T(X) = XWQKX

⊤ is followed by an MSE loss function. The loss Hessian w.r.t. WQK is

H(WQK,WQK) = Z⊤
1

(
IL ⊗WVW

⊤
V

)
Z1 +

(
δ⊤XY(IL ⊗W⊤

V)⊗ Id2
V

)
Z2

where Z1,Z2, δXY are defined as in theorems 3.1 and 3.2 and remark D.1.

Proof. The Jacobian of self-attention for WQK matrix is given by

∂F

∂WQK
=
(
IL ⊗WV

⊤X⊤
) ∂A

∂T
(X⊗X) , (22)

where ∂A/∂T is defined as in lemma B.1. The proof follows from applying the chain rule and the
derivative of matrix multiplication as in eq. (15).
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Now, to obtain the F-functional Hessian formula, let

F1 :=
∂F

∂WQK
=
(
IL ⊗WV

⊤X⊤
)
G (X⊗X) ,

G :=
∂A

∂T
= blockdiag

(
∂Ai, :

∂Ti, :

)
,

T := XWQKX
⊤.

From the chain rule, we obtain

∂2F

∂WQK∂WQK
=

∂F1

∂G

∂G

∂T

∂T

∂WQK

=
(
IL ⊗WV

⊤X⊤ ⊗X⊤ ⊗X⊤
) ∂2A

∂T∂T
(X⊗X) ,

where to get the second line we use the formula for the derivative of a matrix product (eq. (15)) twice.
The formula from the lemma statement follows directly from plugging in the above components to
eq. (2).

C SELF-ATTENTION MOMENT MATRICES

In this section, we prove remark 3.1. To notice the dependence of the Hessian on the second moment
matrix, we need to derive and simplify the second derivative of the row-wise softmax—we focus on
that in appendix C.1. In appendix C.2 we move on to interpreting matrices Z1 and Z2 through the
lens of the self-attention moment matrices.

C.1 THE SECOND DERIVATIVE OF THE ROW-WISE SOFTMAX

To gain some intuition on the structure of the second derivative of the row-wise softmax, we begin
with the simplest possible case, assuming a sequence length of L = 2. Later on, we will generalize
the expressions to sequences of any length.
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Remark C.1. Assume that the sequences are of length L = 2, meaning that the attention matrix
is of the form

A =

[
a1,1 a1,2
a2,1 a2,2

]
.

By lemma B.1 the Jacobian of the row-wise softmax is given by matrix
∂A

∂T
of the form

a1,1 − a21,1 −a1,1a1,2 0 0
−a1,1a1,2 a1,2 − a21,2 0 0

0 0 a2,1 − a22,1 −a2,1a2,2
0 0 −a2,1a2,1 a2,2 − a22,2

 .

By vectorizing the above matrix row-wise, computing derivatives w.r.t. corresponding softmax
inputs, and defining bi,j := 1− 2ai,j we obtain that the second derivative matrix is of the form

∂2F

∂T∂T
=



(a1,1 − a21,1)b1,1 −a1,1a1,2b1,1 0 0
−a1,1a1,2b1,1 −a1,1a1,2b1,2 0 0

0 0 0 0
0 0 0 0

−a1,1a1,2b1,1 −a1,1a1,2b1,2 0 0
−a1,1a1,2b1,2 (a1,2 − a21,2)b1,2 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 (a2,1 − a22,1)b2,1 −a2,1a2,2b2,1
0 0 −a2,1a2,2b2,1 −a2,1a2,2b2,2
0 0 0 0
0 0 0 0
0 0 −a2,1a2,2b2,1 −a2,1a2,2b2,2
0 0 −a2,1a2,2b2,2 (a2,2 − a22,2)b2,2



.

To obtain each entry of the matrix, we simply apply the chain rule. This means that each entry is
a sum of products, where the first factor is the derivative of the entries of ∂A/∂T w.r.t. ai,j , and
the second factor is the derivative of ai,j w.r.t. the entries of T. These derivatives can be found
directly in the ∂A/∂T matrix. The blocks of zeros occur because the softmax function is applied
independently to each row, so the second derivative for mixed-row entries is always zero.

Lemma C.1 generalizes the above observations to any sequence length L.
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Lemma C.1. Second derivative of row-wise softmax. Assume self-attention matrix A =
[a]i,j≤L. Then the second derivative of the row-wise softmax has a block-diagonal structure,
namely

∂2F

∂T∂T
= blockdiagDi ∈ RL4×L2

,

where Di ∈ RL3×L is of the form

Di =

Di,1

...
Di,L,

 , with Di,j = ei ⊗
∂2Ai,j

∂Ti, :∂Ti, :
,

and ei being unit vectors in the standard basis. Moreover, the single-element second derivatives
can be expressed as

∂2Ai,j

∂Ti, :∂Ti, :
= Ai,j

(
2Ai, :A

⊤
i, : +EL,L

j,j − diag(Ai, :)− ejA
⊤
i, : −Ai, :e

⊤
j

)
∈ RL×L,

where Em,n
j,j = eje

⊤
j ∈ Rm×n is a matrix filled with zeros except for entry in jth row and jth

column which is 1.

Additionally, if we structure the single entry second derivatives into a block column matrix
∂2Ai, :

∂Ti, :∂Ti, :
=

[
∂2Ai,1

∂Ti, :∂Ti, :
, . . . ,

∂2Ai,L

∂Ti, :∂Ti, :

]⊤
we can rewrite Di concisely as

Di =

(
(1L,1 ⊗ ei) ∗

∂2Ai, :

∂Ti, :∂Ti, :

)
, (23)

where ∗ represents Khatri-Rao product Liu (1999) (see definition A.2) with blocks defined by
the standard basis vectors in the LHS matrix and by the second derivatives of a single row entry
in the RHS matrix.

Proof. Let us start with discussing the general structure of the second derivative matrix. Later we
will focus on specific matrix entries.

Block-column structure. Recall that we are computing the second derivative of a matrix-valued
function A that takes a matrix T as an argument. In the layout and vectorization scheme assumed
in this manuscript, the Hessians of every entry of A in the row-wise order are placed consecutively
into a block-column matrix (see fig. 2).

Block-diagonal structure. Let us consider a single block from the block-column structure discussed
in the previous paragraph. Since the softmax acts on every row of T separately, and the Hessian of
Ai,j is computed w.r.t. all L2 entries of T, the Hessian will have potentially non-zero values only in
one sub-block on the diagonal whose rows end columns have indices in the range from (i− 1)L+1
to iL inclusive. This translates into the derivative of the row-wise softmax ∂2F/∂T∂T also having the
block-diagonal structure. Specifically, let us enumerate the L2 × L2 single-entry Hessians placed
into this block-column matrix with an index J . For any integer i such that 1 ≤ i ≤ L when
(i − 1)L + 1 ≤ J ≤ iL we have possible non-zero values only in columns iL to (i + 1)L − 1
inclusive. Now let us group these Hessians into L larger blocks corresponding to a single row
of A—the whole such block corresponding to Ai, : has possible non-zero entries only in columns
from (i − 1)L + 1 to iL inclusive. Hence the structure of the second derivative of self-attention
is block-diagonal if we consider only the possibly non-zero sub-blocks. We refer to the sub-block
corresponding to row Ai, : w.r.t Ti, : by Di.

Block-column structure of Di. Finally, Di consists of blocks, cut out of the element-wise Hessians
we have just discussed, which explains the Khatri-Rao product in eq. (23).

Non-zero elements. The non-zero entries of Di correspond to
∂2Ai,j

∂Ti, :∂Ti, :
.
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We now find its exact formula.

Recall from lemma B.1 that

∂Ai, :

∂Ti, :
= diag(Ai, :)−Ai, :A

⊤
i, :,

which means that

∂Ai,j

∂Ti, :
= (ej −Ai, :)

⊤Ai,j ∈ R1×L.

To get the second derivative it is enough to differentiate the transpose of the above function using
the Leibniz product rule, namely

∂2Ai,j

∂Ti, :∂Ti, :
=

∂(ej −Ai, :)

∂Ti, :
Ai,j + (ej −Ai, :)

∂Ai,j

∂Ti, :

= −∂Ai, :

∂Ti, :
Ai,j + (ej −Ai, :)

∂Ai,j

∂Ti, :
.

Since we already know both derivatives present in this expression from lemma B.1 it is enough to
substitute them to obtain

∂2Ai,j

∂Ti, :∂Ti, :
= −

(
diag(Ai, :)−Ai, :A

⊤
i, :

)
Ai,j + (ej −Ai, :)(ej −Ai, :)

⊤Ai,j

= Ai,j

(
2Ai, :A

⊤
i, : + eje

⊤
j − diag(Ai, :)− ejA

⊤
i, : −Ai, :e

⊤
j

)
.

C.2 SELF-ATTENTION MOMENT MATRICES

Remark 3.1. The data terms emerging in the self-attention Hessian can be expressed as func-
tions of the self-attention central moment matrices (proof in appendix C),

Z1 = X ∗M2 , and Z2 = (IL ⊗KdV ,dV
⊗ IdV

)
(
X ∗X⊤ ∗M3

)
,

where ∗ is the Khatri-Rao product (Khatri & Rao, 1968), see definition A.2.

Proof. Before starting the derivations, let us specify that for the Khatri-Rao product in the theo-
rem statement, X is split row-wise and Mk is split block-row-wise into central moment matrices
corresponding to attention rows as in definition 3.1. The proof follows straight from transforming
matrices Z1 and Z2.

Dependence on the second central moment matrix M2. It holds that

Z1 =
(
IL ⊗X⊤) ∂A

∂T
(X⊗X)

=blockdiag

(
X⊤ ∂Ai, :

∂Ti, :

)
(X⊗X)

=


X⊤

1, : ⊗X⊤ ∂A1, :

∂T⊤
1, :

X

...

X⊤
L, : ⊗X⊤ ∂AL, :

∂T⊤
L, :

X

 = X ∗M2,

where the first line follows from the two first matrices in the product being block diagonal and the
second from eq. (14).
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Dependence on the third central moment matrix M3. Let’s recall from theorem 3.2 that

Z2 =
(
IL ⊗X⊤ ⊗X⊤ ⊗X⊤) ∂2A

∂T∂T
(X⊗X)

=
(
IL ⊗X⊤ ⊗X⊤ ⊗X⊤)blockdiag (Di) (X⊗X) .

The first two matrices in the above matrix product are block-diagonal with L equal-sized
blocks, so their product is also a block-diagonal matrix with L equal-sized blocks of a form(
X⊤ ⊗X⊤ ⊗X⊤)Di. Hence, by eq. (14) we know that Z2 has a block structure Z2 =
[Z2;i]1≤i≤L , where

Z2;i =
(
X⊤ ⊗X⊤ ⊗X⊤)Di

(
X⊤

i, : ⊗X
)
,

with Xi, : ∈ RdV being the ith row of X as a column vector.

Let us recall lemma C.1 that gives us the Di formula to transform the expression for Z2;i.

Z2;i =
(
X⊤ ⊗X⊤ ⊗X⊤)Di

(
X⊤

i, : ⊗X
)

=
(
X⊤ ⊗X⊤ ⊗X⊤)((1L,1 ⊗ ei) ∗

∂2Ai

∂Ti, :∂Ti, :

)(
X⊤

i, : ⊗X
)

=
[
x1 ⊗X⊤ ⊗X⊤ . . . xL ⊗X⊤ ⊗X⊤]


ei ⊗

∂2Ai,1

∂Ti, :∂Ti, :
...

ei ⊗
∂2Ai,L

∂Ti, :∂Ti, :


(
X⊤

i, : ⊗X
)

=

 L∑
j=1

(
Xj, : ⊗X⊤ ⊗X⊤)(ei ⊗ ∂2Ai,j

∂Ti, :∂Ti, :

)(X⊤
i, : ⊗X

)

=

 L∑
j=1

(
Xj, : ⊗X⊤) ei ⊗X⊤ ∂2Ai,j

∂Ti, :∂Ti, :

(X⊤
i, : ⊗X

)

=

L∑
j=1

(
Xj, : ⊗X⊤) eiX⊤

i, : ⊗X⊤ ∂2Ai,j

∂Ti, :∂Ti, :
X

=

L∑
j=1

Xj, : ⊗Xi, :X
⊤
i, : ⊗X⊤ ∂2Ai,j

∂Ti, :∂Ti, :
X,

where the last three equalities follow from the mixed product property of the Kro-
necker product. More precisely, the last equality follows from

(
Xj, : ⊗X⊤) eiX⊤

i, : =(
X⊤

j, : ⊗X⊤
)(

1⊗ eiX
⊤
i, :

)
= Xj, : ⊗X⊤eiX

⊤
i, : = Xj, : ⊗Xi, :X

⊤
i, :.
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Using known properties of the commutation matrix and the mixed product property (eq. (9)), we can
further simplify the expression

Z2;i =

L∑
j=1

Xj, : ⊗Xi, :X
⊤
i, : ⊗X⊤ ∂2Ai,j

∂Ti, :∂Ti, :
X

=

L∑
j=1

KdV ,dV

(
Xi, :X

⊤
i, : ⊗Xj, :

)
⊗X⊤ ∂2Ai,j

∂Ti, :∂Ti, :
X

=

L∑
j=1

(KdV ,dV
⊗ IdV

)

(
Xi, :X

⊤
i, : ⊗Xj, : ⊗X⊤ ∂2Ai,j

∂Ti, :∂Ti, :
X

)

=(KdV ,dV
⊗ IdV

)

Xi, :X
⊤
i, : ⊗

L∑
j=1

Xj, : ⊗X⊤ ∂2Ai,j

∂Ti, :∂Ti, :
X︸ ︷︷ ︸

N

 .

Finally, after plugging in ∂2Ai,j/∂Ti, :∂Ti, : from lemma C.1 and extracting Ai,j in front of the
Kronecker product we simplify the summation expression N

N =

L∑
j=1

Xj, : ⊗X⊤Ai,j

(
2Ai, :A

⊤
i, : +EL,L

j,j − diag(Ai, :)− ejA
⊤
i, : −Ai, :e

⊤
j

)
X

=

L∑
j=1

Ai,jXj, : ⊗
(
2[M1]i,:[M1]

⊤
i,: +Xj, :X

⊤
j, : −X⊤ diag(Ai, :)X−Xj, :[M1]

⊤
i,: − [M1]i,:X

⊤
j, :

)
.

This can be further simplified. We firstly note that

[M1]i,:[M1]
⊤
i,: +Xj, :X

⊤
j, : −Xj, :[M1]

⊤
i,: − [M1]i,:X

⊤
j, : = ([M1]i,: −Xj, :) ([M1]i,: −Xj, :)

⊤
.

Moreover, from the fact that Kronecker product distributes over addition (eq. (6))
L∑

j=1

Ai,jXj, : ⊗
(
[M1]i,:[M1]

⊤
i,: −X⊤ diag(Ai, :)X

)

=

 L∑
j=1

Ai,jXj, :

⊗
(
[M1]i,:[M1]

⊤
i,: −X⊤ diag(Ai, :)X

)
= [M1]i,: ⊗

(
[M1]i,:[M1]

⊤
i,: −X⊤ diag(Ai, :)X

)
.

These two equations give us

N =

L∑
j=1

Ai,jXj, : ⊗
(
[M1]i,:[M1]

⊤
i,: −X⊤ diag(Ai, :)X

)
+

L∑
j=1

Ai,jXj, : ⊗
(
[M1]i,:[M1]

⊤
i,: +Xj, :X

⊤
j, : − [M1]i,:X

⊤
j, : −Xj, :[M1]

⊤
i,:

)
= [M1]i,: ⊗

(
[M1]i,:[M1]

⊤
i,: −X⊤ diag(Ai, :)X

)
+

L∑
j=1

Ai,jXj, : ⊗ ([M1]i,: −Xj, :) ([M1]i,: −Xj, :)
⊤
.

We are now at the finish line of obtaining the desired formula. Let us note that similar expression
appear in both summands of the equation above, specifically(

X⊤ diag(Ai, :)X− [M1]i,:[M1]
⊤
i,:

)
=

L∑
j=1

Ai,j ([M1]i,: −Xj, :) ([M1]i,: −Xj, :)
⊤
.
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Hence,

N = [M1]i,: ⊗
(
[M1]i,:[M1]

⊤
i,: −X⊤ diag(Ai, :)X

)
+

L∑
j=1

Ai,jXj, : ⊗ ([M1]i,: −Xj, :) ([M1]i,: −Xj, :)
⊤

= −
L∑

j=1

Ai,j [M1]i,: ⊗ ([M1]i,: −Xj, :) ([M1]i,: −Xj, :)
⊤

+

L∑
j=1

Ai,jXj, : ⊗ ([M1]i,: −Xj, :) ([M1]i,: −Xj, :)
⊤

=

L∑
j=1

Ai,j (Xj, : − [M1]i,:)⊗ ([M1]i,: −Xj, :) ([M1]i,: −Xj, :)
⊤

= [M3]i,:.

After plugging in the above into the Z2;i formula, we obtain

Z2;i = (KdV ,dV
⊗ IdV

)
(
Xi, :X

⊤
i, : ⊗ [M3]i,:

)
.

Finally, note that

X ∗X⊤ ∗M3 = [Xi, :X
⊤
i, : ⊗ [M3]i,:]1≤i≤L ∈ RLd2

V ×dV ,

and hence
Z2 = (IL ⊗KdV ,dV

⊗ IdV
)
(
X ∗X⊤ ∗M3

)
.

D MORE ON THE QUERY-KEY HESSIAN BLOCK

Nested structure of the query-key Hessian. The query-key Hessian blocks exhibit a nested struc-
ture which prompts us to define a Gauss-Newton-like decomposition of the query-key Hessian
blocks. The mixed query-key block of the Hessian consists of three summands—one coming from
the F-outer-product Hessian and two from the F-functional Hessian. The F-outer-product term as
well as one of the F-functional terms are structurally similar to the query blocks we can find on
the diagonal. Together they can be expressed as an outer product. This observation results in the
decomposition from remark D.1.

Remark D.1. The query-key part of the Hessian from theorems 3.1 and 3.2 can be equivalently
decomposed into a sum of T-outer-product and T-functional Hessians, respectively given by

HT
o (WQK,WQK) =

1

dK
V⊤

(
Z⊤

1

(
IL ⊗WVW

⊤
V

)
Z1 +

(
δ⊤XY(IL ⊗W⊤

V)⊗ Id2
V

)
Z2

)
︸ ︷︷ ︸

U

V,

HT
f (WQK,WQK) =

1√
dK

[
0 B⊤ ⊗ IdK

B⊗ IdK
0

]
=

1√
dK

[
0 B⊤

B 0

]
⊗ IdK

.

In the above formulas WQK :=

[
WQ

WK

]
, δXY := vecr (F(X)−Y) and,

V := [(WQ ⊗ IdV
)KdK ,dV

IdV
⊗WK] , B := RdV

(
IL ⊗W⊤

V ⊗ IdV

)
(Z1 ⊗ IdV

)S.

This decomposition can be thought of as a Gauss-Newton decomposition when we split the
function composition ℓ◦(A 7→ AXWV)◦a◦T at the level of T(X) = XWQW

⊤
KX

⊤/
√
dK .
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Query-key Hessian eigenspectrum. The structure of the query-key Hessian block implies a spe-
cific configuration of the eigenvalues of its summands. The T-functional Hessian has a character-
istic block-hollow structure with blocks of zeros on the diagonal, which makes it responsible for
the bulk eigenvalues of the query-key Hessian. This specific structure allows us to reason about the
eigenspectrum of the query-key Hessian. Eigenvalues of T-functional Hessian come in pairs ±λi

for 1 ≤ i ≤ dV . To see that it is enough to note that if λi is an eigenvalue with an eigenvector
[v⊤

1 ,v
⊤
2 ]

⊤, then also [−v⊤
1 ,v

⊤
2 ]

⊤ is an eigenvector with corresponding eigenvalue −λi.

Moreover, by theorem 2.1 from Magnus & Neudecker (2019) eigenvalues of the Kronecker product
are products of the factor matrices’ eigenvalues. Since all dK eigenvalues of IdK

are ones, eigenval-
ues of T-functional Hessian are the same as eigenvalues of

1√
dK

[
0 B⊤

B 0

]
,

each with multiplicity dK . This is exactly like the eigenvalue structure of the functional Hessian of
a two-layer MLP, where the eigenvalues are known to come in positive-negative pairs Singh et al.
(2021), each with multiplicity dK .

Furthermore, the T-outer-product Hessian has at most 2dKdV − d2K non-zero eigenvalues when
dV > dK and at most d2V non-zero eigenvalues when dV ≤ dK . This is because of the rank bound
from lemma D.2 and the fact that rank is equal to the number of non-zero eigenvalues for symmetric
matrices.

Lemma D.1. Singh et al. (2021)
Let A ∈ Rm×n and B ∈ Rp×q . Then

rk

([
Iq ⊗A
B⊗ In

])
= q rk (A) + n rk (B)− rk (A) rk (B) .

Lemma D.2. Under the same assumptions as remark D.1, and additionally assuming that WK

and WQ are full rank, the rank of the T-outer-product Hessian can by bounded by

rk
(
HT

o (WQK,WQK)
)
≤
{
2dKdV − d2K if dK < dV
d2V if dK ≥ dV .

Proof.

rk
(
HT

o (WQK,WQK)
)
= rk

(
1

dK
V⊤UV

)
≤ min

(
rk (U) , rk

(
V⊤)) ≤ rk

(
V⊤) .

To get the rank of V⊤ we use lemma D.1.

rk
(
V⊤) ≤ rk

([
WQ

⊤ ⊗ IdV

IdV
⊗WK

⊤

])
= rk

([
IdV

⊗WK
⊤

WQ
⊤ ⊗ IdV

])
= dV rk (WK) + dV rk (WQ)− rk (WK) rk (WQ)

=

{
2dV dK − d2K when dK < dV ,

d2V when dK ≥ dV .

E MULTI-HEAD SELF-ATTENTION HESSIAN

Multi-head self-attention, a mechanism that allows the model to jointly attend to information from
different representation subspaces (Vaswani et al., 2017), enforces an interesting structure in self-
attention Jacobian and the Hessian of the self-attention loss. A multi-head self-attention layer can
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be defined as

F(X) =

H∑
h

Fh(X) =

H∑
h

Ah(X)XWh
V where Ah(X) = a

(
Th(X)

)
,

where Th do not share weights. For example, in the classical definition of multi-head self-attention,
we have Th(X) = XWh

QW
h⊤
K X⊤ /

√
dK with different Wh

Q and Wh
K for every head.

Multi-head classical self-attention Jacobian blocks depend only on single-head parameters.
Note that F is a sum of completely independent functions of X, as every weight matrix enters Fh

for exactly one h. This implies that a block of the Jacobian corresponding to weights parameterizing
Fh depends only on Wh

K,W
h
Q and Wh

V. Recalling the formulas for the gradient from lemma B.1,
we arrive at the following remark E.1.

Remark E.1. The Jacobians of the multi-head classical self-attention layer (Vaswani et al.,
2017) have the following form:

∂F

∂Wh
V

=
∂Fh

∂Wh
V

= softmax

(
XWh

QW
h⊤
K X⊤

√
dK

)
X⊗ IdV

,

∂F

∂Wh
Q

=
∂Fh

∂Wh
Q

=
(
IL ⊗Wh⊤

V X⊤) ∂Ah

∂Th

(
X⊗XWh

K√
dK

)
,

where the Jacobian of the row-wise softmax w.r.t. its inputs is defined in lemma B.1.

With an increasing number of heads, the outer-product Hessian dominates the Hessian. Note
that the mixed inter-head terms of the Hessian are fully defined by the outer-product Hessian part.
This is because the inter-head functional Hessian blocks are always zero, as the second derivative
of F w.r.t. arbitrary inter-head weight matrices Whi

c ∈ Rpc×qc and W
hj

t ∈ Rpt×qt for hi ̸= hj

is zero. This results from the Jacobian expressions in remark E.1, which always depend on weight
matrices parameterizing just a single self-attention head. Hence,

Hf

(
Whi

c ,W
hj

t

)
=

(
∂ℓ

∂F
(F(·))⊗ Ipcqc

)
∂2F

∂Whi
c ∂W

hj

t

(·)︸ ︷︷ ︸
=0, when hi ̸=hj

= 0 .

This implies that, for a fixed dV and dK = dV /H , the functional Hessian becomes increasingly
sparse as the number of heads grows. This leads to most entries of the Hessian being fully defined
by the outer-product Hessian. Notably, this observation holds irrespective of the loss function used.

E.1 INFLUENCE OF THE LOW-RANK NATURE OF WV ON THE SELF-ATTENTION HESSIAN

A practical implementation of the multi-head self-attention assumes that Wh
V is low-rank, namely,

it is parameterized as Wh
V = Wh

OW
h
U, for some Wh

O ∈ RdV ×dK and Wh
U ∈ RdK×dV . In this

setting, we compute the Hessian w.r.t. Wh
O and Wh

U instead of Wh
V and the only self-attention

Hessian blocks that get affected are the ones w.r.t. Wh
O or Wh

U.

The (Wh
O,W

h
U) Hessian block resembles the Hessian of a linear two-layer MLP. Note that

Fh(X) = Ah(X)XWh
OW

h
U = M1W

h
OW

h
U (24)

resembles a two-layer linear MLP if we treated M1 as a single input matrix. Hence, the discussion
from section 2 on the Hessian of MLPs applies to the value matrix block of the self-attention Hessian.
For instance, its diagonal consists entirely of the outer-product Hessian entries, since its functional
Hessian counterpart has a block-hollow structure.

The main difference compared to a full rank parameterization by a single matrix Wh
V is that now

the Hessian also includes mixed blocks w.r.t. Wh
O and Wh

U. For the MSE loss, the functional part
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of these blocks has a quadratic dependence on the first moment matrix M1, as both the derivative
of the loss w.r.t. the model output ∂ℓ/∂F, and the mixed second derivative matrix of Fh w.r.t. Wh

O

and Wh
U (see eq. (2)) depend on it linearly. Additionally, the outer-product Hessian block w.r.t.

the value matrices Wh
O and Wh

U has an extra quadratic dependence on the selected value matrices
themselves and on the first moment matrix M1.

F EXPERIMENTAL SETUP

For the numerical experiments, we adapt the setting from Quirke & Barez (2024). They frame
number addition as the next token prediction task and generate a custom dataset, which we also use
in our experiments. For 5-digit number addition that we use, the sequence length is equal to L = 17.
The model we consider is (unless stated otherwise) a single-block GPT-2 Transformer (Radford
et al., 2019) from TransformerLens (Nanda & Bloom, 2022), in most experiments without layer
normalization unless noted otherwise. The tokens and their positions are embedded and passed into
a single-head self-attention layer, followed by a two-layer MLP. In all figures except for figs. 7 and 8
we use cross-entropy (CE) as a loss function.

To obtain figs. 1 and 4 we initialize the weights of the model the same way as GPT-2, so biases are
initialized to 0 and weights are initialized by sampling from N (0, 0.64/dV ). In fig. 1 we use the
classical definition of self-attention, while in fig. 4 we additionally compare to self-attention without
softmax. The size of the model is dV = dK = 16, and the latent dimension of the MLP is 64. The
Hessian is computed using 64 data samples.

To obtain figs. 3 and 5 we vary the standard deviation of the initialization of the embedding layer
while leaving the initialization scheme of the rest of the model unchanged. We compare (fig. 3a) the
model without layer normalization with (fig. 3b) a model with Pre-LN (meaning that layer normal-
ization is applied before the self-attention layer, before the MLP layer, and after the last Transformer
block as in GPT-2 Radford et al. (2019)). The size of the Transformer block is dV = dK = 128
and the Hessian is computed using 64 sequences. We estimate the block Frobenius norm using
the Hutchinson trace estimator of the block outer product, implemented in the CurvLinOps library
(Dangel et al., 2025). Every configuration is repeated 20 times and we report the mean and standard
error of the mean. For the Pre-LN we select the slope of the dashed trend lines by fitting a linear
regression model into pairs of points (log σ, log f̄(σ))) where f̄(σ) is the mean Frobenius norm of
the block, estimated at σ.

The setting of fig. 6 is the same as in fig. 3a with the only difference that we consider multi-layer
GPT-2 Transformers without layer normalization.

To obtain fig. 7 we use multi-layer linear self-attention networks, meaning that we simply chain
self-attention layers w/o softmax. The loss we use in this experiment is mean squared error (MSE).
Similar to the experiment in fig. 3, we vary the standard deviation σ used to initialize the embedding
matrix X.

To obtain fig. 8 we use linear MLPs with the hidden dimension 128. The loss used in this experiment
is also MSE.

G ADDITIONAL EXPERIMENTAL RESULTS

Hessian blocks at different layers of a multi-layer Transformer follow the growth rates pre-
dicted for a single-layer self-attention model. With the experiment in fig. 6 we try to answer a
question: How well do our results for a single-layer network generalize to an isolated layer inside a
deep network? To do that we empirically demonstrate how the self-attention (with softmax) Hessian
blocks of multi-layer Transformers scale with the input matrix X scale σ.

We observe that for a realistic range of σ ∈ (0, 1), which we refer to as the practical range, the
query outer-product and functional blocks as well as the value outer-product block scale exactly as
the prediction for a single layer. Moreover, the lines corresponding to earlier layers are lower on the
log-log scale for σ ∈ (0, 1), which means that their Hessian blocks have smaller multipliers as part
of their expressions.
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Figure 5: (Plotted in linear scale.) Empirical verification with a CE loss confirms derived growth
rates w.r.t. magnitude σ of X from eq. (5). We demonstrate the growth rates through the Frobenius
norm ∥ · ∥F of value and query diagonal blocks for (a) practical range σ ∈ (0, 1) and (b) bigger σ
values σ ∈ (0, 10). The dashed lines correspond to the trend predicted by theory as in eq. (5). For
details on the experimental setting, see appendix F. This figure presents the same data as in fig. 3a
but using a linear scale on both axes instead of a log-log scale.

For σ > 1 and deeper layers we start observing some higher-order dependencies on σ. This suggests
that similarly to the deep linear attention networks (see section 4.1), the Hessian of a multi-layer
Transformer with softmax attention exhibits a dependence on X that grows with depth. These
higher order dependencies are not visible for σ < 1, because they converge to zero quicker than the
lower order dependencies. We also note, that the Frobenius norm of the query Hessian block and the
value outer-product Hessian block corresponding to the top layer quite closely follow our prediction
for a single self-attention layer, also for deeper networks and σ > 1.

For layers other than the top one, the value functional Hessian block does not follow our theoretical
prediction, because, for deeper layers, this Hessian block no longer equals zero. Note that the top
layer (largest layer identifier in the plot) is not present in the figure because it equals zero.

Empirical comparison between self-attention networks and MLPs. In figs. 7 and 8 we compare
the diagonal blocks of the linear self-attention and MLP Hessians. In fig. 7a we observe the growth
rates predicted by remark 4.1 for a single layer of linear self-attention. As expected, the diagonal
blocks are fully driven by the outer-product Hessian, as the functional Hessian blocks equal zero.
For growing network depth D, we observe that the growth rates of the outer-product Hessian Ho

blocks become super-exponential. The complete Hessian H blocks also follow this trend—the last
layer for any σ and the remaining ones for bigger σ. This is inline with the discussion in section 4.1.

In contrast, the diagonal blocks of a linear MLP Hessian fig. 8 grow quadratically with σ, for any of
the tested network depths.
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Figure 6: (Plotted in log-log scale.) Value and query Hessian diagonal blocks at different lay-
ers follow the predicted theoretical growth rates for practical ranges of the input. Frobenius
norm ∥ · ∥F of the self-attention Hessian blocks for multi-layer GPT-2 Transformers without layer
normalization on the next token prediction task, split by Transformer block (1 corresponds to the
input Transformer block). We indicate the growth rates predicted by theorems 3.1 and 3.2 with the
gray dashed lines and the annotation in the bottom right corners. As for the single layer, the com-
plete Hessian H value and query blocks follow the trend of the outer-product and functional Hessian
blocks respectively.
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There is no prediction for the functional Hessian because (as predicted by

remark 4.1) the diagonal blocks of the functional Hessian equal zero.
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Figure 7: (Plotted in log-log scale.) In linear self-attention networks value and query Hessian di-
agonal blocks at different layers partially follow the super-exponential growth rate with depth.
Frobenius norm ∥ · ∥F of the self-attention Hessian blocks for multi-layer self-attention network on
the next token prediction task, split by layer (1 corresponds to the input layer). We limit the range
of sigma and the network depth, due to numerical problems caused by the super-exponential growth
rate for larger σ and deeper networks. The dashed lines indicate the trend σ2·3D , where D is the
network depth.
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Figure 8: (Plotted in log-log scale.) Diagonal blocks of a linear MLP grow the same with σ
irrespective of network depth. Frobenius norm ∥ · ∥F of diagonal Hessian blocks for a linear MLP
on the next token prediction task, split by layer (1 corresponds to the input layer). For a linear
MLP the diagonal blocks of a functional Hessian are always zero (Singh et al., 2021), so we simply
plot the complete Hessian diagonal blocks, without splitting them into outer-product and functional
Hessians. We plot the block Frobenius norm separately for every layer, but they perfectly overlap.
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