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This supplementary material provides detailed definitions of foot-
skate cleanup loss (Appendix A), more qualitative results (Appen-
dix B), and additional experiments on the diffusion samplers (Ap-
pendix C).

A FOOTSKATE CLEANUP LOSS
Here we provide detailed definitions of footskate cleanup loss. The
complete loss function is as Equation 1. Pose loss 𝐿𝑝𝑜𝑠𝑒 minimize the
mean squared error(MSE) ofmotion pose to keep semantic invariant.
We use Euler angles to represent motion and convert keypoints to
Euler angles by HybrIK algorithm [4]. Trajectory loss 𝐿𝑡𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦
has the same function as 𝐿𝑝𝑜𝑠𝑒 by constrainting velocity of root
bone. Foot contact loss 𝐿𝑓 𝑜𝑜𝑡 use MSE to fix foot. 𝑃 is keypoints
of footskate cleaned motion. In the early stage of the algorithm,
we use 𝑉23 to calculate target anchored points, denoted as 𝑝 . VGRF
loss 𝐿𝑣𝐺𝑅𝐹𝑠 keeps valid foot pose by minimizing the mean squared
logarithmic error.

𝐿 = 𝜔𝑞𝐿pose + 𝜔 𝑓 𝐿foot + 𝜔𝑡𝐿trajectory + 𝜔𝑣𝐿vGRFs (1)

𝐿𝑝𝑜𝑠𝑒 (𝑃, 𝑃) = ∥𝐻𝑦𝑏𝑟𝐼𝐾 (𝑃) − 𝐻𝑦𝑏𝑟𝐼𝐾 (𝑃)∥22 (2)

𝐿𝑓 𝑜𝑜𝑡 (𝑃, 𝑃,𝑉23, 𝑃𝑆23 ) =
𝐽𝑠𝑘𝑎𝑡𝑖𝑛𝑔∑︁

𝑗23

𝐹𝑠𝑘𝑎𝑡𝑖𝑛𝑔∑︁
𝑓23

(𝑃 𝑗 − 𝑝) (3)

𝐿𝑡𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦 (𝑃, 𝑃) = ∥(𝑃1:𝐻0 − 𝑃0:𝐻−1
0 ) − (𝑃1:𝐻0 − 𝑝0:𝐻−1

0 )∥22 (4)

𝐿vGRFs (𝑃, 𝑃,𝑉 𝜃
22) = ∥𝑙𝑜𝑔(1 +𝑉 𝜃

22 (𝑃)) − 𝑙𝑜𝑔(1 +𝑉
𝜃
22 (𝑃))∥

2
2 (5)

B QUALITATIVE RESULTS
B.1 Videos
To more visually demonstrate the effect of our method in gen-
erating motions, We have provided supplemental videos in the
Videos.zip, which contains folders: T2M_Comparision_Demos and
Footskate_Cleanup_Demos. We recommend the supplemental video
to see these motion results.

Folder T2M_Comparison_Demos contains six comparison
videos showcasing our method alongside other text-to-motion ap-
proaches. Each video presents the motions generated by our Stable-
MoFusion, MDM [11], and MotionDiffuse [12] models, conditioned
on the same text prompts. These generated motions are visualized
with mesh and compared against each other, with the ground truth
(GT) motions serving as a reference point, as depicted in Figure 1.

Folder Footskate_Cleanup_Demos shows four visual compar-
isons of the motions generated by our StableMoFusion without
footskate cleanup (labeled footskate), after footskate cleanup us-
ing Underpressure [8] (labeled underpressure), and after footskate
cleanup using our method (labeled ours), as shown in Figure 2.
The videos visualize how well our method removes foot skating
resulting from diffusion-generated motions. However, applying Un-
derpressure directly to our framework and SMPL skeleton leads to

Figure 1: Video frame display of folder T2M_Comparision
_Demos.

Figure 2: Video frame display of folder Footskate_Cleanup
_Demos.

Figure 3: Video frame display of kick_mesh_demo.mp4

noticeable jitter and even motion distortion, as depicted in Figure 3.
We must do some complex post-processing for underpressure re-
sults to retarget its motion to SMPL skeleton, while our method
processes the original motion directly instead of retargeting.

1
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Table 1: Comparisons with the state-of-the-art methods on text-conditional motion synthesis task. All provided methods are
trained on the HumanML3D [1] dataset and all samples are generated with the same text prompts and motion length.

Text Prompts MDM [11] MotionDiffuse [12] StabelMoFusion (ours)

A person crawls on the ground
from east to west then goes
back

A person runs back and forth

A person stands up from lay-
ing, walks in a circle, and lays
down again

B.2 Sequence Figures
To facilitate visualization and explication within the text, we adopt
a method akin to the previous approach, wherein the entire motion
sequence is rendered into a composite image by stacking all frames,
as depicted in Table 1 and Table 2.

Table 1 shows comparisons between our method, MDM [11], and
MotionDiffuse [12]. We highlight that StableMoFusion achieves a
balance between text-motion consistency and motion quality. For
example, when prompted with A person stands up from laying,
walks in a clockwise circle, and lays down again, our resultant mo-
tion encapsulates a full circular movement and concludes with the
reclining action. For the prompt A person runs back and forth, our
generated motion portrays a complete back-and-forth journey.

Figure 4 provides more samplers generated from various text
prompts by our StableMoFusion framework. Our framework is able
to generate high-quality motions that reflect the detailed descrip-
tion.

Table 2 provides more comparisons of the motions generated
by our StableMoFusion before and after footskate cleanup. The
foot-slip is evident from the red box in the sequence figures of the
multi-frame stacks, and is appreciably removed.

Table 2: More examples to illustrate the effect of footskate
cleanup in our diffusion framework.

Motion Type StabelMoFusion (w/o footskate cleanup) StabelMoFusion (w/ footskate cleanup)

wave

kick

slide

stand

2
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(a) he walks forward and then turns around fast and walks back (b) the person is striking a tennis ball unenthusiastically

(c) the person is dancing the waltz. (d) a person walks up stairs

(e) a person is on his knees and then gets up by pushing himself up with his right
hand

(f) a person walks in a left diagonal then stops with hands slightly raised.

(g) a person is doing jumping jacks (h) a person jump ropes

Figure 4: More samples of our StableMoFusion for text-to-motion synthesis.
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C ADDITIONAL EXPERIMENTS ON
SAMPLERS

In this section, we will show the effect of incorporating five ex-
perienced discrete-time samplers into the motion diffusion frame-
work. To select the most suitable sampler for efficient inference,
we initially used the pre-trained models in MotionDiffuse [12] to
evaluate and analyze these samplers, namely DDPM [2], DDIM [9],
DPMSolver [6, 7], PNDM [5], and DEIS [13], which preceded our
development of the model architecture.

These samplers can be categorized into two groups based on
whether adding additional noise in each reverse step: Ordinary Dif-
ferential Equations (ODE) [3] and Stochastic Differential Equation
(SDE) [10] samplers.

C.1 Experimental setup.
We use the trained models of MotionDiffus [12] to evaluate the

inference effects of the five samplers on both For a fair comparison,
All inference experiments use the same 𝑏𝑎𝑐ℎ𝑠𝑖𝑧𝑒 = 1024 and set
𝑠𝑒𝑒𝑑 = 0. Use DDPM [2] with 𝑇 = 1, 000 as control group (Ctrl).

C.2 ODE Samplers
ODE samplers accelerate DDPM by solving ODEs on manifold

without additional noise. These approaches construct a determin-
istic sampling trajectory that traverses from noise space to the
target data distribution. ODE samplers have been shown to pro-
duce less discretization error than the SDE samplers, however, they
will eventually reach the upper limit of their performance due to
their deterministic sampling trajectories from noise to the data
distribution, which leads to a certain cumulative error as shown
in Table 3 and Table 4.

Although ODE samplers can significantly decrease the number
of sampling steps from 1000 by a certain amount, they are only
capable of generating motions with FID around 2.0 on KIT-ML
dataset and FID around 1.25 on HumanML3D dataset.

Table 3: Comparison of samplers on MotionDiffuse using
the HumanML3D test set. The minimum sampling step is
selected if its FID and R Precision (top3) are within 5% of the
optimal result.

Sampler Minimum
Sampling Steps FID ↓ R Precision (top3) ↑

ODE

DDIM 500 1.253 0.764
PNDM 200 1.297 0.763
DEIS 20 1.281 0.761
DPMSolver++ 20 1.235 0.764

SDE

DDPM (Ctrl) 1000 0.709 0.778
DDPM 500 0.731 0.787
SDE DPMSolver++ 20 0.680 0.774
SDE DPMSolver++ Karras 10 0.521 0.781

C.3 SDE Samplers
Since SDE samplers introduce additional noise during the it-

erative inference process, the stochasticity of the their sampling
trajectories helps to reduce the cumulative error, which is crucial l
for diversity and realism in diffusion-based motion generation, as
shown in Table 3 and Table 4.

Table 4: Comparison of samplers on MotionDiffuse using the
KIT-ML test set. The minimum sampling step is selected if
its FID and R Precision (top3) are within 5% of the optimal
result.

Sampler Minimum
Sampling Steps FID ↓ R Precision (top3) ↑

ODE

DDIM 200 2.012 0.711
PNDM 50 2.069 0.736
DEIS 2 2.006 0.720
DPMSolver++ 4 1.962 0.734

SDE

DDPM (Ctrl) 1000 1.673 0.740
DDPM 500 1.712 0.743
SDE DPMSolver++ 5 1.590 0.743
SDE DPMSolver++ Karras 5 0.886 0.727

SDE samplers are capable of generating higher quality motions
than the ODE sampler.

C.4 Karras Sigma
The Karras Sigma [3] 𝜎 (𝑡) =

√
𝑡 corresponds to constant-velocity

thermal diffusion, which enables fast and good sampling in im-
age synthesis. Karras sigma also improves the quality of motion
diffusion generation, as shown in Table 3 and Table 4. By using
Karras Sigma, the quality of the DPM-Solver++ sampler for motion
generation is improved from 1.6 FID to 0.886 on KIT-ML dataset
and .

Using Karras Sigma in sampler can improves the quality of mo-
tion diffusion generation.

C.5 Ablation on StableMoFusion
We also re-validated the efficiency of the selected one, SDE variant
of second-order DPM-Solver++ with Karras Sigmas (SDE DPM-
Solver++ Karras), compared to other samplers in our final frame-
work, the results of which are shown in Table 5.

Table 5: Comparison of samplers on StableMoFusion using
the KIT test set. The minimum sampling step is selected if
its FID and R Precision (top3) are within 5% of the optimal
result.

Sampler Minimum
Sampling Steps FID ↓ R Precision (top3) ↑

DDIM 200 0.243 0.794
DDPM 500 0.253 0.793
SDE DPMSolver++ 5 0.246 0.796
SDE DPMSolver++ Karras 10 0.209 0.780

Note that, the minimum sampling steps vary when utilizing the
same sampler across different datasets or different frameworks.
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