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ABSTRACT

Large language models (LLMs) such as ChatGPT have exhibited remarkable
performance in generating human-like texts. However, machine-generated texts
(MGTs) may carry critical risks, such as plagiarism issues, misleading informa-
tion, or hallucination issues. Therefore, it is very urgent and important to detect
MGTs in many situations. Unfortunately, it is challenging to distinguish MGTs
and human-written texts because the distributional discrepancy between them is
often very subtle due to the remarkable performance of LLMS. In this paper, we
seek to exploit maximum mean discrepancy (MMD) to address this issue in the
sense that MMD can well identify distributional discrepancies. However, directly
training a detector with MMD using diverse MGTs will incur a significantly in-
creased variance of MMD since MGTs may contain multiple text populations due
to various LLMs. This will severely impair MMD’s ability to measure the differ-
ence between two samples. To tackle this, we propose a novel multi-population
aware optimization method for MMD called MMD-MP, which can avoid variance
increases and thus improve the stability to measure the distributional discrep-
ancy. Relying on MMD-MP, we develop two methods for paragraph-based and
sentence-based detection, respectively. Extensive experiments on various LLMs,
e.g., GPT2 and ChatGPT, show superior detection performance of our MMD-MP.

1 INTRODUCTION

With the advancement of large language models (LLMs), texts generated by these models, such as
GPT3 (Brown et al., 2020), are natural, fluent and of high quality. These machine-generated texts
(MGTs) closely resemble human-generated texts (HWTs) and have many promising applications in
natural language processing, e.g., text summarization (Liu & Lapata, 2019), dialogue generation (Li
et al., 2016) and machine translation (Bahdanau et al., 2014). However, existing LLMs may generate
fake news (Zellers et al., 2019), spam (Guo et al., 2020), and phishing (Hong, 2012), suffering from
factual errors, hallucination and bias (Zhang et al., 2023b). This poses threats to online informa-
tion’s credibility and security, necessitating advanced MGT detection techniques. Unfortunately, it
is challenging to distinguish MGTs and HWTs because the distributional differences between them
are inherently subtle (Guo et al., 2023; Tian et al., 2023).

To detect MGTs, existing metric-based methods ((Gehrmann et al., 2019; Mitchell et al., 2023;
Solaiman et al., 2019)) use some statistics (e.g., log-likelihood) to score the probability of the test
texts being MGTs, which is less effective when a large language-domain gap exists between the
texts used to train the scoring model and the tested MGTs. Another strategy, model-based methods
(Solaiman et al., 2019; Guo et al., 2023), relying severely on specific MGT types, struggles to adapt
to other types of MGTs. These methods face challenges in effectively capturing the distributional
discrepancy between MGTs and HWTs, thus limiting their detection capabilities.

In this paper, we seek to exploit maximum mean discrepancy (MMD) to address the above issue
since MMD exhibits a powerful ability to identify distributional discrepancy (Liu et al., 2020; 2021;
Gao et al., 2021). However, directly applying MMD cannot effectively detect MGTs. This task
often involves data from various populations, e.g., texts generated by different LLMs (e.g., GPT-
3 (Brown et al., 2020), ChatGPT (OpenAI, 2022)) or different LLM settings (e.g., temperature,
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(a) MMD
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(b) Variance of MMD
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(c) Test Power of MMD
Figure 1: Kernel-based MMD applying two optimization methods (MMD-MP is ours). Subfigure
(a) illustrates MMD between training populations Str

P and Str
Q under different numbers of Str

Q pop-
ulations (i.e., q) during training, where Str

P is from human-written texts and Str
Q is from q types of

machine-generated texts. Subfigure (b) shows the variance of MMD during training. Subfigure (c)
exhibits the test power of MMD when testing under training data with different q populations.

top-k sampling (Vilnis et al., 2023)). These populations can substantially differ in language styles
and syntactic structures, resulting in significant variations of MGTs. Training a deep kernel MMD
(MMD-D, Liu et al. (2020)) under such circumstances will incur the issue of high variance (i.e., the
large variance of MMD-D in Figure 1 (b)). This means the estimated discrepancy between HWTs
and MGTs fluctuates considerably and thus lead to unreliable and unstable detection (the low test
power of MMD-D in Figure 1 (c)).

This paper pioneers an exploration into the optimization mechanism of kernel-based MMD. We find
that as we train the kernel with data from multiple populations, the estimated MMD increases with
its variance growing significantly (see Figures 1 (a)-(b) and more explanations in Section 2.3). This
phenomenon arises due to the intra-class distance within MGTs presented in kernel-based MMD’s
optimization objective. This distance largely hinders the optimization process that aims to aggregate
MGTs, resulting in highly fluctuating MMD for MGT detection. In this paper, we propose a novel
multi-population aware optimization method for MMD called MMD-MP, which uses a multi-
population proxy to remove the constraint that all instances in MGTs should be aggregated. In this
way, we can achieve a low variance of the MMD between MGTs and HWTs, resulting in more
stable discrepancy estimation and more reliable detection (see MMD-MP results in Figures 1 (b)-
(c)). Furthermore, with the trained deep kernel, we develop two approaches for paragraph-based
detection and sentence-based detection, respectively. Empirical evidence on various LLMs such as
ChatGPT, GPT2 series, GPT3 series and GPT-Neo series exhibits the superiority of our methods.
Our contributions are summarized as:

1) We delve into the optimization mechanism of MMD and reveal that high variance of the MMD
when handling training data from multiple different populations can result in an unstable discrepancy
estimation for MGT detection.

2) We propose a novel multi-population aware optimization method for training kernel-based MMD
(called MMD-MP), which can alleviate the optimization dilemma of MMD-D and improve the sta-
bility of discrepancy measures.

3) Relying on the proposed MMD-MP, we devise two novel MGT detection methods. Extensive ex-
periments across numerous LLMs, including ChatGPT, GPT2 series, GPT3 series, GPT-Neo series,
demonstrate that our methods consistently outperform existing baselines.

2 PRELIMINARIES AND MOTIVATIONS

2.1 PRELIMINARIES

Two-sample test (2ST). Let P, Q be Borel probability measures on X⊂Rd. We observe independent
identically distributed (IID) data SP={xi}ni=1∼Pn and SQ={yj}mj=1∼Qm. 2ST aims to determine
if P and Q come from the same distribution, i.e., P = Q (Borgwardt et al., 2006; Liu et al., 2020).

Single-instance detection (SID). Let P be a Borel probability measure on X⊂Rd and IID observa-
tions SP={xi}ni=1∼Pn, SID aims to tell if the test instance ỹ is from the distribution P.
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Maximum mean discrepancy. Following Gretton et al. (2012); Liu et al. (2020), maximum mean
discrepancy (MMD) aims to measure the closeness between two distributions, which is defined as:
Definition 1. Let k : X×X→R be the bounded kernel of a reproducing kernel Hilbert space Hk,
F be a class of functions f : X→R, and X∼P, Y∼Q be two random variables,

MMD(P,Q;Hk)= sup
f∈F,∥f∥Hk

≤1

|E[f(X)]−E[f(Y )]|=
√
E [k (X,X ′)+k (Y, Y ′)−2k(X,Y )].

When n = m, we can estimate MMD using the U-statistic estimator, which is unbiased for MMD2:

M̂MD
2

u(SP, SQ; k)=
1

n(n− 1)

∑
i̸=j

Hij , where Hij :=k(xi,xj)−k(xi,yj)−k(yi,xj)+k(yi,yj).

In this paper, we consider a kernel-based MMD (Liu et al., 2020), where the kernel is defined as:

kω(x,y)=[(1−ϵ)κ(ϕf̂ (x), ϕf̂ (y))+ϵ]q(f̂(x), f̂(y)), (1)

where ϵ ∈ (0, 1), ϕf̂ (x) = ϕ(f̂(x)) is a deep neural network with feature extractor f̂ , κ

and q are Gaussian kernels with bandwidth σϕ and bandwidth σq , respectively, e.g., κ(a, b) =

exp
(
−∥a− b∥2/2σ2

ϕ

)
. Since f̂ is fixed, the set of parameters of kω is ω = {ϵ, ϕ, σϕ, σq}.

Test power. Test power is the probability of rejecting the null hypothesis (H0 : P = Q) when
P ̸= Q. For reasonably large n, Liu et al. (2020) find that the power is nearly proportional to

J(P,Q; kω) = MMD2(P,Q; kω)/σH1(P,Q; kω), where σ2
H1

:= 4
(
E [HijHiℓ]− E [Hij ]

2
)
.

We can estimate J(P,Q; kω) with a regularized estimator by

Ĵ(SP, SQ; kω)=
M̂MD

2

u(SP, SQ; kω)√
σ̂2
H1

(SP, SQ; kω) + λ
, where σ̂2

H1
:=

4

n3

n∑
i=1

 n∑
j=1

Hij

2

− 4

n4

 n∑
i=1

n∑
j=1

Hij

2

.

(2)

2.2 HIGH VARIANCE PROBLEM OF KERNEL-BASED MMD IN MULTIPLE POPULATIONS

In practice, we may collect training data Str
Q with multiple different populations from a mixture of

texts generated by different LLMs such as GPT3 (Brown et al., 2020), ChatGPT (OpenAI, 2022).
Due to the diverse language styles generated by different language models, this can result in sig-
nificant variations in the generated text. Under such circumstances, although we can maximize the
criterion Ĵ (2) to optimize the kernel kω , we still obtain a high-variance discrepancy.

To validate the above phenomenon, we demonstrate the MMD value and its variance during train-
ing by maximizing Eqn. (2.1) under different numbers of Str

Q populations (i.e., q). According to
Figures 1 (a)-(b), the MMD between Str

P and Str
Q for MMD-D increases, which is desirable for

MGT detection, but its variance simultaneously increases, which will deteriorate the detection per-
formance. The impact of this phenomenon worsens with the increase of q. This indicates that the
population Str

Q with larger variations makes the optimization of the original MMD more challenging.

What Causes Optimization Dilemma of Kernel-based MMD? Although kernel-based MMD is
widely used to identify distributional discrepancies, limited literature has explored its optimization
mechanism, possibly due to its complex mathematical format. For instance, when maximizing Ĵ in
Eqn. (2), it is challenging to determine the individual changes in the MMD value and its variance,
resulting in intricate analyses of each term in MMD. Yet, we still strive to observe some phenomena
of these values through empirical studies to inspire our methods. To this end, we demonstrate some
trends of the terms in MMD during training in Figure 2.

Components in MMD and its variance. For simplicity, we focus on three terms in MMD:
kω(x,x

′), kω(x,y) and kω(y,y
′), which are represented as kxx, kxy and kyy in Figure 2, respec-

tively. We denote H∗=kω(x,x
′)−kω(x,y

′)−kω(y
′,x). Then we decompose the variance of MMD

into: Var(E[H∗+kω(y,y
′)])=Var(E[H∗])+Var(E[kω(y,y′)])+2Cov(E[H∗],E[kω(y,y′)]) and

Var(E[H∗])=Var(E[kω(x,x′)])−2Cov(E[kω(x,x′)],E[2kω(x,y)])+Var(E[2kω(x,y)]). Here, we
use the notion of expectation to denote taking expectations across two populations sampled from
MGTs and HWTs and the variance denotes taking variances within these sampled populations.
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(a) E(k), q=1
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(b) E(k), q=3
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(c) Var(MMD-D), q=3
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(d) Var(MMD-MP), q=3

Figure 2: E(k) in MMD and their variances under two optimization methods (MMD-MP is ours).
Subfigures (a) and (b) depict the value of each E(k) in MMD during training by MMD-D and MMD-
MP with q=1 and q=3, respectively. Subfigures (c) and (d) illustrate the variances of some terms
associated with MMD, i.e., σ2

H1
when training by MMD-D and MMD-MP, respectively.

2.3 OPTIMIZATION DILEMMA OF KERNEL-BASED MMD

We illustrate some critical observations related to the high variance problem in kernel-based MMD
for MGT detection according to Figure 2, followed by explaining these phenomena.

i) From Figures 2 (a)-(b), both E[kω(x,x′)] and E[kω(y,y′)] exhibit a generally increasing trend,
while E[kω(x,y)] shows relatively minor changes. ii) As the number of populations q increases,
E[kω(y,y′)] becomes smaller than E[kω(x,x′)], and the gap between them widens. iii) In Figure 2
(c), the variance of MMD is mainly determined by the variances of E[kω(x,x′)] and E[kω(y,y′)],
while the impact of other terms is relatively minor. iv) When Str

Q comprises multiple distinct popu-
lations (e.g., q = 3 in Figure 2 (c)), E[kω(y,y′)] optimized by MMD-D has a significant variance,
as well as E[kω(x,x′)], which is consistent with the results of different q in Appendix G.

First, i), ii) indicate that as q increases, when optimizing both kω(x,x
′) and kω(y,y

′) simultane-
ously in a Gaussian kernel (Bilmes et al., 1998), optimizing the aggregation of instances in Str

Q -
related terms becomes more challenging compared to Str

P . Second, the possible explanation for the
observations iii) iv) is that the optimization objective influences the optimization of different terms
(e.g., Str

P and Str
Q ) in the same way. Thus, the characteristics of their distributions after mapping by

the same kernel function, such as the mean and variance of kω , exhibit similar changing trends.

Furthermore, the optimized kernel function maximizing E[kω(y,y′)] will not only a) map the pair-
wise instances in Str

Q close to each other, making the mapped instances more uniform; but also b)
enforce implicit “pairing rules” for aggregating instances in Str

Q . These rules are shared to pair in-
stances of Str

P throughout optimization. When Str
Q comprises different populations, the differences

in Str
Q -pairs might be large. Applying the paring rules may inadvertently map Str

P instances far from
their class center, leading to increased fluctuations of kω(x,x′) and thus larger Var(E[kω(x,x′)]).
Similarly, optimizing Str

P negatively affects Str
Q but to a lesser extent because SP is IID, meaning SP

instances share more similar statistical characteristics. Pairing rules for Str
P instances do not need to

be as strong as those for aggregating non-IID Str
Q instances. Therefore, we will exclude E[kω(y,y′)]

related term throughout optimization. We also explore the performance when replacing kω(X,X ′)
with kω(Y, Y

′) as discussed in Appendix F.

3 PROPOSED METHODS

3.1 PROBLEM DEFINITION

In this paper, we consider detecting machine-generated texts (MGTs), where the testing texts can be
from multiple different large language models (LLMs). The problem is formally defined as follows:

Problem Definition. Let P be a Borel probability measure on a separable metric space X⊂Rd and
IID observations SP={xi}ni=1 from the HWT distribution P, we aim to tell if the upcoming data
SQ={yj}mj=1 is from the distribution P. Note that SQ can be HWTs or MGTs generated by multiple
different LLMs. When m=1, the problem can be regarded as a single-instance detection task.

Challenges of MGT detection. The distinctions between HWTs and MGTs (e.g., text from LLMs
like GPT-4) are inherently small, especially in shorter texts like single sentences, making it challeng-
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ing to distinguish between them. Moreover, the diversity of LLMs leads to significant variations in
the generated language style, which further increases the difficulty of MGT detection. Although
deep kernel MMD (MMD-D) is effective in measuring distributional discrepancies, texts generated
by multiple LLMs with substantial variations pose challenges in training the deep kernel, e.g., high
variance of the MMD. Such high variance in MMD will lead to unstable estimations of distributional
discrepancies, ultimately resulting in unsatisfactory performance in MGT detection.

3.2 MMD-MP FOR MGT DETECTION

As aforementioned, we do not consider optimizing the intra-class distance in Str
Q , i.e., R(SQ)>0.

Instead, we propose a multi-population aware optimization for kernel-based MMD (MMD-MP)
with a proxy MPP by maximizing a novel objective:

J(P,Q; kω) = MPP(P,Q; kω)/σH∗
1
(P,Q; kω), (3)

MPP(P,Q;Hk) := E [kω (X,X ′)− 2kω(X,Y )]. (4)

Empirically, we can approximate MPP with an unbiased estimator

M̂PPu(SP, SQ; kω)=
1

n(n− 1)

∑
i̸=j

H∗
ij , where H

∗
ij :=kω(xi,xj)−kω(xi,yj)−kω(yi,xj). (5)

Algorithm 1 Training deep kernel with MMD-
MP

Input: Str
P , Str

Q , a frozen feature extractor f̂ ;
ω ← ω0; λ← 10−8;
for T = 1, 2, . . . , Tmax do

kω ← kernel function using Eqn. (1);
M(ω)← M̂PPu(S

tr
P , Str

Q ; kω) using Eqn. (5);
Vλ(ω)← σ̂2

H∗
1
(Str

P , Str
Q ; kω) using Eqn. (7);

Ĵλ(ω)←M(ω)/
√

Vλ(ω) as in Eqn. (6);
ω ← ω + η∇AdamĴλ(ω);

end for
Output: kω

Moreover, we can estimate Eqn. (3) by

Ĵ(SP, SQ; kω) =
M̂PPu(SP, SQ; kω)√
σ̂2
H∗

1
(SP, SQ; kω) + λ

,

(6)

σ̂2
H∗

1
:=

4

n3

n∑
i=1

(
n∑

j=1

H∗
ij

)2

− 4

n4

(
n∑

i=1

n∑
j=1

H∗
ij

)2

.

(7)

Remark 1 Unlike MMD (Borgwardt et al.,
2006; Gretton et al., 2012), MPP does not in-
corporate kω(y,y) related to SQ. However,

M̂PPu is still a U -statistic (Serfling, 2009) like M̂MD
2

u, with numerous desirable statistical prop-
erties that facilitate convenient theoretical analysis.

Although maximizing M̂PPu for kernel training is straightforward, it ignores the variance could
lead to an unstable discrepancy (see more details in Appendix D). To address this, we analyze the
asymptotics of M̂PPu and derive its test power as follows, and ultimately provide a novel optimiza-
tion objective.

Proposition 1. (Asymptotics of M̂PPu) Under the alternative H1 : P ̸= Q, based on a standard
central limit theorem, we have:

√
n(M̂PPu −MPP)

d−→ N (0, σ2
H∗

1
), (8)

where σ2
H∗

1
:= 4

(
E[H∗

12H
∗
13]− E[H∗

12]
2
)
, H∗

12, H∗
13 denote different H∗

ij .

Corollary 1. (Test power of M̂PPu) For reasonably large n, the probability of rejecting the null
hypothesis H0 : P = Q when P ̸= Q is given by:

PrMPP
H∗

1 ,r
→ Φ

(√n(MPP +R(SQ))

σH∗
1

− r√
n σH∗

1

)
, (9)

where PrMPP
H∗

1 ,r
:= Pr

(
n
[
M̂PPu +R(SQ)

]
> r
)

and R(SQ) =
1

n(n−1)

∑
i̸=j kω(yi,yj) > 0, Φ is

the standard normal cumulative distribution function.
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Remark 2 Note that we do not exclude the term R(SQ) in Eqn. (9) due to the uncertain con-

vergence of nM̂PPu (which could be related to the kernel kω) when P=Q. Instead, nM̂MD
2

u =

n[M̂PPu+R(SQ)] has been proven to be convergent (Gretton et al. (2012), Theorem 12). This
enables us to find an approximate power with a rejection threshold as r (Liu et al., 2020).

Corollary (1) shows that, given r and σH∗
1

being constants, for reasonably large n, the test power of
MPP is dominated by the first term inside Φ. Last, the training algorithm is shown in Algorithm 1.
With the trained kernel kω , we design two approaches for MGT detection in Section 3.3.

We now study the uniform convergence of our proposed optimization function as follows.
Theorem 1. (Uniform bound of MMD-MP) Let ω parameterize uniformly bounded kernel
functions kω in a Banach space of dimension D with ∥ω∥≤RΩ, kω be uniformly bounded by
supω∈Ω supx,x′∈X kω(x,x

′)≤ν with Lk-Lipschitz, i.e., |kω(x,x′)−kω′(x,x′)| ≤ Lk∥ω−ω′∥. Let
Ω̄s be a set of ω for which σ2

H∗
1
≥s2>0. Taking λ=n−1/3, with probability at least 1−δ, we have

sup
ω∈Ω̄s

∥Ĵ(SP, SQ; kω)− J(P,Q; kω)∥ = O

(
ν

s2n1/3

[
ν2
√
D log(RΩn)+ log

1

δ
+ νLk +

1

s

])
.

Detailed constants and proofs are given in Appendix A.3. Theorem 1 shows that our estimator
Ĵ(SP, SQ; kω) converges uniformly over a ball in parameter space as n increases. With enough
training data, the estimator converges the optimal solution if the best kernel exists.

3.3 EXPLORING MMD-MP FOR MGT DETECTIONS

We consider MGT detection in two scenarios: paragraph-based detection and sentence-based detec-
tion. The former aims to detect whether the test paragraph follows the distribution of human-written
paragraphs. We address this as a two-sample test. The latter focuses on distinguishing one single
machine-generated sentence from HWTs. We consider this as a single-instance detection task.

MGT Detection Under two-sample test (2ST). For paragraph-based detection, we consider each
sentence within the paragraph as an instance. The detailed procedure for 2ST using MMD-MP can
be found in Algorithm 2. Note that we only optimize the kernel using MMD-MP during training and
employ the MMD instead of the MPP to measure the distance between SP and SQ during testing.
The rationale behind this is that we prefer the distance between SP and SQ to be zero when P=Q,
rather than a negative value, i.e., −R(SQ)<0. Empirically, the performance of these two strategies
is almost identical. We defer more discussion in Appendix E.

MGT detection under single-instance detection (SID). While paragraph-based detection is widely
employed, there exist practical applications that require single-sentence detection, e.g., online con-
tent filtering or false information recognition. Despite numerous works have shown MMD as a
powerful means to measure the discrepancy between two distributions or populations, we still hope
it can be employed to single-instance detection due to the powerful deep kernel. To achieve this,
with a trained kernel, we calculate the distance between a set of referenced HWTs Sre

P and a test
text ỹ with Eqn. (10). The detailed procedure for SID using MMD-MP is shown in Algorithm 3.

M̂MD
2

b (S
re
P , {ỹ}; kω) =

1

n2

n∑
i,j=1

kω(xi,xj)−
2

n

n∑
i=1

kω(xi, ỹ)) + kω(ỹ, ỹ)). (10)

Advantages of MMD-MP for MGT Detection over MMD-D. We summarize the advantages of
MMD-MP over MMD-D as two parts: 1) More stable discrepancy estimation: Although MMD-D
has a similar E[k(x,x)] with MMD-MP, its variance is much greater than MMD-MP (see Figures
2 (a), (c) and (d)), indicating that MMD-D exhibits poorer aggregation effects for Str

P compared
with MMD-MP. Moreover, training MMD using MMD-MP results in a significantly lower variance
(see Figures 2 (c) and (d)), which addresses the issue of high variance in MMD optimization, thus
enhancing the stability of discrepancy estimation. 2) Enhanced transferability: Our MMD-MP
focuses more on fitting HWTs Str

P compared with MMD-D when training the deep kernel, which
reduces the reliance of MGTs. This manner enhances the transferability in detecting unknown MGTs
during testing (as verified in Section 4.4).
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Algorithm 2 Testing with MMD-MP for 2ST

Input: Testing texts Ste
P , Ste

Q , f̂ , kω;

est←M̂MD
2

u(S
te
P , Ste

Q ; kω) using Eqn. (2.1);
for i = 1, 2, . . . , nperm do

Shuffle Ste
P ∪ Ste

Q into SX and SY ;

permi←M̂MD
2

u(SX , SY ; kω) using Eqn.
(2.1);

end for
Output: p-value 1

nperm

∑nperm

i=1 1(permi≥est)

Algorithm 3 Testing with MMD-MP for SID
Input: Referenced HWT Sre

P , testing texts
Ste
P , Ste

Q ;
for xi,yj in Ste

P , Ste
Q do

Pi←M̂MD
2

b (S
re
P , {xi}; kω) using Eqn. (10);

Qj←M̂MD
2

b (S
re
P , {yj}; kω) using Eqn. (10);

end for
Output: AUROC value with two sets {Pi}, {Qj}

4 EXPERIMENTS

Datasets and LLM architectures. We evaluate our method on Human ChatGPT Comparison Corpu
(HC3) (Guo et al., 2023), which is a ChatGPT text detection dataset with both long and short-level
corpus, and XSum dataset (Güera & Delp, 2018), which is a news dataset. We choose paragraphs
with more than 5 sentences for testing in paragraph-based detection and sentences with more than
5 words for testing in sentence-based detection. For LLMs, we consider ChatGPT (OpenAI, 2022),
GPT2 series (Radford et al., 2019), GPT3-S (Toan, 2023), GPT-Neo series (Black et al., 2021),
GPT4all-j (Anand et al., 2023). For each experiment, except for ChatGPT using MGTs in the
original HC3, for other LLMs, we generate MGTs with the first 20 prompts of HWT in HC3.

Two-sample test baselines. 1) MMD-O: MMD with a Gaussian kernel whose bandwidth is opti-
mized; 2) MMD-D: MMD with a trained deep kernel (Liu et al., 2020); 3) Classifier two-sample
tests: C2ST-S (Lopez-Paz & Oquab, 2017) and C2ST-L (Cheng & Cloninger, 2022).

Single-instance detection baselines. 1) Metric-based detectors: Log-Likelihood (Solaiman et al.,
2019), Entropy, Rank (Gehrmann et al., 2019), Log-Rank and DetectGPT (Mitchell et al., 2023);
2) Model-based detectors: OpenAI-D (Solaiman et al., 2019) and ChatGPT-D (Guo et al., 2023).
We also use cross-entropy loss to optimize a deep neural network as a baseline, called CE-Classifier,
whose model is the same as that of MMD-D and MMD-MP except for an additional binary classifier.

Evaluation metrics. We evaluate the detection performance using test power for two-sample
test (Gretton et al., 2012) and the area under the receiver operating characteristic curve (AUROC)
(Jiménez-Valverde, 2012) for single-instance detection. Through all experiments, we randomly take
100 paragraphs or 1, 000 sentences for testing and repeat the experiments 10 times for synthetic data
or 5 times for real-world data. We use bold numbers to indicate the best results in tables.

4.1 RESULTS ON SYNTHETIC DATA

We investigate the impact of variation (i.e., variance) of training data on test power. To this end, we
synthesize a four-center Gaussian mixture data. Specifically, let 1d and Id represent a d-dimensional
all-one vector and a d-dimensional identity matrix, we denote P=N (0d, Id) and Q(µ, δ) as:

Q(µ, δ)=
1

4
N

(
µ

[
1

d
2

1
d
2

]
, δ Id

)
+
1

4
N

(
µ

[
−1

d
2

1
d
2

]
, δ Id

)
+
1

4
N

(
µ

[
1

d
2

−1
d
2

]
, δ Id

)
+
1

4
N

(
µ

[
−1

d
2

−1
d
2

]
, δ Id

)
.

We consider various Q by setting µ∈{0.2+0.02×i}10i=1 and δ=1.3 with d=100. Note that we use
these four-center Gaussian mixture data for training the kernel but only sample a center Gaussian
data for testing. We use L2-norm of the variance of data in Q to represent its variance.

From Figure 3, we draw two observations: 1) As µ increases, the test powers of MMD-D and our
MMD-MP become higher since the distributional discrepancy between P and each single-center
Gaussian data in Q becomes larger; 2) When the variance of data in Q increases with µ, the test
power of MMD-MP surpasses that of MMD-D by a maximum margin of approximately 9% power.
This suggests that forcing the aggregation of all data in Q will hinder MGT detection performance
when the variance of training data is significant.
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Table 1: Test power/100 on HC3 given 3, 100 processed paragraphs in training data.

Method ChatGPT GPT3-S Neo-S ChatGPT
Neo-S

ChatGPT
GPT3-S

C2ST-S 62.83±0.90 43.64±5.92 30.68±2.37 34.62±2.73 46.66±2.95

C2ST-L 89.82±1.02 75.74±4.90 60.97±1.87 68.50±1.81 78.22±3.12

MMD-O 26.43±1.40 21.17±3.12 19.83±2.81 25.23±0.47 25.18±1.41

MMD-D 91.76±1.58 86.98±2.53 73.62±3.03 86.44±1.07 91.46±0.47

MMD-MP (Ours) 93.21±1.35 89.36±2.91 79.68±2.42 89.63±1.94 91.96±0.62

Table 2: Test power/100 on HC3 given 1, 000 processed paragraphs in training data.

Method ChatGPT GPT3-S Neo-S ChatGPT
Neo-S

ChatGPT
GPT3-S

ChatGPT
GPT2-S
GPT2-M

ChatGPT
Neo-S

GPT3-S

ChatGPT
Neo-S
Neo-L

C2ST-S 60.32±2.56 38.06±4.49 27.65±2.34 34.48±3.70 40.89±3.79 24.97±2.05 32.04±2.41 24.53±3.08

C2ST-L 87.81±1.48 74.29±4.16 61.05±3.35 67.47±3.17 75.49±2.21 56.24±3.53 67.10±2.69 54.91±3.24

MMD-O 27.23±3.53 19.96±5.03 19.58±2.02 27.34±1.42 26.03±1.63 20.05±2.86 23.91±0.92 20.92±1.10

MMD-D 91.38±2.09 84.01±5.04 72.81±3.23 74.22±4.06 83.29±3.05 62.34±4.00 77.76±2.93 63.15±2.38

MMD-MP (Ours) 92.31±2.30 86.34±5.37 76.35±3.51 85.30±1.99 89.05±1.64 79.92±3.88 85.54±1.93 79.69±0.78

4.2 TEST POWER ON PARAGRAPH-BASED DETECTION

We compare our MMD-MP with the state-of-the-art (SOTA) two-sample test method for detecting
MGTs on HC3 in terms of test power and defer the results on XSum in Appendix I.1. To broadly
evaluate detection performance, we conduct experiments on various scenarios, including training on
full training data, a limited number of training data, and unbalanced training data.

Test power on full training data. We conduct this experiment using 3, 100 processed paragraphs
to train the model. Table 1 shows the detection performance under different training populations
in terms of test power compared with other baselines, including one and two populations. The
results show that MMD-MP exhibits superior test power compared with other methods, particularly
in detecting Neo-S texts, where the test power is approximately 6% ↑ higher than MMD-D.

Test power on a limited number of training data. We utilize 1, 000 processed paragraphs to train
the models with one, two, and three training populations, respectively. Table 2 demonstrates that our
method achieves significantly higher test power performance compared with others. Remarkably,
our method outperforms MMD-D by an average of 8.20% ↑ on test power over the two training
populations and exhibits a 13.97% ↑ increase over the three training populations, suggesting that
extreme instability of discrepancy estimation of MMD-D when dealing with multiple populations.

Test power on challenging unbalanced training data. In real-world scenarios, obtaining HWTs
is easily feasible, while collecting MGTs poses more challenges. To thoroughly assess the per-
formance of our approach, we conduct an evaluation with 2, 000 processed HWT and 400 MGT
training paragraphs. As illustrated in the top of Figure 8 (see Appendix), our approach exhibits
significantly superior performance compared with other methods, e.g., surpassing the test power
of 6.96%∼14.40% ↑ than MMD-D, highlighting its stability in detecting MGTs under unbalanced
training data scenarios.

4.3 AUROC ON SENTENCE-BASED DETECTION

In this section, we compare our MMD-MP with the SOTA single-instance detection method for
detecting MGTs on HC3 in terms of AUROC and defer the results on XSum in Appendix I.2.

AUROC on full training data. Table 3 shows that our MMD-MP achieves better AUROC than
other baselines. Notably, our MMD-MP outperforms the SOTA model-based method, i.e., ChatGPT-
D with 1.20% ↑ of AUROC when detecting ChatGPT texts. Moreover, MMD-MP achieves an
improvement of 0.22%∼1.71% ↑ on AUROC over MMD-D and 0.61%∼2.64% ↑ over the CE-
Classifier method, illustrating the superiority of our method in detecting the single sentence.

AUROC on a limited number of training data. From Table 4, our MMD-MP achieves perfor-
mance comparable to CE-classifier in detecting ChatGPT texts and surpasses other baselines in other
scenarios. Particularly, our method outperforms MMD-D by 2.46%↑ and CE-Classifier by 1.39%↑
on average. Note that although the model of CE-Classifier is the same as MMD-D and MMD-MP
except for an additional classifier, our MMD-MP demonstrates superior detection performance over
CE-Classifier, indicating the powerful distinguishability of our method.
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Table 3: AUROC/100 on HC3 given 3, 100 processed paragraphs.
Method ChatGPT GPT3-S Neo-S ChatGPT

Neo-S
ChatGPT
GPT3-S

Likelihood 89.82±0.03 60.56±1.32 61.18±1.25 75.81±0.51 75.05±0.25

Rank 73.20±1.49 71.96±1.01 72.09±0.51 72.74±0.74 72.34±1.38

Log-Rank 89.58±0.07 63.78±1.29 64.92±1.04 77.57±0.55 76.47±0.12

Entropy 31.53±0.90 54.34±1.33 56.19±0.33 44.08±0.24 42.08±2.01

DetectGPT-d 77.92±0.74 53.41±0.41 52.07±0.38 66.01±0.29 65.70±1.14

DetectGPT-z 81.07±0.77 53.45±0.53 52.28±0.31 67.54±0.19 67.32±1.02

OpenAI-D 78.57±1.55 84.05±0.71 84.86±0.87 81.20±0.95 80.68±1.64

ChatGPT-D 95.64±0.13 61.89±1.04 54.45±0.10 75.47±0.63 78.95±1.00

CE-Classifier 96.19±0.17 92.44±0.63 88.88±0.19 90.93±0.72 92.97±0.28

MMD-O 56.34±0.66 59.90±0.87 63.19±0.76 60.46±1.28 57.79±1.25

MMD-D 95.83±0.37 94.86±0.48 88.40±1.28 91.39±0.86 93.49±0.46

MMD-MP (Ours) 96.20±0.28 95.08±0.32 92.04±0.58 92.48±0.37 94.61±0.22
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Figure 3: Impact of variance
in training data on test power.

Table 4: AUROC/100 on HC3 given 1, 000 processed paragraphs in training data.

Method ChatGPT GPT3-S Neo-S ChatGPT
Neo-S

ChatGPT
GPT3-S

ChatGPT
GPT2-S
GPT2-M

ChatGPT
Neo-S

GPT3-S

ChatGPT
Neo-S
Neo-L

CE-Classifier 95.99±0.40 91.40±0.37 87.27±0.52 88.13±0.44 91.59±0.36 84.89±0.61 88.91±0.51 84.15±1.30

MMD-O 54.64±1.69 61.52±1.18 61.93±2.22 58.28±1.65 57.92±1.32 57.86±1.39 59.78±0.61 58.07±1.20

MMD-D 93.86±0.70 91.50±1.24 81.10±0.83 89.28±0.91 90.28±1.59 85.50±0.85 88.07±0.87 84.20±2.33

MMD-MP (Ours) 95.95±0.42 94.28±0.57 89.61±0.44 90.83±0.79 93.46±0.52 87.03±0.59 91.25±0.56 86.93±0.52

AUROC on challenging unbalanced training data. From the bottom of Figure 8 (see Appendix),
our approach consistently outperforms baselines for sentence-based detection. Critically, our MMD-
MP achieves an improvement of 3.89%∼9.01% ↑ on AUROC over MMD-D and 0.38%∼1.79% ↑
over the CE-Classifier method. Combining Tables 3, 4 and Figure 8 (see Appendix), we conclude
that our method is superior in detecting a single sentence under various scenarios on different LLMs
compared with other methods in total, suggesting the stability of our method for MGT detection.

4.4 RESULTS ON UNKNOWN LLM TEXTS Table 5: Test Power/100 on unknown LLMs.
Method Neo-L GPT-j-6b GPT4all-j

C2ST-S 11.20±3.39 7.72±0.72 14.30±2.38

C2ST-L 34.12±6.09 29.64±3.64 42.37±3.18

MMD-O 12.93±1.51 7.71±2.66 17.08±1.14

MMD-D 38.18±4.13 31.92±4.93 51.28±0.11

MMD-MP (Ours) 61.79±3.54 59.57±4.33 77.69±0.46

Table 6: AUROC/100 on unknown LLMs.
Method Neo-L GPT-j-6b GPT4all-j

CE-Classifier 78.00±1.69 74.56±1.49 82.57±0.91

MMD-O 54.86±0.31 53.85±0.86 52.92±1.33

MMD-D 77.91±0.87 75.47±1.41 82.11±0.51

MMD-MP (Ours) 81.08±0.71 78.41±0.98 85.75±0.30

In light of poor performance for MGT detection
baselines on unknown LLM-text, we evaluate our
method in the context of this type of detection. We
train the models using texts generated by ChatGPT,
GPT2 and GPT2-m on HC3, and then test on texts
generated by GPT-Neo-L, GPT-j-6b and GPT4all-j.
From Tables 5-6, our method outperforms the base-
lines by a large margin on test power and AUROC.
Critically, our MMD-MP achieves an absolute im-
provement of 23.61%∼27.65%↑ on test power over
MMD-D. Moreover, our method outperforms MMD-D by 3.25% ↑ and CE-Classifier by 3.37% ↑
of AUROC on average. These results demonstrate the superior transferability of our method.

4.5 VISUALIZATION OF KERNEL FEATURE ϕf

3

MMD-D MMD-MP

Figure 4: Features Visualization via t-SNE.

We visualize the feature (d=300) extracted by ϕf

over two LLM-texts via t-SNE (Van der Maaten &
Hinton, 2008) for MMD-D and MMD-MP. In Fig-
ure 4, two types of LLM-text features by MMD-
D are entangled and disorganized, while the MGT
features obtained by our MMD-MP exhibit lower
overlap, confirming that our method indeed relaxes the constraint of aggregating all MGT instances.

5 CONCLUSION

In this paper, we propose a multi-population aware optimization method for training kernel-based
MMD called MMD-MP, which alleviates the optimization dilemma of MMD. With a trained deep
kernel, we design two MGT detection approaches for paragraph-based and sentence-based detection
tasks, respectively. Extensive experiments on a variety of LLMs demonstrate the superiority of our
methods in terms of test power and AUROC, especially in detecting unknown LLM texts.
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A THEORETICAL ANALYSIS

Given a kernel kω , we define MPP and its unbiased estimator as:

MPP(P,Q;Hk) := E [kω (X,X ′)− 2kω(X,Y )]. (11)

M̂PPu(SP, SQ; kω)=
1

n(n− 1)

∑
i ̸=j

H∗
ij , where H

∗
ij :=kω(xi,xj)−kω(xi,yj)−kω(yi,xj). (12)

For simplicity, we denote η̂ω = M̂PPu = 1
n(n−1)

∑
i̸=j H

∗
ij and ηω = E[H∗

12].

A.1 PROOF OF PROPOSITION 1

Proposition 1. (Asymptotics of M̂PPu). Under the alternative H1 : P ̸= Q, based on a standard
central limit theorem, we have:

√
n(M̂PPu −MPP)

d−→ N (0, σ2
H∗

1
), (13)

where σ2
H∗

1
:= 4

(
E[H∗

12H
∗
13]− E[H∗

12]
2
)
, H∗

12, H∗
13 denote different H∗

ij .

Proof. Let U denote a pair (x,y) and h(U,U ′) = kω(xi,xj)−kω(xi,yj)−kω(yi,xj). Based on
the property of U -statistic and Lemma A in Section 5.2.1 of Serfling (2009), when n → ∞, we have

nVar[η̂ω] → 4ξω =: σ2
ω, (14)

where we use σ2
ω to denote σ2

H∗
1

for simplicity, and ξω is represented as:

ξω = VarU [EU ′ [h(U,U ′)]]

= EU [EU ′ [h(U,U ′)]EU ′′ [h(U,U ′′)]]− EU [EU ′ [h(U,U ′)]]
2

= E[H∗
12H

∗
13]− E[H∗

12]
2.

Via Theorem A in Section 5.5.1 of Serfling (2009), we obtain the conclusion.

A.2 PROOF OF COROLLARY 1

Corollary 1. (Test power of M̂PPu.) For reasonably large n, the probability of rejecting the null
hypothesis H0 : P = Q when P ̸= Q is given by:

PrMPP
H∗

1 ,r
→ Φ

(√n(MPP +R(SQ))

σH∗
1

− r√
n σH∗

1

)
, (15)

where PrMPP
H∗

1 ,r
:= Pr

(
n
[
M̂PPu +R(SQ)

]
> r
)

and R(SQ) =
1

n(n−1)

∑
i̸=j kω(yi,yj) > 0, Φ is

the standard normal cumulative distribution function.

Proof. Via Proposition 1, we obtain

Pr
(
n
[
M̂PPu +R(SQ)

]
> r
)
= Pr

(√n(M̂PPu −MPP)

σH∗
1

>
r − n[MPP +R(SQ)]√

n σH∗
1

)
= 1− Φ(

r − n[MPP +R(SQ)]√
n σH∗

1

)

= Φ
(√n(MPP +R(SQ))

σH∗
1

− r√
n σH∗

1

)
.
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A.3 PROOF OF THEOREM 1

To analyze the convergence of our method, we first describe the following relevant technical as-
sumptions that have been analyzed by Liu et al. (2020).

(A) The kernels kω are uniformly bounded by supω∈Ω supx∈X kω(x, x) ≤ ν.

(B) The possible kernel parameters ω lie in a Banach space of dimension D. Furthermore, the
set of possible kernel parameters Ω is bounded by RΩ, i.e., Ω ⊆ {ω | ∥ω∥ ≤ RΩ}.

(C) The kernel parameters is Lk-Lipschitz for all data x,x′ ∈ X and ω, ω′ ∈ Ω, i.e.,

|kω(x,x′)−kω′(x,x′)| ≤ Lk∥ω−ω′∥.

We first provide some results on the uniform convergence of η̂ω and σ̂2
ω based on ϵ-net argument

(Vershynin, 2018), which will be used to prove Theorem 1.
Proposition 2. Under Assumptions (A) to (C), we have that with probability at least 1− δ,

sup
ω

|η̂ω − ηω| ≤
6√
n

[
ν

√
2 log

2

δ
+ 2D log

(
4RΩ

√
n
)
+ Lk

]
.

Proof. We denote a random error function

Φ(ω) := η̂ω − ηω.

Based on Assumption (B), we can use at most T = (4RΩ/q)
D points {ωi}Ti=1 such that for any

ω ∈ Ω, mini ∥ω − ωi∥ ≤ q (Cucker & Smale (2002), Proposition 5).

Recall that η̂ω = 1
n(n−1)

∑
i ̸=j H

∗
ij , we construct a new population by replacing one data pair

(x1,y1) in SP and SQ with (x′
1,y

′
1), and thus obtain η̂′ω = 1

n(n−1)

∑
i ̸=j F

∗
ij , where F is the same

as H except when i or j equals to 1.

We calculate the difference

|η̂ω − η̂′ω| ≤
1

n(n− 1)

∑
i ̸=j

|H∗
ij − F ∗

ij | =
1

n(n− 1)

∑
i>1

|H∗
i1 − F ∗

i1|+
1

n(n− 1)

∑
j>1

|H∗
1j − F ∗

1j |

≤ 2

n(n− 1)

∑
i>1

6ν =
12ν

n
.

According to a union bound and McDiarmid’s inequality (Mohri et al., 2018), we have

Pr

(
max

i∈{1,...,T}
|Φ(ωi)| ≥ ϵ

)
≤

T∑
i=1

Pr (|Φ(ωi)| ≥ ϵ)

=

T∑
i=1

Pr (|η̂ωi
− ηωi

| ≥ ϵ) =

T∑
i=1

Pr
(
|η̂ωi

− E[η′ωi
]| ≥ ϵ

)
≤ 2T exp

(
− 2ϵ2∑n

j=1 (12ν/n)
2

)
= 2T exp

(
− 2ϵ2

(12ν)2/n

)
.

Let 2T exp
(
− 2ϵ2

(12ν)2/n

)
= δ, we obtain ϵ = 12ν√

2n

√
log 2T

δ . Thus, with probability at least 1 − δ,
we have

max
i∈{1,...,T}

|Φ(ωi)| ≤
12ν√
2n

√
log

2T

δ
≤ 6ν√

n

√
2 log

2

δ
+ 2D log

4RΩ

q
. (16)

We next deviate the Lipschitz of Φ(ω) based on Assumption (C).

|η̂ω − η̂ω′ | ≤ 1

n(n− 1)

∑
i ̸=j

|H∗(ω)
ij −H

∗(ω′)
ij | ≤ 1

n(n− 1)

∑
i̸=j

3Lk∥ω − ω′∥ = 3Lk∥ω − ω′∥,
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|ηω − ηω′ | =
∣∣∣E [H∗(ω)

12

]
− E

[
H

∗(ω′)
12

]∣∣∣ ≤ E
∣∣∣H∗(ω)

12 −H
∗(ω′)
12

∣∣∣ ≤ 3Lk∥ω − ω′∥.

Thus, we have

|Φ(ω)− Φ(ω′)| = |η̂ω − ηω − (η̂ω′ − ηω′)| ≤ |(η̂ω − η̂ω′) + (ηω′ − ηω)| ≤ 6Lk∥ω − ω′∥. (17)

Combining the results of (16) and (17) and setting q= 1√
n

, we have that with probability at least 1−δ

sup
ω

|Φ(ω)| = |Φ(ω∗)| = |Φ(ω∗)− Φ(ω∗) + Φ(ω∗)| ≤ |Φ(ω∗)|+ |Φ(ω∗)− Φ(ω∗)|

≤ max
i∈{1...T}

∥Φ(ωi)∥+ 6Lkq

≤ 6ν√
n

√
2 log

2

δ
+ 2D log

4RΩ

q
+

6Lk√
n

=
6√
n

[
ν

√
2 log

2

δ
+ 2D log

(
4RΩ

√
n
)
+ Lk

]
,

where ω∗ = argω sup |Φ(ω)| and ω∗ = argω minωi∈{ω1...ωT } ∥ω∗ − ωi∥.

Next, we present some lemmas to lay the foundation for establishing the uniform convergence of
σ̂2
ω . For simplicity, we denote σ̂k = σ̂H∗

1
and σk = σH∗

1
.

Lemma 1. Under Assumption (A), we have that with probability at least 1−δ.

|σ̂2
ω − E σ̂2

ω| ≤ 252ν2
√

2

n
log

2

δ
.

Proof. We first estimate |σ̂2
ω − (σ̂′

ω)
2| when changing one data pair in SP and SQ. To this end, we

construct a new population by replacing one data pair (x1,y1) in SP and SQ with (x′
1,y

′
1), and thus

obtain (σ̂′
ω)

2 = 4

(
1
n3

∑
i

(∑
j F

∗
ij

)2
−
(

1
n2

∑
ij F

∗
ij

)2)
, where F is the same as H except when

i or j equals to 1. Recall that

σ̂2
ω = 4

 1

n3

∑
i

∑
j

H∗
ij

2

−

 1

n2

∑
ij

H∗
ij

2
 .

After changing one data pair, the difference of the first term changes with∣∣∣∣∣∣∣
1

n3

∑
i

∑
j

H∗
ij

2

− 1

n3

∑
i

∑
j

F ∗
ij

2
∣∣∣∣∣∣∣ ≤

1

n3

∑
i

∣∣∣∣∣∣∣
∑

j

H∗
ij

2

−

∑
j

F ∗
ij

2
∣∣∣∣∣∣∣

=
1

n3

∑
i

∣∣∣∣∣∣
∑
jℓ

H∗
ijH

∗
iℓ −

∑
jℓ

F ∗
ijF

∗
iℓ

∣∣∣∣∣∣ ≤ 1

n3

∑
ijℓ

∣∣H∗
ijH

∗
iℓ − F ∗

ijF
∗
iℓ

∣∣
=

1

n3

∑
i=1

∑
jℓ

∣∣H∗
ijH

∗
iℓ − F ∗

ijF
∗
iℓ

∣∣+ 1

n3

∑
i>1

∑
j=1,ℓ=1

∣∣H∗
ijH

∗
iℓ − F ∗

ijF
∗
iℓ

∣∣
1

n3

∑
i>1

∑
j=1,ℓ̸=1

∣∣H∗
ijH

∗
iℓ − F ∗

ijF
∗
iℓ

∣∣+ 1

n3

∑
i>1

∑
j ̸=1,ℓ=1

∣∣H∗
ijH

∗
iℓ − F ∗

ijF
∗
iℓ

∣∣
≤ 1

n3
(n218ν2 + (n− 1)9ν2 + 2(n− 1)218ν2)

=

(
6

n
− 7

n2
+

3

n3

)
9ν2,
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where the penultimate line follows by the facts that: 1)
∣∣H∗

1jH
∗
1ℓ − F ∗

1jF
∗
1ℓ

∣∣ ≤ 18ν2 due to |Hij | ≤
3ν, |Fij | ≤ 3ν; 2) |H∗

i1H
∗
i1 − F ∗

i1F
∗
i1| ≤ max{H∗

i1H
∗
i1, F

∗
i1F

∗
i1} ≤ 9ν2; 3) when i > 1, ℓ ̸= 1,

|H∗
i1H

∗
iℓ − F ∗

i1F
∗
iℓ| = |H∗

i1H
∗
iℓ − F ∗

i1H
∗
iℓ| ≤ |H∗

iℓ| |H∗
i1 − F ∗

i1| ≤ (6ν)(3ν) = 18ν.

After changing one data pair, the difference of the second term changes with∣∣∣∣∣∣∣
 1

n2

∑
ij

H∗
ij

2

−

 1

n2

∑
ij

F ∗
ij

2
∣∣∣∣∣∣∣

=
1

n4

∣∣∣∣∣∣
∑
ij

H∗
ij +

∑
ij

Fij

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
ij

H∗
ij −

∑
ij

F ∗
ij

∣∣∣∣∣∣
≤ 1

n2
(2 · 3ν) ·

∑
ij

∣∣H∗
ij − F ∗

ij

∣∣
=

1

n2
(2 · 3ν) ·

 ∑
i=1,j ̸=1

∣∣H∗
ij − F ∗

ij

∣∣+ ∑
j=1,i̸=1

∣∣H∗
ij − F ∗

ij

∣∣
≤ 1

n2
(2 · 3ν) · (2n− 1)6ν

= 36ν2
(
2

n
− 1

n2

)
.

Thus, we have

|σ̂2
ω − (σ̂′

ω)
2| ≤ 4

[(
6

n
− 7

n2
+

3

n3

)
9ν2 + 36ν2

(
2

n
− 1

n2

)]
= 36ν2

[
14

n
− 11

n2
+

3

n3

]
≤ 504ν2

n
.

Using McDiarmid’s inequality (Mohri et al., 2018), with probability at least 1− δ, we have

|σ̂2
ω − E σ̂2

ω| ≤ 252ν2
√

2

n
log

2

δ
.

Since σ̂2
ω is not unbiased, we next estimate |E σ̂2

ω − σ2
ω|.

Lemma 2. Under Assumption (A), we have

|E σ̂2
ω − σ2

ω| ≤
648ν2

n
.

Proof. Recall that σ2
ω and the expectation of σ̂2

ω

σ2
ω = 4

(
E[H∗

12H
∗
13]− E[H∗

12]
2
)

E σ̂2
ω = 4

 1

n3

∑
ijℓ

E
[
H∗

iℓH
∗
jℓ

]
− 1

n4

∑
ijab

E
[
H∗

ijH
∗
ab

] .

We decompose the summation term into terms with non-repeated indices and terms with repeated
indices.
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For the first term in E σ̂2
ω ,

1

n3

∑
ijℓ

E[H∗
iℓH

∗
jℓ] =

1

n3

∑
ijℓ:|{i,j,ℓ}|=3

E[H∗
iℓH

∗
jℓ] +

1

n3

∑
ijℓ:|{i,j,ℓ}|<3

E[H∗
iℓH

∗
jℓ]

=
n(n− 1)(n− 2)

n3
E[H∗

12H
∗
13] +

(
1− n(n− 1)(n− 2)

n3

)
E[H∗

iℓH
∗
jℓ].

Thus, we have∣∣∣∣∣∣ 1n3

∑
ijℓ

E[H∗
iℓH

∗
jℓ]− E[H∗

12H
∗
13]

∣∣∣∣∣∣
=

∣∣∣∣(n(n− 1)(n− 2)

n3
− 1

)
E[H∗

12H
∗
13] +

(
1− n(n− 1)(n− 2)

n3

)
E[H∗

iℓH
∗
jℓ]

∣∣∣∣
=

(
3

n
− 2

n2

) ∣∣E[H∗
12H

∗
13]− E[H∗

iℓH
∗
jℓ]
∣∣

≤
(
3

n
− 2

n2

)
18ν2.

Similarly, for the second term in E σ̂2
ω , note that

1

n4

∑
ijab

E[H∗
ijH

∗
ab] =

1

n4

∑
ijab:|{i,j,a,b}|=4

E[H∗
ijH

∗
ab] +

1

n4

∑
ijab:|{i,j,a,b}|<4

E[H∗
ijH

∗
ab]

=
n(n− 1)(n− 2)(n− 3)

n4
E[H∗

12]
2 +

(
1− n(n− 1)(n− 2)(n− 3)

n4

)
E[H∗

ijH
∗
ab].

Thus, we have∣∣∣∣∣∣ 1n4

∑
ijab

E[H∗
ijH

∗
ab]− E[H∗

12H
∗
12]

∣∣∣∣∣∣
=

∣∣∣∣(n(n− 1)(n− 2)(n− 3)

n4
−1

)
E[H∗

12]
2+

(
1−n(n− 1)(n− 2)(n− 3)

n4

)
E[H∗

ijH
∗
ab]

∣∣∣∣
=

(
6

n
− 11

n2
+

6

n3

) ∣∣E[H∗
12]

2 − E[H∗
ijH

∗
ab]
∣∣

≤
(
6

n
− 11

n2
+

6

n3

)
18ν2.

Therefore, we conclude that

|E σ̂2
ω − σ2

ω| ≤ 4

[(
3

n
− 2

n2

)
18ν2 +

(
6

n
− 11

n2
+

6

n3

)
18ν2

]
≤
(
9

n
− 13

n2
+

6

n3

)
72ν2

≤ 648ν2

n
.

Next, we deviate the Lipschitz of Ψ(ω) := σ̂2
ω − σ2

ω .

Lemma 3. Under Assumptions (A) and (C), the Lipschitz of Ψ(ω) := σ̂2
ω − σ2

ω is given by

|Ψ(ω)−Ψ(ω′)| ≤ 288Lkν.
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Proof. We first deal with the Lipschitz of Ψ(ω) by

|Ψ(ω)−Ψ(ω′)| = |σ̂2
ω − σ2

ω − σ̂2
ω′ + σ2

ω′ | ≤ |σ̂2
ω − σ̂2

ω′ |+ |σ2
ω′ − σ2

ω|.
The first right term is bounded by∣∣σ̂2

ω − σ̂2
ω′

∣∣
= 4

∣∣∣∣∣∣ 1n3

∑
ijℓ

H
∗(ω)
iℓ H

∗(ω)
jℓ − 1

n3

∑
ijℓ

H
∗(ω′)
iℓ H

∗(ω′)
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Thus, we obtain the result

|Ψ(ω)−Ψ(ω′)| ≤ 288νLk∥ω − ω′∥.

Relying on Lemmas 1 to 3, we provide the result of the uniform convergence of σ̂2
ω .
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Proof. Similar to Proposition 2, we denote a random error function

Ψ(ω) := σ̂2
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Based on Assumption (B), we can use at most T = (4RΩ/q)
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ω ∈ Ω, mini ∥ω − ωi∥ ≤ q (Cucker & Smale (2002), Proposition 5). According to Lemmas 1 and
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Combing Lemma 3 and setting q= 1√
n

, we have that with probability at least 1−δ
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where ω∗ = argω sup |Ψ(ω)| and ω∗ = argω minωi∈{ω1...ωT } ∥ω∗ − ωi∥.

Next, relying on the results of Propositions 2 and 3, we begin to prove Theorem 1.

Theorem 1. (Uniform bound of MMD-MP.) Let ω parameterize uniformly bounded kernel
functions kω in a Banach space of dimension D with ∥ω∥≤RΩ, kω be uniformly bounded by
supω∈Ω supx,x′∈X kω(x,x

′)≤ν with Lk-Lipschitz, i.e., |kω(x,x′)−kω′(x,x′)| ≤ Lk∥ω−ω′∥. Let
Ω̄s be a set of ω for which σ2

H∗
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≥s2>0. Taking λ=n−1/3, with probability at least 1−δ, we have

sup
ω∈Ω̄s
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According to Propositions 2 and 3, with probability at least 1−δ, the error bound is at most(
6ν

s
√
n
+

756ν3

s2
√
nλ

)√
2 log

2

δ
+ 2D log(4RΩ

√
n) +

(
864ν2

s2
√
nλ

+
6

s
√
n

)
Lk +

3νλ

2s3
+

1944ν3

s2n
√
λ

Taking λ = n−1/3, we get(
6ν

s
√
n
+

756ν3

s2n1/3

)√
2 log

2

δ
+ 2D log(4RΩ

√
n) +

(
864ν2

s2n1/3
+

6

s
√
n

)
Lk +

3ν

2s3n1/3
+

1944ν3

s2n5/6

=
1

s2n1/3

[(
6νs

n1/6
+756ν3

)√
2 log

2

δ
+2D log(4RΩ

√
n)+

(
864ν2+

6s

n1/6

)
Lk+

3ν

2s
+
1944ν3

n1/2

]
(18)

Thus, we have that with probability at least 1−δ,

sup
ω∈Ω̄s
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Note that the error bound of the optimization is close to the result of Liu et al. (2020), however, the
detailed coefficient of each term in Eqn. (18) is totally different due to the different H and H∗.
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B RELATED WORK

B.1 MGT DETECTION

Various machine-generated text (MGT) detection methods (Solaiman et al., 2019; Mitchell et al.,
2023; Guo et al., 2023; Kirchenbauer et al., 2023) have been developed recently and shown promis-
ing performance. In general, current detection methods can be roughly divided into two categories,
i.e., metric-based methods and model-based methods. Specifically, the former employ statistical
metrics (e.g., likelihood and entropy) extracted by LLMs to detect outliers, while the latter finetune
a pre-trained LM (e.g., RoBERTa (Liu et al., 2019)) to identify MGTs.

Metric-based MGT detection methods. These approaches leverage pre-trained LLMs or scoring
models to measure the statistical discrepancy between human-written texts and machine-generated
texts. Among them, the commonly used metrics involve log-likelihood (Solaiman et al., 2019), en-
tropy, rank (Gehrmann et al., 2019) and log-rank (Mitchell et al., 2023). Different from the above,
DetectGPT (Mitchell et al., 2023) proposes to compare log probability of texts under multiple per-
turbations, based on the assumption that the MGTs are more likely to lie in the local optimal of log
probability, which achieves higher AUROC compared with other metrics. However, these metric-
based detection methods are compromised with inferior performance when encountering a large
language-domain gap between the generated text model and the scoring model.

Model-based MGT detection methods. These methods usually train a classification model us-
ing texts provided by both humans and LLMs. To be specific, OpenAI-D (Solaiman et al., 2019)
finetunes a RoBERTa model with GPT2-generated texts and is used in detecting GPT2 outputs.
ChatGPT-D (Guo et al., 2023) devises two manners (i.e., using pure answered text or QA pairs) to
train the model using HC3 dataset (Guo et al., 2023). The model-based methods train a classifier
severely relying on MGTs, leading to unsatisfactory transferability for MGT detection.

More recently, an alternative detection paradigm is the watermark-based detection (He et al., 2022;
Kirchenbauer et al., 2023), which is defined as unseen modifications to texts that hide identifying
information. For example, Kirchenbauer et al. (2023) propose to inject the watermark by selecting
a randomized “green token” set before a word is generated, and softly promoting “green tokens”
while sampling. Such a watermark is hard to remove and can be detected by a statistical test with
p-values. However, these methods rely on a tailored language model to add the watermark and thus
only distinguish the texts generated by this model, limiting their application scenarios.

B.2 TWO-SAMPLE TEST

Two-sample test (Gretton et al., 2012; Liu et al., 2020; Lopez-Paz & Oquab, 2017; Cheng &
Cloninger, 2022) is a hypothesis test that aims to determine whether two populations are from a
congruent distribution (Borgwardt et al., 2006). Since the traditional statistical methods such as
t-tests and Kolmogorov-Smirnov tests (Larsen & Marx, 2013) are stuck with complex assumptions
and low-dimensional spaces, a board set of kernel-based methods have surged to prominence, which
construct a kernel mean embedding for each distribution and measure the difference between them.

Maximum mean discrepancy (MMD) serves as a highly efficacious metric to distinguish between
two distributions (Gretton et al., 2012; Gao et al., 2021; Zhang et al., 2023a). Tolstikhin et al. (2016)
further derive lower bounds for MMD estimation based on finite data for a radial universal kernel. To
address kernel adaptation for the quadratic-time MMD, Liu et al. (2020) propose to choose the best
kernel by splitting data. In addition, Kim et al. (2022) propose an adaptive two-sample test for testing
equality between two Hölder densities supported on the real d-dimensional unit ball. Nonetheless,
limited research has explored the optimization mechanism of kernel-based MMD. In this paper,
we delve extensively into this through comprehensive empirical investigations and propose a novel
optimization method to further improve the stability of training for kernel-based MMD.

An alternative strategy to compare distributions involves training a classifier between them, subse-
quently evaluating its accuracy. These approaches are commonly referred to as classifier two-sample
tests. Among them, C2ST-S (Lopez-Paz & Oquab, 2017) uses the output of the softmax layer as
representation, while the C2ST-L (Cheng & Cloninger, 2022) uses the output logits instead. These
several methods are provable to be encompassed by kernel-based MMD (Liu et al., 2020).
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C MORE DETAILS FOR EXPERIMENT SETTINGS

C.1 DATASETS
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Figure 5: Illustration of statistical distributions of texts in HC3 and XSum.

Table 7: Parameter size of the pretrained LLMs adopted in the experiment.

Model GPT2 GPT-M GPT3-S Neo-S GPT-j-6b GPT4all-j

Parameters 124M 355M 551M 2.7B 6B 6B

Human-written texts (HWTs) in our experiment come from the Human ChatGPT Comparison Corpu
(HC3) dataset (Guo et al., 2023) and the Extreme Summarization (XSum) dataset (Güera & Delp,
2018). Specifically, HC3 contains 24, 322 question-answer pairs in the form of both long short-level
paragraphs or sentences, while XSum contains 226, 711 news articles of a wide variety of domains
from BBC. For paragraph-based detection, we choose paragraphs with more than 5 sentences for
testing, while for sentence-based detection, we choose sentences with more than 5 words since
shorter sentences with fewer than 5 words could be difficult for us to classify into some category.
We also provide statistical distributions of texts from both HC3 and XSum in Figure 5, including the
length of paragraphs, the length of sentences and the number of sentences in one paragraph.

For machine-generated texts (MGTs), we consider commonly used LLMs to generate, including
ChatGPT (OpenAI, 2022), GPT2 series (Radford et al., 2019), GPT3-S (Toan, 2023), GPT-Neo
series (Black et al., 2021), GPT4all-j (Anand et al., 2023), where the model parameters are shown
in Table 7. Since HC3 already provides the texts generated by ChatGPT, we utilize the remaining
models to generate texts according to the first 20 prompts of HWTs. The text generation strategy is
similar to that of Mitchell et al. (2023).

C.2 IMPLEMENTATION DETAILS OF OUR METHOD

The deep kernel ϕf̂ in our MMD-MP is a neural network ϕ equipped with a feature extractor f̂ .

For the feature extractor f̂ , we employ OpenAI’s RoBERTa-based GPT-2 detector model (Liu et al.,
2019), which is the same as that of OpenAI-D (Solaiman et al., 2019), and consider its last hidden
state as the feature of the input text. Each token in this feature extractor has a dimension of 768, and
we set a maximum of 100 tokens per sentence. The network ϕ consists of a hidden-layer transformer
followed by a projector and a multi-layer perceptron (MLP), where the projector reduces the data
dimension from 768 to 512, while the MLP reduces the flattened data dimension from 51, 200 to
300. The data dimension during the whole procedure when feeding a sentence into the kernel follows
the sequence: 100×768→100×512→51, 200→300. Note that we only optimize the network ϕ and
fix the extractor f̂ during training through all our experiments.
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We conduct our experiments using Python 3.9 and Pytorch 2.0 on a server with 1× NVIDIA A800
GPU. We use Adam optimizer (Kingma & Ba, 2015) to optimize the deep kernel parameters. In
Algorithm 1, we set λ to 10−8 and batch size to 200, and the learning rate to 0.00005 on HC3 and
0.00001 on XSum in all experiments. Following the setting of two-sample test in (Liu et al., 2020),
we set the threshold α = 0.05 to determine whether to reject or accept the null hypothesis when
testing for two-sample test. We also offer a text detection demonstration on Hugging Face 1.

C.3 IMPLEMENTATION DETAILS OF BASELINES

For two-sample test, we compare our method with MMD-O, MMD-D (Liu et al., 2020), C2ST-S
(Lopez-Paz & Oquab, 2017) and C2ST-L (Lopez-Paz & Oquab, 2017). The architectures of the
first two baselines are the same as our MMD-MP, and the latter two are classifier two-sample test
methods that use the same architecture as our MMD-MP except for an additional binary classifier.
We run these baselines using the code 2 from Liu et al. (2020). Moreover, we set the learning rates
of these four baselines to be 0.00005, 0.00005, 0.0001 and 0.0001, respectively on HC3, while
0.00001, 0.00001, 0.0005 and 0.0005 on XSum.

For single-instance detection, we compare with metric-based detectors, e.g., Log-Likelihood (So-
laiman et al., 2019), Entropy, Rank (Gehrmann et al., 2019), Log-Rank and DetectGPT (Mitchell
et al., 2023) and model-based detectors, e.g., OpenAI-D (Solaiman et al., 2019) and ChatGPT-D
(Guo et al., 2023). We implement these methods based on the code 3 from He et al. (2023). In addi-
tion, we use cross-entropy loss to optimize a deep neural network as a baseline, called CE-Classifier,
whose model is the same as that of MMD-D and MMD-MP except for an additional binary classifier.
Similar to the training of MMD-D and MMD-MP, we fix the extractor and only update the kernel
network and the binary classifier, where the learning rate is set to 0.0001 on HC3 and 0.0005 on
XSum, respectively.

Through all experiments, we evaluate the methods under the training set with 3, 100 or 1, 000 para-
graphs. During testing, we randomly take 100 paragraphs for two-sample test and 1, 000 sentences
for single-instance detection. For each method, we repeat the experiments 10 times for synthetic
data or 5 times for real-world data to ensure experimental reliability.

C.4 IMPLEMENTATION DETAILS ON SYNTHETIC DATA

For the toy experiment in Section 4.1, we use the network architecture following high-dimensional
Gaussian mixtures (HDGM) settings of Liu et al. (2021). We train the deep kernel using synthetic
data consisting of 200 instances with a learning rate of 0.00005 and perform tests using 1, 000 sets,
each containing 10 instances. Moreover, we consider different µ to represent data with different
variances, i.e., larger µ means larger variance. Furthermore, we use L2-norm of the variance of data
in Q to represent its variance.

1https://huggingface.co/spaces/alwayse/MMD_MP_Text_Dection
2https://github.com/fengliu90/DK-for-TST
3https://github.com/xinleihe/MGTBench
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D IMPACT OF NOT USING VARIANCE IN Ĵ DURING TRAINING

In our MMD-MP, we train the deep kernel kω by minimizing the objective Ĵ in Eqn. (6), which is the
ratio of M̂PPu and σ̂2

H∗
1
. In this experiment, we investigate the impact of variance σ̂2

H∗
1
. To achieve

this, we remove the variance and only minimize M̂PPu instead. Tables 8 and 9 show test power
and AUROC of our method compared with that without using variance in Ĵ on HC3 given 3, 100
processed paragraphs generated by different LLMs. Obviously, MMD-MP demonstrates significant
performance drop when variance optimization is omitted (e.g., 6.62% ↓ of test power and 2.95% ↓
of AUROC on average). This decline emphasizes the significance of incorporating variance σ̂2

H∗
1

within the training process of kernel-based MMD to ensure stability in discrepancy estimation.

Table 8: Impact of using variance σ̂2
H∗

1
in Ĵ during training in terms of test power/100 on HC3 given

3, 100 processed paragraphs in training data.

Method ChatGPT GPT3-S Neo-S ChatGPT
Neo-S

ChatGPT
GPT3-S

MMD-MP (w/o variance) 90.78±1.11 80.74±2.88 69.76±2.70 73.87±3.25 81.09±2.00

MMD-MP (w/ variance) 93.21±1.35 89.36±2.91 79.68±2.42 89.63±1.94 91.96±0.62

Table 9: Impact of using variance σ̂2
H∗

1
in Ĵ during training in terms of AUROC/100 on HC3 given

3, 100 processed paragraphs in training data.

Method ChatGPT GPT3-S Neo-S ChatGPT
Neo-S

ChatGPT
GPT3-S

MMD-MP (w/o variance) 89.39±1.66 88.93±1.32 88.53±1.07 90.06±0.75 92.47±0.45

MMD-MP (w/ variance) 96.20±0.28 95.08±0.32 92.04±0.58 92.48±0.37 94.61±0.22

E IMPACT OF USING MPP FOR TESTING

In our approach, we exclusively employ our proposed MPP during the training of the deep kernel
but calculate MMD as a metric during testing. In this experiment, we investigate the impact of using

MPP during testing. To this end, we replace M̂MD
2

u in Algorithms 2 and 3 with M̂PPu, denoting it
as MMD-MP (MPP), which is distinct from our original method, MMD-MP (MMD). In Table 10,
we synthesize a four-center Gaussian mixture data as used in Section 4.1 with µ∈{0.02×i}20i=0, and
distinguish them from the standard Gaussian distribution N (0d, Id). In Table 11, we directly test the
transferability on unknown texts to further demonstrate the impact of using MPP during testing. The
results in Tables 10 and 11 reveal that the performance of these two strategies is almost identical,
which verifies the claim on the impact of MPP during testing in Section 3.3.

Table 10: Impact of using MPP during testing in terms of test power/100 on Synthetic data with
different µ.

Data (µ) 0.40 0.38 0.36 0.34 0.32 0.30 0.28

MMD-MP (MPP) 99.84±0.07 99.63±0.13 99.22±0.21 98.48±0.43 97.11±0.71 94.74±1.28 90.95±2.19

MMD-MP (MMD) 99.84±0.06 99.64±0.14 99.24±0.26 98.47±0.37 97.20±0.73 94.77±1.21 91.03±2.06

Data (µ) 0.26 0.24 0.22 0.20 0.18 0.16 0.14

MMD-MP (MPP) 85.58±3.13 78.01±4.14 69.11±5.02 59.75±5.34 51.18±5.21 44.60±4.56 39.59±4.22

MMD-MP (MMD) 85.53±3.23 78.13±4.23 69.09±4.94 59.61±5.48 51.17±5.23 44.77±4.61 39.55±4.28

Data (µ) 0.12 0.10 0.08 0.06 0.04 0.02 0

MMD-MP (MPP) 36.03±3.47 33.29±2.85 31.48±2.23 30.17±1.97 29.50±1.98 29.04±1.95 28.87±1.92

MMD-MP (MMD) 35.89±3.51 33.22±2.73 31.43±2.28 30.46±2.10 29.62±2.13 29.17±2.04 28.98±1.96

Table 11: Impact of using MPP during testing in terms of test power/100 on HC3 given 3, 100
processed paragraphs in training data, where the deep kernel is trained by ChatGPT, Neo-S and
GPT3-S but tested on other unknown texts.

Method Neo-L GPT-j-6b GPT4all-j

MMD-MP (MPP) 61.01±2.22 55.34±3.44 74.93±0.36

MMD-MP (MMD) 61.00±2.17 55.64±3.48 74.99±0.39
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F REPLACING kω(X,X ′) WITH kω(Y, Y
′) IN MPP

In this section, we conduct an ablation study on HC3 by replacing the kω(X,X ′) with kω(Y, Y
′) in

our proposed MPP in Eqn. (4) to comprehensively investigate its effectiveness.

We report test power and AUROC in Tables 12 and 13 given 1, 000 processed paragraphs in training
data, where MMD-MP* replaces kω(X,X ′) with kω(Y, Y

′) in MPP when training. We observe that
MMD-MP* has a large performance gain on test power compared with MMD-D when training with
one-population data, but it degrades test power compared with MMD-MP and this gap widens as the
number of population i.e., q increases. This phenomenon arises due to the challenge of optimizing
the terms related to Str

Q when q increases, as suggested by the first conclusion in Section ??.

Moreover, from Table 13, in the context of sentence-based detection, the performance of the MMD-
MP* exhibits a substantial deterioration in terms of AUROC. One potential explanation for this
phenomenon lies in the requirements of single-instance detection, which necessitates a referenced
set Sre

P to calculate the distance between the test instance and the instances in Sre
P . If we optimize

kω(y,y
′) while neglecting optimization of kω(x,x′), it could result in an effective aggregation of

HWT instances while causing the MGT instances to diverge relatively. This could potentially lead
to HWT instances “enveloping” MGT instances in a relatively divergent manner, thereby resulting
in a situation where the distance between those referenced HWT instances and an HWT instance
is likely greater than the distance between them and an MGT instance. Furthermore, even if we
interchange the labels of MGT and HWT instances during testing, i.e., replacing the results in the
penultimate row of Table 13 with their complements to 100, the performance of MMD-MP* still
remains inferior to that of our MMD-MP. In total, training with our proposed MMD-MP achieves
consistent and significant performance improvements regardless of AUROC.

Table 12: Test power/100 on HC3 given 1, 000 processed paragraphs in training data, where MMD-
MP* replaces kω(X,X ′) with kω(Y, Y

′) in MPP when training.

Method ChatGPT GPT3-S Neo-S ChatGPT
Neo-S

ChatGPT
GPT3-S

ChatGPT
GPT2-M
GPT2-S

ChatGPT
Neo-S

GPT3-S

ChatGPT
Neo-S
Neo-L

MMD-D 91.38±2.09 84.01±5.04 72.81±3.23 74.22±4.06 83.29±3.05 62.34±4.00 77.76±2.93 63.15±2.38

MMD-MP* (Ours) 92.32±1.15 84.40±2.97 75.01±3.78 81.11±3.30 85.71±3.36 76.22±3.93 81.00±2.29 75.24±0.76

MMD-MP (Ours) 92.31±2.30 86.34±5.37 76.35±3.51 85.30±1.99 89.05±1.64 79.92±3.88 85.54±1.93 79.69±0.78

Table 13: AUROC/100 on HC3 given 1, 000 processed paragraphs in training data, where MMD-
MP* replaces kω(X,X ′) with kω(Y, Y

′) in MPP when training.

Method ChatGPT GPT3-S Neo-S ChatGPT
Neo-S

ChatGPT
GPT3-S

ChatGPT
GPT2-M
GPT2-S

ChatGPT
Neo-S

GPT3-S

ChatGPT
Neo-S
Neo-L

MMD-D 93.86±0.70 91.50±1.24 81.10±0.83 89.28±0.91 90.28±1.59 85.50±0.85 88.07±0.87 84.20±2.33

MMD-MP* (Ours) 6.63±0.76 10.48±1.70 12.50±1.50 11.46±1.36 11.07±0.92 18.76±1.25 11.57±0.43 18.85±1.05

MMD-MP (Ours) 95.95±0.42 94.28±0.57 89.61±0.44 90.83±0.79 93.46±0.52 87.03±0.59 91.25±0.56 86.93±0.52
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G MORE RESULTS ON OPTIMIZATION MECHANISM OF MMD-D

In this section, we provide more consequences of E(k) in MMD and their variances under two
optimization methods with different q to further verify the conclusions obtained in Section ??.

From Figures 6 (a)-(d), we draw two observations: 1) Both E[kω(x,x′)] and E[kω(y,y′)] exhibit
a generally increasing trend, while E[kω(x,y)] shows relatively minor changes. 2) As the number
of populations q increases, E[kω(y,y′)] becomes smaller than E[kω(x,x′)], with the gap between
them widening. These two observations coincide with those of Figure 2 and Section ??.

From Figures 7 (a)-(d), we obviously find that 1) The variance of MMD is predominantly determined
by the variances of E[kω(x,x′)] and E[kω(y,y′)], while the impact of other terms is relatively
minor. 2) When Str

Q comprises q = 4 or q = 5 populations, E[kω(y,y′)] optimized by MMD-D
has a significant variance, as well as E[kω(x,x′)]. These two phenomena corroborate the third and
fourth observations made in Section ??, respectively.
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(a) E(k), q=1
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(b) E(k), q=2
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(c) E(k), q=4
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Figure 6: E(k) in MMD when training by MMD-D and MMD-MP (ours) with different q.
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(a) Var(MMD-D), q=4
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(b) Var(MMD-MP), q=4
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(c) Var(MMD-D), q=5
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Figure 7: Variances related to MMD terms when training by MMD-D and MMD-MP (ours) with
different q.

H MORE COMPARISON RESULTS OVER UNKNOWN TEXTS ON HC3

In this section, we conduct more experiments on unknown LLM-text to further evaluate our method.
We train the models using texts generated by ChatGPT, GPT-Neo-S and GPT3-S on HC3, and then
test on texts generated by GPT-Neo-L, GPT-j-6b and GPT4all-j. From Tables 14-15, our method
outperforms the baselines by a large margin on test power and AUROC. Specially, our MMD-MP
achieves an absolute improvement of 8.20%∼14.31%↑ on test power over MMD-D. Moreover, our
method outperforms CE-Classifier by 3.44% ↑ and MMD-D by 3.55% ↑ of AUROC on average.
These results further demonstrate the superior transferability of our method.

Table 14: Test Power/100 on unknown LLM-text.

Method Neo-L GPT-j-6b GPT4all-j

C2ST-S 10.99±4.18 8.79±2.78 14.67±2.48

C2ST-L 32.83±6.77 27.81±3.12 40.06±3.59

MMD-O 12.94±1.52 7.71±2.66 17.08±1.14

MMD-D 49.13±4.32 41.33±1.29 66.79±1.39

MMD-MP (Ours) 61.00±2.17 55.64±3.48 74.99±0.39

Table 15: AUROC/100 on unknown LLM-text.

Method Neo-L GPT-j-6b GPT4all-j

CE-Classifier 76.74±1.22 73.43±0.88 81.96±0.89

MMD-O 54.85±0.31 53.85±0.86 52.92±1.33

MMD-D 75.97±0.73 74.21±1.64 81.62±0.61

MMD-MP (Ours) 79.79±0.17 77.73±0.86 84.93±0.51
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I COMPARISON RESULTS ON XSUM

In this section, we provide more experimental results on XSum to further demonstrate the effective-
ness of our proposed MMD-MP.

I.1 TEST POWER ON PARAGRAPH-BASED DETECTION

In this part, we compare our MMD-MP with the state-of-the-art (SOTA) two-sample test method
for detecting MGT on XSum and show test power on paragraph-based detection in Table 16. In this
experiment, we use 1, 000 processed paragraphs to train the model. Experimental results in Table 16
demonstrate that our method significantly outperforms other methods on XSum. Specifically, our
MMD-MP surpasses MMD-D by 5.91 ↑ on average even with one training population. Moreover,
MMD-MP outperforms MMD-D by an average of 9.43% ↑ on test power over the two training
populations and exhibits an 8.54% ↑ increase over the three training populations. These results are
consistent with the results on HC3, demonstrating the effectiveness of our proposed method.

Table 16: Test power/100 on XSum given 1, 000 processed paragraphs in training data.

Method GPT2-M GPT3-S Neo-S GPT2-M
Neo-S

GPT2-M
GPT3-S

GPT2-M
Neo-S

GPT3-S

GPT2-M
Neo-S
Neo-L

C2ST-S 9.04±3.60 38.12±2.64 38.31±2.95 20.37±2.25 22.43±2.39 25.94±3.29 17.67±1.56

C2ST-L 32.64±4.84 73.64±2.03 76.07±1.61 54.51±1.76 54.85±2.46 61.95±2.47 50.62±1.23

MMD-O 8.36±1.61 16.26±2.59 18.76±1.33 12.80±1.57 13.25±2.23 14.25±1.79 10.51±1.35

MMD-D 39.99±3.78 73.58±4.41 76.87±1.63 53.88±2.82 57.33±2.53 63.43±2.10 55.06±2.74

MMD-MP (Ours) 45.51±1.64 80.71±1.29 81.95±2.38 65.81±3.16 64.27±2.80 70.78±1.79 64.80±1.95

I.2 AUROC ON SENTENCE-BASED DETECTION

In this part, we compare our MMD-MP with the SOTA single-instance detection method for detect-
ing MGT on XSum in terms of AUROC given 1, 000 processed paragraphs in training data. From
Table 17, our MMD-MP consistently achieves the highest AUROC performance compared with
other methods. These results further demonstrate the powerful distinguishability of our proposed
method when detecting MGTs.

Table 17: AUROC/100 on XSum given 1, 000 processed paragraphs in training data.

Method GPT2-M GPT3-S Neo-S GPT2-M
Neo-S

GPT2-M
GPT3-S

GPT2-M
Neo-S

GPT3-S

GPT2-M
Neo-S
Neo-L

Likelihood 61.93±1.37 45.97±0.62 43.33±1.36 52.74±1.07 54.46±0.95 50.41±0.75 53.33±0.72

Rank 72.11±0.65 64.81±1.10 63.93±1.34 68.18±0.82 68.72±0.60 66.73±0.63 66.72±0.48

Log-Rank 65.37±1.35 50.97±0.56 49.46±1.39 57.66±1.26 58.78±1.03 55.16±0.93 57.98±0.92

Entropy 54.92±1.51 64.34±1.00 69.85±1.63 61.93±1.11 59.75±1.14 63.47±0.25 61.11±1.15

DetectGPT-d 60.08±0.70 44.41±1.22 40.28±1.03 50.09±0.81 52.41±1.31 48.34±0.61 50.96±0.99

DetectGPT-z 61.39±0.70 44.45±1.20 40.61±1.07 50.97±0.84 53.05±1.17 48.82±0.57 51.90±0.94

OpenAI-D 75.11±0.57 84.56±0.71 86.69±0.12 80.74±0.91 79.91±1.02 82.36±1.07 76.88±0.46

ChatGPT-D 54.20±1.52 50.92±0.99 53.60±1.40 54.40±1.38 53.47±0.98 53.69±0.88 53.71±0.99

CE-Classifier 78.58±1.41 91.36±0.87 92.89±0.35 84.71±0.80 85.61±0.64 87.57±0.30 84.06±0.43

MMD-O 60.29±0.66 65.62±0.92 67.56±0.98 62.01±0.75 64.10±1.52 64.46±0.97 63.14±1.10

MMD-D 72.37±1.16 91.48±0.39 90.01±0.82 82.73±0.73 87.59±0.80 86.54±0.92 82.78±0.68

MMD-MP (Ours) 82.16±0.79 91.73±0.41 93.70±0.45 86.46±0.60 87.79±0.77 88.27±0.71 85.70±0.54

I.3 RESULTS ON CHALLENGING UNBALANCED TRAINING DATA

In this part, we evaluate our method on unbalanced training data containing 2, 000 HWT and 400
MGT training paragraphs over XSum. In Figure 9, we observe that our approach consistently out-
performs baselines in terms of test power and AUROC. Critically, our MMD-MP surpasses the test
power of 4.85%∼9.84% ↑ than MMD-D, highlighting the stability of our method in detecting MGTs
under unbalanced training data scenarios.
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Figure 8: Test power and AUROC on HC3 given 2, 000 HWT and 400 MGT training paragraphs.
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Figure 9: Test power and AUROC on XSum given 2, 000 HWT and 400 MGT training paragraphs.

J DISCUSSIONS AND FUTURE DIRECTIONS

Although we have empirically demonstrated that our MMD-MP has a lower variance of MMD
value than the MMD-D method and provides a superior distributional discrepancy estimation when
training on data from multiple populations, future research could explore the theoretical explanation
of these findings to further justify its effectiveness. Additionally, our findings suggest that even when
the kernel is trained on single-population data, our MMD-MP still outperforms MMD-D in terms of
MGT detection performance. This observation motivates further investigation into the impact of the
variance of data for training deep kernel-based MMD.

Furthermore, in the context of paragraph-based detection, we have not yet considered the inherent
issue of not independent and identically distributed (Non-IID) text data in paragraph, which could
break a basic assumption of the MMD tests (Grosse et al., 2017; Carlini & Wagner, 2017). The
presence of data dependence within the observations can make it appear that two datasets from the
same distribution are tested as different, rendering the test meaningless (Chwialkowski et al., 2014;
Gao et al., 2021). One potential solution to this issue is using a wild bootstrap technique (Leucht
& Neumann, 2013; Chwialkowski et al., 2014) to resample the MMD value during testing. This
approach has already demonstrated success in adversarial detection (Gao et al., 2021), where adver-
sarial examples are probably Non-IID since they are always generated with a pre-trained classifier.
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