
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

On-the-fly Point Feature Representation for Point Clouds
Analysis

Anonymous Authors

ABSTRACT
Point cloud analysis is challenging due to its unique characteristics
of unorderness, sparsity and irregularity. Prior works attempt to
capture local relationships by convolution operations or attention
mechanisms, exploiting geometric information from coordinates
implicitly. These methods, however, are insufficient to describe the
explicit local geometry, e.g., curvature and orientation. In this paper,
we propose On-the-fly Point Feature Representation (OPFR),
which captures abundant geometric information explicitly through
Curve Feature Generator module. This is inspired by Point Feature
Histogram (PFH) from computer vision community. However, the
utilization of vanilla PFH encounters great difficulties when applied
to large datasets and dense point clouds, as it demands consid-
erable time for feature generation. In contrast, we introduce the
Local Reference Constructor module, which approximates the lo-
cal coordinate systems based on triangle sets. Owing to this, our
OPFR only requires extra 1.56ms for inference (65× faster than
vanilla PFH) and 0.012M more parameters, and it can serve as a
versatile plug-and-play module for various backbones, particularly
MLP-based and Transformer-based backbones examined in this
study. Additionally, we introduce the novel Hierarchical Sampling
module aimed at enhancing the quality of triangle sets, thereby en-
suring robustness of the obtained geometric features. Our proposed
method improves overall accuracy (OA) on ModelNet40 from 90.7%
to 94.5% (+3.8%) for classification, and OA on S3DIS Area-5 from
86.4% to 90.0% (+3.6%) for semantic segmentation, respectively,
building upon PointNet++ backbone. When integrated with Point
Transformer backbone, we achieve state-of-the-art results on both
tasks: 94.8% OA on ModelNet40 and 91.7% OA on S3DIS Area-5.

CCS CONCEPTS
• Computing methodologies→ Scene understanding; Com-
puter vision representations.

KEYWORDS
Scene understanding, point clouds representation, local geometry,
classification, semantic segmentation.

1 INTRODUCTION
Point cloud analysis on robotics and automation application [15,
28, 51, 53, 62] has garnered substantial attention in recent years,

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

driven by advancements in sensor technologies like LiDAR and
photogrammetry. This growing interest attributes to two key advan-
tages: 1) It can accurately represent complex objects with numbers
of points. 2) It can be quickly created by using 3D scanning devices.
Compared to 2D image data, point clouds provide a more powerful
3D sparse representation containing abundant geometry and layout
information of the environment.

Deep learning technology [10, 18] has achieved significant im-
provements in various image processing tasks. However, the typical
deep learning technology requires highly regular input data formats.
The unordered and irregular point clouds bring great challenges to
apply the image processing techniques directly. PointNet [30], the
pioneering work of network architecture that directly works with
point clouds, overcomes the challenges of the unordered and irreg-
ular inputs. It uses point-wise shared-MLP followed by a pooling
operation to extract global features from point clouds, but global
pooling operation leads to the loss of valuable local information.
PointNet++ [31] further proposes set abstraction (SA) to process
local regions hierarchically. This step aggregates features from
neighboring points, thereby capturing local information. However,
it still learns from individual points without incorporating local
relationships [21]. This could hinder the model from leveraging
inherent point clouds geometric structures.

Local geometric structures are vital for understanding point
clouds. In an effort to capture this information, some prior works
attempt to learn local relationships from convolutions [14, 20, 54],
attentions [8, 60, 65], or graphs [50, 59, 63]. However, these methods
require huge amount of labelled data to learn local geometry im-
plicitly [33], while getting large amount of labelled 3D annotations
is difficult. Recently, RepSurf [33] has emerged as a novel approach
that explicitly learns geometric information based on umbrella sur-
face [6], which is a triangle set1 with connected triangles formed
by 𝑘 nearest neighbors (𝑘-NNs). While triangle sets are effective
in capturing location and orientation information, they often fall
short in incorporating curvature knowledge, which is essential for
accurate point cloud recognition [2, 42]. Moreover, as depicted in
the supplementary material, in certain 𝑘-NNs, the 𝑘 points may
come from different surfaces of the object. These “noisy points” can
lead to the distortion of 𝑘-NN triangle sets, significantly impacting
the quality of the obtained geometric features [33].

To integrate curvature information explicitly, we draw inspi-
ration from Point Feature Histogram (PFH) [37], a notable hand-
crafted feature descriptor for capturing regional curvature knowl-
edge. PFH exploits the histogram of curvature angles within local
neighborhoods to characterize individual points. As shown in Fig. 1,
these angles are calculated between the normal vector and the local
coordinate system, which demand substantial computing resources.
Nonetheless, many point cloud datasets [7, 48] lack normal vectors

1In this paper, we refer triangle set to a collection of connected or disconnected
triangles. For those connected ones, they form a surface.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

and necessitate additional normal estimation [12, 13, 38]. Normal
estimation poses significant computational challenges, particularly
for dense point clouds, while its accuracy degenerates considerably
for sparse point clouds. These limitations can potentially lead to
the breakdown of vanilla PFH approach, further underscoring the
challenges of its direct integration with deep learning models.

In view of PFH’s potentials and limitations, we explore curvature
information and propose On-the-fly Point Feature Representa-
tion (OPFR), which includes Local Reference Constructor module
and Curve Feature Generator module. This provides an efficient way
to leverage explicit curvature knowledge without the prerequisite
of normal estimation, which inherently relies on the quality of trian-
gle sets. Additionally, we propose the novel Hierarchical Sampling
module to mitigate the distortion of triangle sets that occurs in
the naive 𝑘-NN approach. Our sampling method demonstrates the
robustness against noisy points by employing a hierarchical sam-
pling strategy and a farthest point sampling strategy. As a result, it
can significantly improve the obtained geometric features. These
innovations confer the following properties:

• Curvature Awareness. The usage of curvature information
remains underexplored by prior works. Our proposed OPFR
obtains the capability to explicitly capture not only location
and orientation knowledge, but also curvature geometry via
Curve Feature Generator module.

• Computational Efficiency. Vanilla PFH is computationally
expensive due to normal estimation. Our proposed OPFR
introduces Local Reference Constructor module, which ap-
proximates the local coordinate systems based on triangle
sets to overcome the computational bottlenecks.

• Robustness.Naive𝑘-NN sampling causes distortion of trian-
gle sets, which compromises the obtained geometric features.
In contrast, our proposed OPFR presents Hierarchical Sam-
plingmodule to enhance the quality of triangle sets, ensuring
robust geometric features for noisy points.

Moreover, our OPFR is backbone-agnostic, making it compatible
with different 3D point clouds analysis architectures. We demon-
strate its model-agnostic nature by adapting two representative
backbones: PointNet++ [31] and Point Transformer [65]. It serves
as an efficient plug-and-play module, and achieves substantial per-
formance improvements. Empirical results prove its compatibility
with different backbones. When incorporating with Point Trans-
former backbone, our OPFR achieves state-of-the-art performance
for both point cloud classification and semantic segmentation tasks.

2 RELATEDWORK
2.1 Deep Learning on Point Clouds
Many prior works [4, 22, 27, 30, 31, 61, 64] learn from raw point
clouds via careful network designs. PointNet [30] pioneers this trail
by handling coordinates of each point with shared-MLP and con-
solidating the final representation with a global pooling operation.
However, it is susceptible to a deficiency in preserving local struc-
tures due to the use of global pooling operation. PointNet++ [31] is
an extension of the original PointNet architecture, which applies
PointNet to multiple subsets of point clouds. It further leverages a
hierarchical feature learning paradigm to capture the local struc-
tures. However, PointNet++ still processes points individually in

Figure 1: The workflow of Point Feature Histogram, which
can be decomposed into two steps. Firstly, for one interested
point (pink), each neighboring point (blue) pair is described
via angles. Secondly, for each angle, its distribution over all
point pairs is summarized using histograms. Here, (e1, e2, e3)
is the local coordinate system and n is the normal vector.

each local region, neglecting explicit consideration of relationships
between centroids and their neighbors.

As PointNet++ establishes the hierarchical point clouds analy-
sis framework, the focus of many works has shifted towards the
development of local feature extractors, including convolution-
based [14, 17, 20, 25, 54], attention-based [8, 60, 65], and graph-
based [46, 50, 58, 59, 63] approaches. PointCNN [20] learns a 𝜒-
transformation from input point clouds, which attempts to re-
organize inputs into canonical order. Subsequently, it utilizes vanilla
convolution operations to extract local features. Point Transformer
[65] replaces conventional shared-MLP modules with Transformer
[49] blocks, serving as feature extractors within localized patch
processing. DGCNN [50] utilizes dynamic graph structures to en-
hance feature learning and capture relationships between points.
However, these works rely heavily on the learnability of feature
extractors, potentially missing inherent local shape information.
More recently, RepSurf [33] leverages triangle sets with connected
triangles formed by 𝑘 nearest neighbors (𝑘-NNs), to learn location
and orientation-aware representations from geometric features ex-
plicitly. Although location and orientation features are explicitly
injected into network architecture in RepSurf, the usage of curva-
ture information still remains underexplored. Moreover, RepSurf
relies on naive 𝑘-NNs to produce triangle sets and obtain geometric
features, which are vulnerable to noisy points [33].

2.2 Hand-crafted Designs on Point Clouds
Many works in 3D computer vision attempt to build sophisticated
feature descriptors [35, 37, 39], which help to understand point
clouds through hand-crafted features. Point Feature Histogram
(PFH) [37], one of the feature descriptors, is commonly used in com-
puter vision tasks like object recognition, registration and model
retrieval [11, 19, 36]. It develops point cloud representations by
summarizing the distribution of certain geometric attributes within
a local neighborhood around each point.

We depict the workflow of PFH derivation for one of our inter-
ested point in Fig. 1. The whole process can be decomposed into two
steps. Firstly, for each point pair within 𝑘 nearest neighbors (𝑘-NNs)
of interested point, curvature features are characterized using an-
gles calculated from normal vectors and relative positions. Secondly,
for each angle, we achieve its histogram within 𝑘-NNs. The his-
tograms of different angles are concatenated together, yielding the
final PFH representation. Unfortunately, many point cloud datasets
[7, 48] collected in real-world scenarios lack normal vectors, and

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

On-the-fly Point Feature Representation for Point Clouds Analysis ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: Illustration of On-the-fly Point Feature Representation (OPFR) learning paradigm. The generation of geometric
features consists of three key modules:Hierarchical Sampling, Local Reference Constructor (LRCon) and Curve Feature Generator
(CFGen). These geometric features are further fed into shared-MLP followed by pooling operation, constituting the final OPFR.

estimating normal vectors [13, 52] for sparse point clouds often
leads to significant deviations from ground truth. Nonetheless, PFH
calculation involves establishing local coordinate systems and con-
structing curvature features, which is computationally expensive.
As a result, the practical application of vanilla PFH is limited.

3 METHODOLOGY
The pipeline of On-the-fly Point Feature Representation (OPFR)
is depicted in Fig. 2, and we illustrate the OPFR generating process
for the right corner of table (highlighted in pink), which is one
of our interested points. Firstly, we propose Hierarchical Sampling
module, which takes each point in the point cloud as input and
outputs several clusters (highlighted in blue) and corresponding cen-
troids (highlighted in orange). This hierarchical sampling strategy
improves the quality of triangle set for each point, thereby facilitat-
ing the development of subsequent geometric features. Then, for
each point pair within the clusters, we design Curve Feature Gen-
erator module to generate geometric features, including location,
orientation, and curvature. The inclusion of explicit curvature in-
formation allows us to more effectively capture the local geometry
surrounding these point pairs. To enhance the efficiency and enable
on-the-fly processing, we present Local Reference Constructor mod-
ule. It approximates a local coordinate system (highlighted in red)
for each point pair using adjacent points from triangle sets. Lastly,
these obtained geometric features are further fed into shared-MLP
followed by a pooling operation, constituting our final OPFR rep-
resentation r𝑖 . The resultant OPFR representation r𝑖 along with
coordinate x𝑖 can be directed into various point clouds analysis
backbones, e.g., PointNet++ [31] and Point Transformer [65], for
end-to-end training.

3.1 Hierarchical Sampling
As mentioned earlier, the connected triangle sets produced by

naive 𝑘 nearest neighbors (𝑘-NNs) are susceptible to noisy points
[33], leading to significant distortion. Given that our Local Reference

Algorithm 1 Pseudo-code of Hierarchical Sampling
def Hierarchical_Sampling(pc, k1, k2, k3):

k1: number of nearest neighbors for each point
k2: number of centroids within k1 nearest neighbors
k3: number of neighbors for each selected centroid
pc: input point clouds # [B, N, 3]
nearest_neighbors = kNN(inputs=pc, k=k1)

[B, N, k1, 3]
selected_centroids = FPS(inputs=nearest_neighbors, k=k2)

[B, N, k2, 3]
surface_points = kNN(inputs=selected_centroids, k=k3)

[B, N, k2, k3, 3]
return surface_points

Constructor module inherently relies on triangle sets to approxi-
mate local reference frames, we propose the novel Hierarchical
Sampling module to alleviate this distortion issue. For each indi-
vidual point, our Hierarchical Sampling module generates several
clusters, forming a triangle set. Specifically, we firstly conduct 𝑘-NN
algorithm to select the 𝑘1 nearby points (highlighted in purple). Sec-
ondly, we utilize farthest point sampling [5] algorithm to identify
𝑘2 surface centroids (highlighted in orange) from these 𝑘1 nearby
points. Lastly, for each centroid, we retrieve its 𝑘3 nearest neigh-
bors (highlighted in blue). The selected 𝑘3 neighbors are used to
further develop geometric features. The detailed implementation is
presented in Algorithm 1.

As illustrated in Fig. 2, Hierarchical Sampling module is designed
to decouple the right corner of the table into 𝑘2 distinct clusters (e.g.,
table top and table leg). These 𝑘2 clusters exhibit simpler geometric
structures, allowing resultant triangle sets to better approximate
the original local surface. Therefore, compared to the naive 𝑘-NN
approach, our hierarchical sampling scheme effectively releases
the distortion issue of triangle sets, and ensures the robustness
against original noisy points. As a result, it greatly enhances the
development of subsequent geometric features. We provide addi-
tional visualization examples comparing triangle sets generated by
Hierarchical Sampling and those produced by 𝑘-NN sampling in the
supplementary material.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

3.2 Local Reference Constructor
A local reference frame is a local system of Cartesian coordinates
at each point [26], which provides a reference for understanding
local structures. Denote a point set as X = {x1, x2, · · · , x𝑁 } ⫅
R𝑁×3, normal vector set asN = {n1, n2, · · · , n𝑁 } ⫅ R𝑁×3. Assume
x𝑖 as our interest point, and the objective is to extract geometric
features for point x𝑖 . Then, the local reference frame {u, v,w} [37]
for {(x𝑖 , x𝑗), 𝑖 ≠ 𝑗} is defined as:

u = n𝑖

v =
(x𝑗 − x𝑖) × u

| | (x𝑗 − x𝑖) × u| |
w =

u × v
| |u × v| |

. (1)

Although Equ. 1 achieves the construction of local reference frames,
it comes with two major problems. Firstly, it relies on normal vec-
tors, which are often unavailable in many benchmarks [7, 48] and
real-life scenarios. Despite normal estimation [13] is feasible, its
computational cost escalates significantly with dense point clouds,
and its accuracy diminishes considerably with sparse point clouds.
Secondly, it involves multiple cross-product operations sequen-
tially, which cannot be effectively parallelized in terms of tensor
operations. This leads to the inevitable computational overheads.

To circumvent normal estimation and overcome the computa-
tional bottlenecks, we design approximated local reference frames
through Local Reference Constructor (LRCon) module. Within each
cluster generated by Hierarchical Sampling module, we establish
point pairs between centroid and neighboring points. For each
point pair, LRCon module leverages two adjacent neighbors along
with their cross-product to serve as the approximate local reference
frames. Denote number of neighbors as 𝐾 , neighbors of centroid
x𝑖 as X𝑖 = {x𝑖1, x𝑖2, · · · , x𝑖𝐾 } ⊆ R𝐾×3. Based on this setting, we
can construct the approximated local reference frame {û, v̂, ŵ} for
point pair {(x𝑖 , x𝑖 𝑗), 𝑗 = 1, 2, · · · , 𝐾}, which is defined as:

û =
x+
𝑖 𝑗
− x𝑖

| |x+
𝑖 𝑗
− x𝑖 | |

v̂ =
x−
𝑖 𝑗
− x𝑖

| |x−
𝑖 𝑗
− x𝑖 | |

ŵ =
û × v̂

| |û × v̂| |

, (2)

where x+
𝑖 𝑗
, x−
𝑖 𝑗
are the most adjacent points for x𝑖 𝑗 in neighbor setX𝑖

clockwise and counterclockwise. To maintain the consistency of lo-
cal frame orientation, we apply clockwise cross-product [33] to com-
pute ŵ. When setting up the approximated local reference frames,
the LRCon module basically finds the adjacent neighbors from the
corresponding triangles in the triangle sets, i.e., Δ1 = {x𝑖 , x𝑖 𝑗 , x+𝑖 𝑗 }
and Δ2 = {x𝑖 , x𝑖 𝑗 , x−𝑖 𝑗 }. As mentioned earlier, the Hierarchical Sam-
pling module can boost the quality of triangle sets, ensuring the
robustness against noisy points. This implicitly guarantees the reli-
ability of the approximated local reference frames.

This approximation scheme allows us to establish local reference
frames that are independent with normal vectors of point clouds. By
re-ordering these neighbors inX𝑖 based on their projected angles in
𝑥𝑦-plane, we can efficiently derive approximated reference frames
through tensor operations. Notably, with the integration of the

Figure 3: Local shape comparison between a flat (left) and a
skewed (right) 2D curve around point 𝑥 = 1. Black represents
the original curve, blue represents 1-order Taylor approxi-
mation, and red represents 2-order Taylor approximation.

LRCon module, our OPFR only requires an additional 1.56ms for
inference, making it 65× faster than vanilla PFH. Furthermore,
since LRCon module eliminates the need of normal estimation, it is
compatible with point clouds of varying densities.

3.3 Curve Feature Generator
We propose to approximate the local curve at point (𝑡, 𝑓 (𝑡)) by
excluding high-order derivatives using Taylor Series [43]:

𝑓 (𝑥) ≈ 𝑓 (𝑡)︸︷︷︸
location

+ 𝑓 ′ (𝑡)︸︷︷︸
orientation

(𝑥 − 𝑡) + 1
2
𝑓 ′′ (𝑡)︸︷︷︸

curvature

(𝑥 − 𝑡)2 . (3)

Intuitively, the derivatives 𝑓 ′ (𝑡) and 𝑓 ′′ (𝑡) can reflect how the
local curve is oriented and skewed near point (𝑡, 𝑓 (𝑡)) respectively.
From this Taylor approximation, it can be observed that, 1-order
derivative information is inadequate for accurately characterizing
local curves. To illustrate this point, consider the 2D example shown
in Fig. 3. In the left figure, the curve may appear relatively flat
compared to the right figure. However, both curves share the same
normal vector (1-order derivative) at point 𝑥 = 1, implying that
these two points possess identical orientation. Therefore, if we
neglect 2-order derivative, it would lead to confusion between
these two distinct curves. In fact, these curves exhibit significant
differences in how surfaces curve at point 𝑥 = 1.

To exploit 2-order curvature information, we propose the Curve
Feature Generator (CFGen) module. This module processes input
point pairs along with their approximated local reference frames,
generating geometric features that encompass location, orientation,
and curvature. Denote the approximate local reference frames for
(x𝑖 , x𝑖 𝑗) as {û𝑖 𝑗 , v̂𝑖 𝑗 , ŵ𝑖 𝑗 }. The location and orientation can be natu-
rally [33] characterized by relative position x′

𝑖 𝑗
= x𝑖 𝑗 −x𝑖 and frame

cross-product n𝑖 𝑗 = û𝑖 𝑗×v̂𝑖 𝑗 , respectively. Furthermore, we propose
the curvature proxy p𝑖 𝑗 for point clouds, which is an approximation
of curvature definition [40] from differential geometry. We provide
the theoretical analysis for this part in the supplementary material.
The curvature proxy p𝑖 𝑗 is defined as:

p𝑖 𝑗 =
1

| |x′
𝑖 𝑗
| | · arccos([û𝑖 𝑗 ; v̂𝑖 𝑗 ; ŵ𝑖 𝑗] ⊙

x′
𝑖 𝑗

| |x′
𝑖 𝑗
| |), (4)

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

On-the-fly Point Feature Representation for Point Clouds Analysis ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 1: Performance of classification on ModelNet40 and ScanObjectNN. We evaluate different approaches in terms of overall
accuracy (OA, %), mean per-class accuracy (mAcc, %), number of parameters (#Params) and FLOPs. Bold means outperforming
other models on corresponding dataset. Green means an improvement from our OPFR compared with the original backbone.

Method Input ModelNet40 ScanObjectNN #Params FLOPs†OA mAcc OA mAcc
PointNet [30] 1k pnts 89.2 86.0 68.2 63.4 3.47M 0.45G
DGCNN [50] 1k pnts 92.9 90.2 78.1 73.6 1.82M 2.43G
KPConv [47] ∼7k pnts 92.9 - - - 14.3M -
MVTN [9] multi-view 93.8 92.0 82.8 - 4.24M 1.78G
RPNet [34] 1k pnts∗ 94.1 - - - 2.70M 3.90G
CurveNet [57] 1k pnts 94.2 - - - 2.14M 0.66G
RepSurf [33] 1k pnts 94.4 91.4 84.3 81.3 1.483M 1.77G
RepSurf◦ [33] 1k pnts - - 86.0 83.1 6.806M 4.84G
PointMLP [24] 1k pnts 94.1 91.5 85.4 83.9 12.6M 31.4G
PointTrans. V2 [55] 1k pnts∗ 94.2 91.6 - - - -
PointNeXt [32] 1k pnts 93.2 90.8 87.7 85.8 4.5M 6.5G
SPoTr [29] 1k pnts 93.2 90.8 88.6 86.8 3.3M 12.3G
PointNet++ [31] 1k pnts 90.7 88.4 77.9 75.4 1.475M 1.7G
PointNet++ & OPFR (ours) 1k pnts 94.5 ↑3.8 91.6 ↑3.2 85.7 ↑7.8 83.8 ↑8.4 1.487M 1.85G
PointNet++ & OPFR◦ (ours) 1k pnts 94.6 ↑3.9 91.8 ↑3.4 88.5 ↑10.6 86.6 ↑11.2 8.42M 5.9G
PointTrans. [65] 1k pnts 93.7 90.6 82.3 80.7 5.187M 0.29G
PointTrans. & OPFR (ours) 1k pnts 94.8 ↑1.1 92.0 ↑1.4 88.1 ↑5.8 86.3 ↑5.6 5.190M 0.33G

∗: w/ normal vector. ◦: w/ double channels and deeper networks. †: FLOPs from 1024 input point cloud points.

Figure 4: Three-view drawing of OPFR values for an airplane.
We visualize the OPFR value for 1-st channel. Blue indicates
small OPFR value and red indicates large OPFR value.

where ⊙ is the entry-wise dot product. Note that, curvature proxy
p𝑖 𝑗 approximates the limit definition of curvature from differential
geometry, making it inherently curvature-aware. Intuitively, p𝑖 𝑗
effectively captures how the surface is curved in three reference
frames {û𝑖 𝑗 , v̂𝑖 𝑗 , ŵ𝑖 𝑗 } in terms of normalized angles.

3.4 On-the-fly Point Feature Representation
Point Feature Histogram (PFH) [37] utilizes histogram operations to
aggregate regional geometric features and generate final representa-
tion for each point. We argue that, these predefined transformation
functions are task-agnostic, which making the final representa-
tions not fitting well for specific tasks. To this end, motivated by
PointNet++ [31], we employ shared-MLP to learn the final repre-
sentations from point clouds. Therefore, the proposed OPFR repre-
sentation r𝑖 for point x𝑖 is defined as:

r𝑖 = A({F ([x′𝑖 𝑗 ;n𝑖 𝑗 ; p𝑖 𝑗]) : 𝑗 = 1, 2, · · · , 𝐾}), (5)

where A is a pooling operation (e.g., sum), F is a shared-MLP, and
[x′
𝑖 𝑗
;n𝑖 𝑗 ; p𝑖 𝑗] are explicit geometric features obtained from CFGen

module for one point pair (x𝑖 , x𝑖 𝑗). By feeding OPFR representation
r𝑖 along with coordinate x𝑖 into the backbone, the whole learning
process can be achieved through end-to-end training.

In Fig. 4, the three-view drawing depicts the OPFR values of
1-st channel for an airplane. The blue hues represent areas with
smaller OPFR values, typically the airplane body, while the red hues
indicate larger OPFR values, primarily associated with the airplane
wings. This color differentiation underlines our OPFR is sensitive to
curvature variation across the airplane’s structure, demonstrating
the curvature-aware property of OPFR. We provide more visual-
ization examples in the supplementary material. Additionally, it
is important to highlight that, as shown in Fig. 5, our OPFR can
outperform vanilla PFH by a large margin with the help of learn-
able shared-MLP. Furthermore, the introducing of shared-MLP only
increases 0.012M learnable parameters, which is approximately
negligible for most popular backbones [31, 65].

4 EXPERIMENTS
We evaluate our OPFR on two primary tasks: point cloud classi-
fication and semantic segmentation. We choose two representa-
tive point cloud understanding models, PointNet++ [31] and Point
Transformer [65], as our backbones to evaluate the effectiveness
and compatibility of OPFR representations across different back-
bone architectures. Additionally, we carry out ablation studies to
demonstrate the effectiveness of our OPFR network designs and
quantitatively evaluate the efficiency and quality of OPFR feature
representations. Moreover, due to space constraints, we present
qualitative results in the supplementary material.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: Performance of semantic segmentation on S3DIS 6-fold and S3DIS Area-5 benchmarks.We evaluate different approaches
in terms of mean Intersection over Union (mIoU, %), mean per-class accuracy (mAcc, %), overall accuracy (OA, %), number
of parameters (#Params) and FLOPs. Bold means outperforming other models on corresponding dataset. Green means an
improvement from our OPFR compared with the original backbone.

Method S3DIS 6-fold S3DIS Area-5 #Params FLOPs†mIoU mAcc OA mIoU mAcc OA
PointNet [30] 47.6 66.2 78.5 41.1 48.9 - 1.7M 4.1G
KPConv [47] 70.6 79.1 - 67.1 72.8 - 14.9M -
RPNet [34] 70.8 - - - - - 2.4M 5.1G
RepSurf [33] 74.3 82.6 90.8 68.9 76.0 90.2 0.976M 6.7G
PointTrans. V2 [55] - - - 71.6 77.9 91.1 - -
PointNeXt-B [32] 71.5 - 88.8 67.3 - 89.4 3.8M 8.9G
PointNeXt-XL [32] 74.9 - 90.3 70.5 - 90.6 41.6M 84.8G
Superpoint Trans. [41] 76.0 85.5 90.4 68.9 77.3 89.5 0.21M -
ConDaFormer∗ [3] - - - 72.6 78.4 91.6 - -
PointNet++ [31] 59.9 66.1 87.5 56.0 61.2 86.4 0.969M 7.2G
PointNet++ & OPFR (ours) 74.6 ↑ 14.7 83.0 ↑ 16.9 90.5 ↑ 3.0 69.1 ↑ 13.1 76.9 ↑ 15.7 90.0 ↑ 3.6 0.979M 7.5G
PointTrans. [65] 73.5 81.9 90.2 70.4 76.5 90.8 7.768 M 5.8G
PointTrans. & OPFR (ours) 76.9↑ 3.4 85.6 ↑ 3.7 92.0↑ 1.8 72.6 ↑ 2.2 78.6 ↑ 2.1 91.7 ↑ 0.9 7.771M 6.4G

∗: w/o test-time-augmentation. †: FLOPs from 15000 input point cloud points.

Table 3: Semantics segmentation results for each class on S3DIS Area-5. We evaluate model performance in terms of mean
accuracy (mIoU, %) for each semantic class. Bold means top improved semantic classes in terms of mIoU. Green means an
improvement from our OPFR compared with the original backbone.

Method ceiling floor wall beam column window door chair table bookcase sofa board clutter mIoU
PointNet++ [31] 91.47 98.18 82.19 0.00 17.99 57.75 64.64 79.70 87.82 67.11 69.76 65.29 50.79 56.0
PointNet++ & OPFR (ours) 93.13 98.37 85.38 0.00 41.50 ↑ 23.51 62.32 71.56 80.37 89.86 77.25 72.67 68.18 57.12 69.1
PointTrans [65] 93.71 98.00 86.78 0.00 36.35 64.79 73.40 83.30 89.84 68.80 73.32 74.33 58.17 70.4
PointTrans. & OPFR (ours) 93.68 98.11 88.20 0.00 55.16 ↑ 18.81 69.02 73.53 83.68 90.43 75.57 79.71 75.67 62.06 72.6

Implementation details. For the Hierarchical Sampling module,
we set 𝑘1 = 20 and 𝑘2 = 4 to control the number of candidate cen-
troids and selected centroids respectively. The shared-MLP consists
of three layers with 30 OPFR dimensions (r𝑖 ∈ R30), followed by a
sum pooling operation. These are achieved via empirical studies,
which will be further discussed in Sec. 4.3. Following RepSurf [33],
we set 𝑘3 = 8, considering the trade-off between performance and
efficiency. We use CrossEntropy loss and label smoothing [44] tech-
niques with a ratio of 0.3 for both tasks. We provide more details
about implementation in the supplementary material.

4.1 Classification
We evaluate our OPFR on two commonly used benchmarks for point
cloud classification: ModelNet40 [56] and ScanObjectNN [48].
Experimental setups. Following RepSurf [33], we implement two
versions to integrate OPFR with PointNet++ [31], one standard
version and one scaled-up version. The scaled-up version doubles
the channels of standard version and exploits deeper networks. If
not specified, we default to the standard version. We also apply
the channel de-differentiation design [33] when integrated with
PointNet++. We opt Adam [16] optimizer with default parameters
to train our models for 250 epochs with a batch size of 64 and
initial learning rate of 0.002. We apply exponential learning rate

decay scheme with decay rate of 0.7. The whole training and testing
process are conducted through one NVIDIA Quadro P5000 16GB
GPU. For evaluation metrics, we use overall accuracy (OA) and
mean accuracy within each classes (mAcc). For efficiency metrics,
we use number of learnable parameters (#Params) and floating point
operations (FLOPs). For a fair comparison, we calculate FLOPs from
1024 input point clouds, and utilize single-scale grouping (SSG) set
abstraction [31] for all PointNet++ based [24, 31–33] methods.
Classification on ModelNet40. ModelNet40 [56] is one synthetic
object classification benchmark, which contains 9843 training sam-
ples and 2468 testing samples. They contain 100 unique CADmodels
from 40 object categories. The experimental results are presented
in Tab. 1. The results reveal that our OPFR significantly improves
PointNet++ [31] backbone by 3.8% OA and 3.2% mAcc, with just
an additional 0.012M more parameters and 0.15G more FLOPs. The
scaled-up OPFR further attains a slight improvement of 0.1% OA
and 0.2% mAcc. Moreover, when integrated with transformer-based
backbone, Point Transformer [65], our OPFR achieves the state-of-
the-art 94.8% OA and 92.0% mAcc (+1.1% OA and +1.4% mAcc).
Classification on ScanObjectNN. ScanObjectNN [48] is a chal-
lenging, real-world object classification benchmark. It is composed
of 2902 point cloud samples from 15 categories, including occlusion
and background. Following the typical protocol [29, 31, 33], we

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

On-the-fly Point Feature Representation for Point Clouds Analysis ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

verify our OPFR on the hardest variant (PB_T50_RS_variant) of
ScanObjectNN. In Tab. 1, the proposed OPFR achieves 85.7% OA
and 83.8% mAcc (+7.8% OA and +8.4% mAcc) on PointNet++ back-
bone, which outperforms RepSurf [33] by a large margin of 1.4% OA
and 2.5% mAcc with comparable model size. Our result surpasses
PointMLP [24] by 0.3% OA as well, and utilizes 9× fewer parameters.
Furthermore, we scale up our proposed OPFR and achieve 88.5% OA
and 86.6% mAcc, which demonstrates a superiority of 0.8% OA and
0.8% mAcc compared with state-of-the-art MLP-based backbone,
PointNeXt [32]. Our result is also comparable to prior state-of-
the-art transformer-based backbone, SPoTr [29], with around 2.1×
fewer FLOPs. When integrated with Point Transformer, our OPFR
attains a notable improvement of 5.8% OA and 5.6% mAcc, which
only increases 0.003M more parameters and 0.04G more FLOPs.

4.2 Semantic Segmentation
We evaluate our proposed OPFR representations on a challenging
benchmark, S3DIS [1], for semantic segmentation task.
Experimental setups.When integrated with PointNet++ [31], we
apply the channel de-differentiation design [33]. We opt AdamW
[23] with default parameters to train ourmodels for 100 epochs with
a batch size of 8 and initial learning rate of 0.006. Here, we employ
multi-step learning rate decay scheme and decay at [60,80] epochs
with a decay rate of 0.1. The whole training and testing process are
conducted through two NVIDIA A40 48GB GPU. For evaluation
metrics, we use mean of classwise intersection over union (mIoU),
mean of classwise accuracy (mAcc), and overall accuracy (OA).
For a fair comparison, we calculate FLOPs from 15000 input point
clouds [32], and leave test-time-augmentation [3] in absence.
Semantic Segmentation on S3DIS. S3DIS [1] encompasses 271
scenes which are distributed across 6 indoor areas, with each indi-
vidual point being classified into one of 13 semantic labels. Follow-
ing a common protocol [31, 45], we evaluate the presented approach
in two modes: (a) Area-5 is withheld for training and is used for
testing, and (b) 6-fold cross-validation. In Tab. 2, our proposed
OPFR considerably enhances PointNet++ [31] by 14.7%/16.9%/3.0%
(mIoU/mAcc/OA) on S3DIS 6-fold benchmark. Our result is com-
parable to PointNeXt-XL [32], with around 40× fewer parameters
and 11× fewer FLOPs. When integrated with Point Transformer
[65], the performance of OPFR exceeds previous state-of-the-art
Superpoint Transformer [41] by 0.9%/0.1%/1.6% (mIoU/mAcc/OA)
for S3DIS 6-fold. Meanwhile, on S3DIS Area-5, our OPFR attains
mIoU/mAcc/OA of 72.6%/78.6%/91.7% (+2.2%/+2.1%/+0.9%), surpass-
ing the prior state-of-the-art ConDaFormer [3].

Furthermore, as shown in Tab. 3, we present quantitative seg-
mentation results for each semantic class on S3DIS Area-5 in terms
of mIoU. In Tab. 3, the top performance gain comes from the most
challenging columns semantic class for both PointNet++ and Point
Transformer backbones. Within all classes columns exhibit a dis-
tinct columnar structure, which consists of two or three planes in
S3DIS dataset. This multi-plane structure can be effectively cap-
tured by different clusters generated from the proposedHierarchical
Sampling module, which facilitates the recognition of column pat-
tern with greater ease. Furthermore, we provide qualitative results
in the supplementary material.

Table 4: Ablation study on the effectiveness of different mod-
ules. We conduct experiments on ScanObjectNN dataset.

Method OA mAcc
PointNet++ & OPFR (ours) 85.68 83.81
(−) Hierarchical Sampling strategy -1.17 -0.91
(−) Curve Feature Generator -2.02 -1.76
(−) shared-MLP -1.53 -1.34

Table 5: Ablation study on the designs of OPFRnetowrk archi-
tecture. We conduct experiments on ScanObjectNN dataset.
(#(OPFR dims): number of OPFR dimensions, #(layers): num-
ber of shared-MLP layers)

Pooling BN #(OPFR dims) #(layers) OA
max ✓ 30 3 85.47
avg ✓ 30 3 85.55
sum ✓ 30 3 85.68
sum ✗ 30 3 85.32
sum ✓ 30 3 85.68
sum ✓ 10 3 85.32
sum ✓ 30 3 85.68
sum ✓ 64 3 85.44
sum ✓ 128 3 84.54
sum ✓ 30 1 83.34
sum ✓ 30 2 84.89
sum ✓ 30 3 85.68
sum ✓ 30 4 85.42
sum ✓ 30 5 84.50

4.3 Ablation Study
We ablate some critical designs of our standard OPFR with Point-
Net++ [31] backbone on ModelNet40 [56] and ScanObjectNN [48]
dataset for an insightful exploration.
Effectiveness of different OPFR modules. Shown in Tab. 4, as
we remove Hierarchical Sampling module, Curve Feature Generator
module, and 3-layer shared-MLP, the overall accuracy (OA) de-
creases by 1.17%, 2.02%, 1.53% and mean accuracy (mAcc) drops by
0.91%, 1.76%, 1.34% respectively. From this empirical study, we can
confirm that, explicit geometric features are crucial for 3D object
understanding, and shared-MLP is necessary as well to enhance
the semantics of obtained geometric features. Furthermore, due to
the use of Hierarchical Sampling module, we can effectively release
the distortion of triangle sets, thereby improving the quality of
geometric features. Additionally, we argue that, the Hierarchical
Sampling module can be applied to RepSurf [33] to handle the dis-
torted triangle sets from 𝑘 nearest neighbors. Due to space limits,
we provide the ablation study in the supplementary material.
Designs of OPFR network architecture. We ablate the designs
of OPFR network architecture in terms of pooling operation A
and shared-MLP F in Tab. 5. Empirical results demonstrate that,
usage of summation pooling, batch normalization, and three-layer
shared-MLP with 30 OPFR dimensions outperforms other options.
From our experiments, we hypothesize that, the network tends to

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 6: Ablation study on the hyper-parameters sensitivity.
We evaluate the overall accuracy (OA) on ScanObjectNN for
different combinations of hyper-parameters 𝑘1 and 𝑘2.

OA 𝑘1 = 10 𝒌1 = 20 𝑘1 = 40 𝑘1 = 60
𝑘2 = 2 85.31 85.52 85.41 85.32
𝒌2 = 4 85.43 85.68 85.55 85.42
𝑘2 = 6 85.51 85.66 85.51 85.40
𝑘2 = 8 85.47 85.61 85.52 85.46

Table 7: Ablation study on the efficiency of OPFR representa-
tions. We test the speed of all methods with one NVIDIA A40
GPU. (#(Extra Params): number of extra parameters, Infer
Speed: inference duration per input sample)

Method #(Extra Params) Infer Speed
PointNet++ & PFH [35] - 102ms
PointNet++ & RepSurf [33] 0.008M 1.12ms
PointNet++ & OPFR (ours) 0.012M 1.56ms

encounter overfitting issues as we increase the number of OPFR
dimensions and shared-MLP layers.
Sensitivity of hyper-parameters. In Hierarchical Sampling mod-
ule, we are required to determine number of surface centroid can-
didates 𝑘1, number of selected surface centroids 𝑘2 and number of
neighbors 𝑘3. Following RepSurf [33] design, we fix 𝑘3 equal to 8 to
construct OPFR and explore the relation between 𝑘1 and 𝑘2 in terms
of overall accuracy (OA) in Tab. 6. Generally speaking, our OPFR
is relatively insensitive to the choices of hyper-parameters. As the
value of 𝑘1 increases, there is an initial rise in overall accuracy,
which is subsequently followed by a slight decline. We hypothe-
size that, this phenomenon is attributed to the inherent trade-off
between exploration and concentration. When 𝑘1 is small, we are
unable to capture the local region of point clouds effectively. Con-
versely, when 𝑘1 is too large, we move far from the original point,
leading to the deviation of obtained geometric features. Further-
more, our OPFR is insensitive to the change of 𝑘2. We hypothesize
that, this behavior primarily stems from these 𝑘2 clusters may over-
lap with each other. To avoid computation overheads, we consider
(𝑘1 = 20, 𝑘2 = 4) as an ideal choice.
Efficiency of OPFR representations. Shown in Tab. 7, we evalu-
ate the efficiency of our OPFR representations in terms of number of
extra parameters and inference speed. Empirically, although vanilla
PFH introduces no extra learnable parameters, it requires 102ms for
each input sample to generate the final representation, rendering it
impractical for online network training. The main computational
bottlenecks lie in the estimation of point clouds normal vectors
[13, 52]. We propose novel Local Reference Constructor module to
eliminate the needs of normal estimation and overcome the com-
putational overheads. We achieve an impressive inference speed of
1.56ms (65× faster) with a marginal increase of 0.012M number of
parameters. Therefore, OPFR can serve as a versatile plug-and-play
module for various backbones. Furthermore, the efficiency of our
OPFR is close to the previous state-of-the-art plug-and-play feature

Figure 5: Ablation study on the quality of OPFR represen-
tations. We evaluate the feature quality in terms of overall
accuracy (OA, %) and mean accuracy (mAcc, %). White means
an improvement from PointNet++ backbone.

representation RepSurf [33], with only 0.004M more parameters
and 0.44ms more inference time.
Quality of OPFR representations. Shown in Fig. 5, we compare
the performance between PFH [37], RepSurf [33], and proposed
OPFR using PointNet++ [31] backbone. All of them are injected to
PointNet++ as extra features. By incorporating vanilla PFH, overall
accuracy (OA) and mean accuracy (mAcc) are enhanced by 2.0%
and 2.6% on ModelNet40, 4.7% and 5.3% on ScanObjectNN, empha-
sizing the effectiveness of regional curvature knowledge. This gain
further escalates to 3.8% and 3.2% on ModelNet40, 7.8% and 8.4% on
ScanObjectNN in OA and mAcc respectively, when equipped with
the proposed OPFR. This demonstrates the significance of shared-
MLP, which enriches the obtained geometric features. Furthermore,
compared with the previous state-of-the-art feature representation
RepSurf, our OPFR outperforms it dramatically on ScanObjectNN,
with a considerable margin of 1.4% and 2.5% higher OA and mAcc.
We hypothesize that, this phenomenon is attributed to the uses of
explicit curvature knowledge and robust sampling strategy, which
are underexplored in RepSurf.

5 CONCLUSION
We propose the novel plug-and-play module On-the-fly Point
Feature Representation (OPFR) for various backbones. It explic-
itly captures local geometry including location, orientation and
curvature through Curve Feature Generator module. We further
develop the Local Reference Constructor module to improve effi-
ciency and enable on-the-fly processing. Additionally, we introduce
the Hierarchical Sampling module to mitigate the distortion of tri-
angle sets that occurs in the naive 𝑘 nearest neighbors sampling,
thereby enhancing the robustness of obtained geometric features.
We evaluate the proposed OPFR on ModelNet40 [56] and ScanOb-
jectNN [48] benchmarks for point cloud classification task, S3DIS
[1] for semantic segmentation task. For both PointNet++ [31] and
Point Transformer [65] backbones, our presented OPFR achieves the
state-of-the-art results on different benchmarks. The comprehen-
sive empirical results demonstrate the backbone-agnostic nature
of our proposed method. We believe that our work can prompt
consideration of how to better leverage geometric knowledge in
network architecture designs for understanding point clouds.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

On-the-fly Point Feature Representation for Point Clouds Analysis ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, Ioannis Brilakis, Martin

Fischer, and Silvio Savarese. 2016. 3d semantic parsing of large-scale indoor
spaces. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 1534–1543.

[2] Thomas Czerniawski, Mohammad Nahangi, Carl Haas, and Scott Walbridge. 2016.
Pipe spool recognition in cluttered point clouds using a curvature-based shape
descriptor. Automation in Construction 71 (2016), 346–358.

[3] Lunhao Duan, Shanshan Zhao, Nan Xue, Mingming Gong, Gui-Song Xia, and
Dacheng Tao. 2024. ConDaFormer: Disassembled Transformer with Local Struc-
ture Enhancement for 3D Point Cloud Understanding. Advances in Neural Infor-
mation Processing Systems 36 (2024).

[4] Yueqi Duan, Yu Zheng, Jiwen Lu, Jie Zhou, and Qi Tian. 2019. Structural relational
reasoning of point clouds. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 949–958.

[5] Yuval Eldar, Michael Lindenbaum, Moshe Porat, and Yehoshua Y Zeevi. 1997.
The farthest point strategy for progressive image sampling. IEEE Transactions on
Image Processing 6, 9 (1997), 1305–1315.

[6] A Foorginejad and K Khalili. 2014. Umbrella curvature: a new curvature estima-
tion method for point clouds. Procedia Technology 12 (2014), 347–352.

[7] Andreas Geiger, Philip Lenz, and Raquel Urtasun. 2012. Are we ready for au-
tonomous driving? the kitti vision benchmark suite. In 2012 IEEE conference on
computer vision and pattern recognition. IEEE, 3354–3361.

[8] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu, Ralph R Martin,
and Shi-Min Hu. 2021. Pct: Point cloud transformer. Computational Visual Media
7 (2021), 187–199.

[9] Abdullah Hamdi, Silvio Giancola, and Bernard Ghanem. 2021. Mvtn: Multi-view
transformation network for 3d shape recognition. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 1–11.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[11] Michael Himmelsbach, Thorsten Luettel, and H-J Wuensche. 2009. Real-time
object classification in 3D point clouds using point feature histograms. In 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 994–
1000.

[12] Richard Hoffman and Anil K Jain. 1987. Segmentation and classification of range
images. IEEE transactions on pattern analysis and machine intelligence 5 (1987),
608–620.

[13] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner
Stuetzle. 1992. Surface reconstruction from unorganized points. In Proceedings
of the 19th annual conference on computer graphics and interactive techniques.
71–78.

[14] Mingyang Jiang, YiranWu, Tianqi Zhao, Zelin Zhao, and Cewu Lu. 2018. Pointsift:
A sift-like network module for 3d point cloud semantic segmentation. arXiv
preprint arXiv:1807.00652 (2018).

[15] Yingrui Jie, Yilin Zhu, and Hui Cheng. 2023. Heterogeneous DeepMetric Learning
for Ground and Aerial Point Cloud-Based Place Recognition. IEEE Robotics and
Automation Letters (2023).

[16] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[17] ArtemKomarichev, Zichun Zhong, and Jing Hua. 2019. A-cnn: Annularly convolu-
tional neural networks on point clouds. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. 7421–7430.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. Advances in neural information
processing systems 25 (2012).

[19] Peng Li, Jian Wang, Yindi Zhao, Yanxia Wang, and Yifei Yao. 2016. Improved
algorithm for point cloud registration based on fast point feature histograms.
Journal of Applied Remote Sensing 10, 4 (2016), 045024–045024.

[20] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. 2018.
Pointcnn: Convolution on x-transformed points. Advances in neural information
processing systems 31 (2018).

[21] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong Pan. 2019. Relation-
shape convolutional neural network for point cloud analysis. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. 8895–8904.

[22] Ze Liu, Han Hu, Yue Cao, Zheng Zhang, and Xin Tong. 2020. A closer look at
local aggregation operators in point cloud analysis. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XXIII 16. Springer, 326–342.

[23] Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101 (2017).

[24] XuMa, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu. 2022. Rethinking network
design and local geometry in point cloud: A simple residual MLP framework.
arXiv preprint arXiv:2202.07123 (2022).

[25] Jiageng Mao, Xiaogang Wang, and Hongsheng Li. 2019. Interpolated convolu-
tional networks for 3d point cloud understanding. In Proceedings of the IEEE/CVF

international conference on computer vision. 1578–1587.
[26] Simone Melzi, Riccardo Spezialetti, Federico Tombari, Michael M Bronstein,

Luigi Di Stefano, and Emanuele Rodola. 2019. Gframes: Gradient-based local
reference frame for 3d shape matching. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 4629–4638.

[27] Ehsan Nezhadarya, Ehsan Taghavi, Ryan Razani, Bingbing Liu, and Jun Luo. 2020.
Adaptive hierarchical down-sampling for point cloud classification. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 12956–
12964.

[28] Lucas Nunes, RodrigoMarcuzzi, Xieyuanli Chen, Jens Behley, and Cyrill Stachniss.
2022. SegContrast: 3D point cloud feature representation learning through self-
supervised segment discrimination. IEEE Robotics and Automation Letters 7, 2
(2022), 2116–2123.

[29] Jinyoung Park, Sanghyeok Lee, Sihyeon Kim, Yunyang Xiong, and Hyunwoo J
Kim. 2023. Self-positioning point-based transformer for point cloud understand-
ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 21814–21823.

[30] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2017. Pointnet: Deep
learning on point sets for 3d classification and segmentation. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 652–660.

[31] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. 2017. Pointnet++:
Deep hierarchical feature learning on point sets in a metric space. Advances in
neural information processing systems 30 (2017).

[32] Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai, Hasan Hammoud, Mo-
hamed Elhoseiny, and Bernard Ghanem. 2022. Pointnext: Revisiting pointnet++
with improved training and scaling strategies. Advances in Neural Information
Processing Systems 35 (2022), 23192–23204.

[33] Haoxi Ran, Jun Liu, and Chengjie Wang. 2022. Surface representation for point
clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 18942–18952.

[34] Haoxi Ran, Wei Zhuo, Jun Liu, and Li Lu. 2021. Learning inner-group relations on
point clouds. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 15477–15487.

[35] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. 2009. Fast point feature
histograms (FPFH) for 3D registration. In 2009 IEEE international conference on
robotics and automation. IEEE, 3212–3217.

[36] Radu Bogdan Rusu, Nico Blodow, Zoltan Csaba Marton, and Michael Beetz. 2008.
Aligning point cloud views using persistent feature histograms. In 2008 IEEE/RSJ
international conference on intelligent robots and systems. IEEE, 3384–3391.

[37] Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow, and Michael Beetz. 2008.
Persistent point feature histograms for 3D point clouds. In Proc 10th Int Conf
Intel Autonomous Syst (IAS-10), Baden-Baden, Germany. 119–128.

[38] Julia Sanchez, Florence Denis, David Coeurjolly, Florent Dupont, Laurent
Trassoudaine, and Paul Checchin. 2020. Robust normal vector estimation in
3D point clouds through iterative principal component analysis. ISPRS Journal of
Photogrammetry and Remote Sensing 163 (2020), 18–35.

[39] Paul Scovanner, Saad Ali, and Mubarak Shah. 2007. A 3-dimensional sift de-
scriptor and its application to action recognition. In Proceedings of the 15th ACM
international conference on Multimedia. 357–360.

[40] Isabel M Serrano and Bogdan D Suceava. 2015. A medieval mystery: Nicole
Oresme’s concept of curvitas. Notices of the AMS 62, 9 (2015).

[41] Jiahao Sun, Chunmei Qing, Junpeng Tan, and Xiangmin Xu. 2023. Superpoint
transformer for 3d scene instance segmentation. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 37. 2393–2401.

[42] Junhua Sun, Jie Zhang, and Guangjun Zhang. 2016. An automatic 3D point
cloud registration method based on regional curvature maps. Image and vision
computing 56 (2016), 49–58.

[43] EarlWilliam Swokowski. 1979. Calculus with analytic geometry. Taylor & Francis.
[44] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew

Wojna. 2016. Rethinking the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
2818–2826.

[45] Lyne Tchapmi, Christopher Choy, Iro Armeni, JunYoung Gwak, and Silvio
Savarese. 2017. Segcloud: Semantic segmentation of 3d point clouds. In 2017
international conference on 3D vision (3DV). IEEE, 537–547.

[46] Gusi Te, Wei Hu, Amin Zheng, and Zongming Guo. 2018. Rgcnn: Regularized
graph cnn for point cloud segmentation. In Proceedings of the 26th ACM interna-
tional conference on Multimedia. 746–754.

[47] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui,
François Goulette, and Leonidas J Guibas. 2019. Kpconv: Flexible and deformable
convolution for point clouds. In Proceedings of the IEEE/CVF international confer-
ence on computer vision. 6411–6420.

[48] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua, Thanh Nguyen, and Sai-
Kit Yeung. 2019. Revisiting Point Cloud Classification: A New Benchmark Dataset
and Classification Model on Real-World Data. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV).

[49] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ACM MM, 2024, Melbourne, Australia Anonymous Authors

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

you need. Advances in neural information processing systems 30 (2017).
[50] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and

Justin M Solomon. 2019. Dynamic graph cnn for learning on point clouds. ACM
Transactions on Graphics (tog) 38, 5 (2019), 1–12.

[51] Louis Wiesmann, Rodrigo Marcuzzi, Cyrill Stachniss, and Jens Behley. 2022.
Retriever: Point cloud retrieval in compressed 3D maps. In 2022 International
Conference on Robotics and Automation (ICRA). IEEE, 10925–10932.

[52] Svante Wold, Kim Esbensen, and Paul Geladi. 1987. Principal component analysis.
Chemometrics and intelligent laboratory systems 2, 1-3 (1987), 37–52.

[53] Bichen Wu, Xuanyu Zhou, Sicheng Zhao, Xiangyu Yue, and Kurt Keutzer. 2019.
Squeezesegv2: Improved model structure and unsupervised domain adaptation
for road-object segmentation from a lidar point cloud. In 2019 international
conference on robotics and automation (ICRA). IEEE, 4376–4382.

[54] Wenxuan Wu, Zhongang Qi, and Li Fuxin. 2019. Pointconv: Deep convolu-
tional networks on 3d point clouds. In Proceedings of the IEEE/CVF Conference on
computer vision and pattern recognition. 9621–9630.

[55] Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, and Hengshuang Zhao. 2022. Point
transformer v2: Grouped vector attention and partition-based pooling. Advances
in Neural Information Processing Systems 35 (2022), 33330–33342.

[56] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou
Tang, and Jianxiong Xiao. 2015. 3d shapenets: A deep representation for volumet-
ric shapes. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 1912–1920.

[57] Tiange Xiang, Chaoyi Zhang, Yang Song, Jianhui Yu, and Weidong Cai. 2021.
Walk in the cloud: Learning curves for point clouds shape analysis. In Proceedings
of the IEEE/CVF International Conference on Computer Vision. 915–924.

[58] Qiangeng Xu, Xudong Sun, Cho-Ying Wu, Panqu Wang, and Ulrich Neumann.
2020. Grid-gcn for fast and scalable point cloud learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 5661–5670.

[59] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. 2018. Foldingnet: Point
cloud auto-encoder via deep grid deformation. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. 206–215.

[60] Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie Zhou, and Jiwen Lu.
2022. Point-bert: Pre-training 3d point cloud transformers with masked point
modeling. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 19313–19322.

[61] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R
Salakhutdinov, and Alexander J Smola. 2017. Deep sets. Advances in neural
information processing systems 30 (2017).

[62] Dimitris Zermas, Izzat Izzat, and Nikolaos Papanikolopoulos. 2017. Fast seg-
mentation of 3d point clouds: A paradigm on lidar data for autonomous vehicle
applications. In 2017 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 5067–5073.

[63] Kuangen Zhang, Ming Hao, Jing Wang, Clarence W de Silva, and Chenglong Fu.
2019. Linked dynamic graph cnn: Learning on point cloud via linking hierarchical
features. arXiv preprint arXiv:1904.10014 (2019).

[64] Hengshuang Zhao, Li Jiang, Chi-Wing Fu, and Jiaya Jia. 2019. Pointweb: Enhanc-
ing local neighborhood features for point cloud processing. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 5565–5573.

[65] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. 2021.
Point transformer. In Proceedings of the IEEE/CVF international conference on
computer vision. 16259–16268.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Deep Learning on Point Clouds
	2.2 Hand-crafted Designs on Point Clouds

	3 Methodology
	3.1 Hierarchical Sampling
	3.2 Local Reference Constructor
	3.3 Curve Feature Generator
	3.4 On-the-fly Point Feature Representation

	4 Experiments
	4.1 Classification
	4.2 Semantic Segmentation
	4.3 Ablation Study

	5 Conclusion
	References

