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Figure 1: Detailed architecture of PointNet++ & OPFR.

1 OVERVIEW
Due to the space limit of main paper, the supplementary materials
provide more details of experiments and contain visualizations,
ablation study, and theoretical analysis to further understand our
proposed On-the-fly Point Feature Representation (OPFR).

In Sec. 2, we provide more implementation details, specific net-
work architectures to integrate OPFR with various 3D backbones
[2, 8], and explanation of efficiency metrics. In Sec. 3, we present
more interesting visualization results, including the triangle sets
produced byHierarchical Samplingmodule, OPFR values on ScanOb-
jectNN classification task, and qualitative results on S3DIS semantic
segmentation task. In Sec. 4, we conduct additional ablation study
for Hierarchical Sampling module when applied to RepSurf [4]. In
Sec. 5, we provide the theoretical analysis of the proposed curvature
proxy p𝑖 𝑗 as mentioned in the main paper.

2 DETAILS IN EXPERIMENTS
Implementation details. For classification tasks, we apply point
clouds augmentation (random scale, random shift, and random
dropout) and point clouds normalization (normalize to [−1, 1])
when training on ModelNet40 [7], while we do not apply any aug-
mentation techniques when training on ScanObjectNN [6]. Before
feeding into the backbone, the input point clouds are downsampled
to 1024 points with farthest point sampling algorithm. For semantic
segmentation tasks, we conduct point clouds augmentation (point
cloud scaling, color contrasting, color shifting, and color jittering)
on S3DIS [1] dataset.
Architecture details of PointNet++ & OPFR. For classification,
shown in Fig. 1, we add our OPFR representation r𝑖 ∈ R30 before
each set abstraction (SA) layer for PointNet++ [2] backbone. The
OPFR representation r𝑖 is concatenated with original input x𝑘

𝑖
, fol-

lowed by shared-MLP. Here, x𝑘
𝑖
represents the 𝑖-th input before the

𝑘-th SA layer (𝑘 = 1, 2, 3). The dimensions of shared-MLP for SA1,
SA2, SA3 are [64, 64, 128], [128, 128, 256], [256, 512, 1024] respec-
tively. Eventually, the resultant 1024-dim point cloud representation
is fed into a classification head. The dimensions of classification
head are [1024, 512, 256, 𝐾], and 𝐾 is the number of categories for
our outputs. For semantic segmentation task, we simply replace
the classification head with standard PointNet++ decoder and the
segmentation head.

Figure 2: Detailed architecture of Point Transformer &OPFR.

Architecture details of Point Transformer & OPFR. For classi-
fication, shown in Fig. 2, we add our OPFR representation r𝑖 ∈ R30
before 1-st Transition Down (Transi. Down) layer for Point Trans-
former [8] backbone. The OPFR representation r𝑖 is concatenated
with original input point cloud x1

𝑖
, followed by Point Transformer

blocks. The dimensions of Point Transformer blocks are [32, 64, 128,
256, 512] respectively. Eventually, the resultant 512-dim point cloud
representation is fed into a classification head. The dimensions of
classification head are [512, 512, 𝐾], and 𝐾 is the number of cate-
gories for our outputs. For semantic segmentation task, we simply
replace the classification head with standard Point Transformer
decoder and the segmentation head.
Explanation of efficiency metrics. We adopt number of total
parameters (#Params) and floating point operations (FLOPs) to
quantify the efficiency of the proposed OPFR. FLOPs count the
number of floating point operations (addition and multiplication)
required for a given input. We adopt FLOPs as our efficiency metric
since it is hardware-agnostic, ensuring a fair comparison across
different models. Furthermore, we fix the size of input point clouds
for different models. Following PointNeXt [3], we employ 1024
input point clouds for classification, and 15000 input point clouds
for semantic segmentation to calculate FLOPs fairly.

3 VISUALIZATION
Triangle sets of Hierarchical Sampling. In Fig. 3, we zoom in
to visualize the triangle sets generated by Hierarchical Sampling
and naive 𝑘 nearest neighbors (𝑘-NN) sampling. Column (a) depicts
input point clouds from ModelNet40 [7], and the corresponding
zoom-in regions using black dashed circles, column (b) and (c) depict
triangles sets produced by 𝑘-NN sampling (𝑘 = 8) from isometric
view and front view, and column (d) and (e) depict triangle sets
generated by Hierarchical Sampling (𝑘1 = 20, 𝑘2 = 2, 𝑘3 = 8) from
isometric view and front view. The first two rows demonstrate
the ability of Hierarchical Sampling module to decouple paralleled
structures. Specifically, in 2-nd row, we visualize the triangle set
around an airplane wing using different sampling methods. With
naive 𝑘-NN sampling, those points from upper and lower surfaces
of the wing are mixed together, which leads to a noticeably messy
distortion of the obtained triangle set. These points are the “noisy
points”, as we mentioned in the introduction of main paper. Our
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Figure 3: Visualization of triangle sets generated by naive 𝑘-NN sampling and Hierarchical Sampling from isometric view and
front view. The three rows correspond to table, airplane, and piano. We zoom in to highlight the triangle sets in column (b), (c),
(d), and (e), and the zoom-in regions are depicted using black dashed circles upon raw inputs from two different views. Orange
represents our interested point, blue represents nearby neighbors, and red represents the obtained triangle set. The triangle
sets generated by 𝑘-NN are messy, while those produced by Hierarchical Sampling are well-organized.

proposed method addresses this distortion issue by employing far-
thest point sampling to decouple the wing structure into two dis-
tinct parallel surfaces. In column (e), the wing structure is clearly
discernible through the Hierarchical Sampling. Furthermore, the
last row demonstrates the ability of our proposed method to iden-
tify the edged structure. Specifically, in 3-rd row, we visualize the
triangle set around the edge of a piano using different sampling
methods. With naive 𝑘-NN sampling, the corresponding triangle
set contains points from side surface and back surface, resulting in
the distortion of generated triangle set. These points are the “noisy
points”. In contrast, as observed from column (e), through Hierar-
chical Sampling, it effectively approximates the edged structure by
two disjoint surfaces which are located in the side surface and back
surface. From these visualization examples, it clearly demonstrates
the superiority of our presented Hierarchical Sampling strategy to
mitigate the distortion issue that occurs in naive 𝑘-NN sampling,
ensuring the robustness of obtained geometric features.

OPFR values on ScanObjectNN classification. In Fig. 4, we pro-
vide additional visualization examples of OPFR values on ScanOb-
jectNN [6] benchmark from isometric view and corresponding
three-view drawing (side view, top view, and front view). We show
the OPFR values of 1-st channel for four representative objects: sofa,
sink, bin, and toilet. Note that, to maintain the consistency with
classification experiments in themain paper, we use the hardest vari-
ant (PB_T50_RS_variant) as well for visualization. Different from
ModelNet40 [7], this hardest variant applies data augmentation
for original point clouds, which injects noise to the visualization
results. This poses additional challenges for OPFR. Shown in Fig. 4,
the red hues represent smaller OPFR values, typically those curved
regions (e.g., backrest of the sofa and basin of the sink), while the
blue hues indicate larger OPFR values, particularly those flat re-
gions (e.g., seat cushion of the sofa and vanity top of the sink). This
color differentiation emphasizes that, the proposed OPFR repre-
sentation is eligible to perceive the local geometric information
numerically, even with injected noise. It clearly demonstrates the
curvature-aware property of the proposed OPFR.
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Figure 4: Visualization of OPFR values (1-st channel) on ScanObjectNN benchmark from isometric view and three-view drawing
(side view, top view, and front view). The four rows correspond to sofa, sink, bin, and toilet, respectively. Red represents small
OPFR values, typically those curved regions, and blue indicates large OPFR values, particularly those flat regions.

Qualitative results on S3DIS semantic segmentation. In Fig.
5, we provide qualitative results when integrating the OPFR with
Point Transformer [8] backbone on S3DIS [1] benchmark for se-
mantic segmentation. We visualize the segmentation results on
various scenes, including two conference rooms (first two rows),
two offices (middle two rows), and two hallways (last two rows).
When equipped with OPFR, Point Transformer demonstrates its
superior capability to generate predictions that are closer to the
ground truth on all scenes. Shown in Fig. 5, it can better segment
difficult classes, including columns (1-st, 2-nd, 3-rd, and 4-th rows),
clutter (2-nd, 5-th, and 6-th rows), bookcase (3-rd, 4-th, and 5-th
rows). Furthermore, our Point Transformer & OPFR can capture
more precise segmentation boundaries between chair and table

(1-st, 2-nd and 3-rd rows), and distinguish between two analogous
classes: chair and sofa (5-th row). Zoom in for more details.
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Figure 5: Qualitative comparisons of Ground Truth (GT), Point Transformer (PT), and Point Transformer & OPFR (PT &
OPFR) on S3DIS semantic segmentation. We visualize the input point clouds using original RGB in column (a), and using color
mappings of ground truth or predicted semantic class in column (b), (c), and (d). Differences between PT predictions and PT &
OPFR predictions are highlighted with yellow dashed circles. Zoom in for more details.



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Supplementary Materials ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 1: Ablation study on theHierarchical Sampling module
to combine with prior state-of-the-art representation, Rep-
Surf. We conduct experiments on ScanObjectNN dataset.

Method OA mAcc
RepSurf [4] 84.22 81.79
(+) Hierarchical Sampling strategy +0.62 +0.57
PointNet++ & OPFR† (ours) 84.51 82.90
(+) Hierarchical Sampling strategy +1.17 +0.91

†: OPFR w/o Hierarchical Sampling module.

4 ABLATION STUDY
Compatibility ofHierarchical Samplingmodule.Asmentioned
in the ablation study of the effectiveness of different modules in
the main paper, the Hierarchical Sampling technique can substitute
𝑘-NN sampling in other methods as well to mitigate the distortion
issue of obtained triangle sets. In Tab. 1, we apply Hierarchical
Sampling strategy to the previous state-of-the-art representation,
RepSurf [4], and achieve an improvement of 0.62% overall accuracy
(OA) and 0.57% mean accuracy (mAcc). Furthermore, Hierarchi-
cal Sampling strategy boosts the OPFR by 1.17% OA and 0.91%
mAcc when integrated with PointNet++ [2] backbone. The empiri-
cal results demonstrate that, the Hierarchical Sampling module is
compatible with different methods, and alleviates the distortion
issue of 𝑘-NN triangle sets. Additionally, when integrated with the
Hierarchical Sampling strategy, our proposed OPFR achieves more
improvements (+0.55% OA and +0.34% mAcc) compared to RepSurf.
We hypothesize that, this phenomenon is attributed to, curvature
information is more sensitive to the quality of inherent triangle sets.
Therefore, when equipped with Hierarchical Sampling strategy, we
can guarantee the reliability of obtained geometric features.

5 THEORETICAL ANALYSIS
We provide the theoretical analysis of our proposed curvature proxy
p𝑖 𝑗 . As claimed in the main paper, curvature proxy p𝑖 𝑗 can be
viewed as one good approximation of curvature definition [5] from
differential geometry in the direction of three reference frames
{û𝑖 𝑗 , v̂𝑖 𝑗 , ŵ𝑖 𝑗 }. Without loss of generality, we give the detailed anal-
ysis for the reference frame û𝑖 𝑗 . The analyses for another two
reference frames v̂𝑖 𝑗 and ŵ𝑖 𝑗 are similar.
Theoretical Analysis. In Fig. 6, we depict the schematic and nec-
essary notation for the analysis. We follow the notation in the main
paper: {(x𝑖 , x𝑖 𝑗 )} is the point pair, û𝑖 𝑗 is one of the approximated
local reference frames, and x′

𝑖 𝑗
is the relative position between the

point pair. Additionally, 𝑙𝑖 𝑗 represents the arc length between the
point pair, and 𝜃𝑖 𝑗 represents the angle between relative position x′𝑖 𝑗
and reference frame û𝑖 𝑗 . Given one continuous 3D surface whose
cross-section is shown in Fig. 6, its curvature 𝜅û𝑖 𝑗 (x𝑖 ) at point x𝑖
with respect to direction û𝑖 𝑗 can be defined as [5]:

𝜅û𝑖 𝑗 (x𝑖 ) := lim
Δ𝑙→0

Δ𝜃

Δ𝑙
, (1)

where Δ𝜃 and Δ𝑙 are infinitesimal angle and arc length along the
direction û𝑖 𝑗 around point x𝑖 . In the following discussion, we omit
x𝑖 in curvature notation for simplicity. However, in practice, we lack

Figure 6: Schematic and necessary notation for theoretical
analysis. This curve is obtained by the intersection of, under-
lying continuous 3D surface for point clouds and the plane
spanned by vector x′

𝑖 𝑗
and û𝑖 𝑗 .

access to the underlying continuous 3D surface. This absence makes
it impossible to determine the exact curvature 𝜅û𝑖 𝑗 . In real-life sce-
narios, we work with point clouds, which are discrete samplings of
continuous 3D surface. Then, a practical approach is to approximate
the curvature 𝜅û𝑖 𝑗 based on nearest neighbor x𝑖 𝑗 . As a result, the
infinitesimal angle Δ𝜃 can be approximated by the angle 𝜃𝑖 𝑗 from
nearest neighbor x𝑖 𝑗 :

Δ𝜃 ≈ 𝜃𝑖 𝑗

= arccos(û𝑖 𝑗 ⊙
x′
𝑖 𝑗

| |x′
𝑖 𝑗
| | ) . (2)

Similarly, the infinitesimal arc length Δ𝑙 can be approximated by
the arc length 𝑙𝑖 𝑗 from the nearest neighbor x𝑖 𝑗 :

Δ𝑙 ≈ 𝑙𝑖 𝑗 ≈ ||x′𝑖 𝑗 | |. (3)

Based on Equ. 1, Equ. 2 and Equ. 3, we can summarize that,

𝜅û𝑖 𝑗 ≈
1

| |x′
𝑖 𝑗
| | · arccos(û𝑖 𝑗 ⊙

x′
𝑖 𝑗

| |x′
𝑖 𝑗
| | ).

□
Therefore, we have achieved our claim in the main paper that,

the proposed curvature proxy p𝑖 𝑗 is one approximation of curva-
ture definition from differential geometry. This can be formally
formulated as:

p𝑖 𝑗 ≈ [𝜅û𝑖 𝑗 , 𝜅v̂𝑖 𝑗 , 𝜅ŵ𝑖 𝑗
] .

Lastly, we want to mention that, the accuracy of this approxima-
tion can be ensured via the usage of 𝑘 nearest neighbors (𝑘-NNs)
sampling method, which guarantees Δ𝑙 ≈ ||x′

𝑖 𝑗
| | ≈ 0.
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