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A OVERVIEW
This supplementary material includes the following contents:

e Privacy analysis, including current privacy levels and meth-
ods for enhancing privacy. (Section B)

e Communication overhead experiments, including the com-
munication overhead results on two datasets. (Section C)

o Experimental details, including datasets, models, comparison
methods, etc. Particularly important is our explanation for
why we did not compare with more other federated multi-
view clustering methods. (Section D)

o Additional experimental results, including parameter analy-
sis, convergence analysis, etc. Particularly important is our
explanation of why the comparison method performs worse
in IID than in Non-IID, and we clarify the motivation behind
HFMVC'’s heterogeneity-aware module. (Section E)

o The generalizability of HFMVC and its potential application
scenarios. (Section F)

B PRIVACY

In fact, in HFMVC, the data exchanged between the client and
server mainly includes the following:

(1) In each global round, the client needs to send the local model
and high-level features to the server.

(2) The server aggregates the received local models and then
sends the aggregated model back to the client; additionally, it ex-
changes the received high-level features among clients.

(3) After the pre-training phase is completed, the server needs to
send the results obtained from the heterogeneous evaluation (i.e., a
weight coefficient) back to the client.

Since the data in (3) is only a constant, it essentially does not
leak client privacy. Nevertheless, to fully protect the clients’ pri-
vacy (such as the heterogeneity of their data), it can be encrypted
separately [21]. Therefore, the key focus of the privacy analysis lies
in (1) and (2), which involve the transmission of model parameters
and high-level features during communication between the clients
and server.

B.1 Privacy Analysis

We consider the semi-honest adversaries model, where the server is
honest yet curious; it reliably collects updates from participants and
returns the updated model, but it may be curious about participants’
information and attempt to uncover this information through the
received updates. In this scenario, even though the server knows
the clients’ local models and high-level features, it cannot infer
the clients’ original data. This is because inferring the original
data from given outputs and model parameters involves solving a
system of linear equations, which is not feasible due to the non-
invertibility of the fully connected layer. The encoding process leads

Server
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Encoded features
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J V(:) —  Upload to the client

; o

1= I z

\ H = .

N s [0} o ‘e
! Client 1-1 Client 1-2 Clientm2 |

Client m-1

N T@-

! Client 1-3 Client 1-C;

Client m-C, 3

Figure 1: Another feasible approach for applying HFMVC
in practice is for the client to send only the local model (en-
crypted) to the server, while high-level features are sent di-
rectly to their corresponding friend clients. This way, high-
level features and the local model can be transmitted sepa-
rately among different entities.

to information loss, making reverse inference of data impossible.
Specifically, given the weight matrix W and bias vector b in the
fully connected layer, and input X (dimension of 512), the output
H (dimension of 128) can be represented as:

H=X W+b. 1)

To infer the original data, given the output H, the server needs to
infer the original input X. This means solving the equation:

X=H-b) -wl 2)

Since W is a 512x128 matrix with fewer rows than columns, it is not
full rank and is non-invertible. So the server cannot infer the clients’
original data from the high-level features and model parameters.

To further protect client privacy, we consider enhancing the
security of the system from the following aspects.
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B.2 Enhancing Privacy in Model Aggregation

To ensure security during the model aggregation stage, techniques
such as homomorphic encryption [1], differential privacy [5] and
secure aggregation protocol [2] can be used to protect the privacy
of model parameters. For instance, the following scheme can be
used to enhance the level of privacy:

Given n participants, each participant has their own model pa-
rameters 0;, where 0; € Rd, and d is the dimension of the parame-
ters. The goal of the aggregation is to compute the weighted average
of all participants’ model parameters to generate a global model
parameter Oyjopar-

First, each client’s local model needs to be encrypted using ho-
momorphic encryption before transmission.

E(6;) = Encrypt(0;, k;), 3)

where E(0;) represents the encrypted model parameters, and k;
is the encryption key of participant i. Then the server performs a
weighted average of the encrypted model parameters from each
participant directly, without decrypting them.

E(Ogiobal) = ) | wiE(0)), @

i=1

where w; is the weight of participant i’s model during the aggrega-
tion phase. In HFMVC, we set the weight of each client’s model to
be equal, i.e., w; = 1/n.

Through the aforementioned homomorphic encryption scheme,
the server cannot know the specific parameters of individual models,
as all operations are performed on encrypted data. Similarly, secure
aggregation protocol [2] can achieve a similar effect.

B.3 Enhancing Privacy in Feature Exchange

Considering the privacy threats and the load on the server when it
simultaneously receives local models and high-level features from
the client, we propose another feasible approach in practice, as
illustrated in Figure 1. The client continues to send its local model
to the server as usual, but it sends high-level features selectively
to corresponding friend clients. This way, the server cannot access
the client’s high-level features, while the client can only obtain
the high-level features of its friend clients, thus enhancing secu-
rity through data partitioning. Even if the server colludes with a
malicious client to attack another client and obtain its high-level
features, the original data cannot be restored due to the encryption
of the local model. Furthermore, this approach reduces the server’s
load since it does not need to receive and relay high-level features,
thus avoiding potential server crashes.

C COMMUNICATION COST

In this section, we provide experimental results regarding com-
munication overhead. Table 1 displays the total communication
overhead for a single client to reach convergence in various het-
erogeneous environments and datasets. The results indicate that
each client only needs to upload a few hundred megabytes of data,
which is entirely acceptable in practice. This holds true for both
clients with powerful computing capabilities (such as hospitals and
large institutions) and lightweight clients (such as mobile devices).

Anonymous Authors

D EXPERIMENTAL DETAILS
D.1 Datasets

We conduct our experiments on four public datasets, i.e., MNIST-
USPS [10], BDGP [3], Multi-Fashion [15], and Caltech [6]. Table
2 presents the key features of the relevant datasets, including the
number of samples, views, and classes.

D.2 Models

We conduct our experiments using models consistent with many
previous works [9, 12, 18-20]. Specifically, for data in view m, with
input dimension D,, and output dimension dp,, the encoder has
dimensions Dy,;,-500-500-2000-512, while the decoder follows the
reverse order, i.e., 512-2000-500-500-D,,,. Additionally, we extract
high-level features from the encoded features, which have consis-
tent dimensions in the experiments, i.e., 512-128.

D.3 Baselines

We select the following six state-of-the-art (SOTA) methods for
comparison: DEMVC [16], SDMVC [17], MFLVC [18], GCFAgg
[19], FedDMVC [4] and FCUIF [11]. Please note that among the
comparison methods mentioned above, only FedDMVC [4] and
FCUIF [11] are specifically designed for distributed environments,
while the other methods are centralized solutions. To ensure a
fair comparison, we have made slight modifications to them. The
following describes the modifications made to these methods:

e DEMVC has proposed a novel collaborative training ap-
proach that guides the training of each view in sequence to
explore consistent and complementary information from the
other views. We have modified the data partitioning strategy
of DEMVC to make it compatible with scenarios involving
multiple clients.

e SDMVC acquires pseudo-labels through the self-supervision
mechanism to establish a unified target distribution, ulti-
mately achieving multi-view discriminative feature learning.
Likewise, we have modified its data partitioning strategy to
accommodate scenarios involving multiple clients.

e MFLVC aims to learn different levels of features from raw
features in a fusion-free manner, including low-level features,
high-level features, and semantic labels, with the application
of contrastive learning as a crucial strategy. Significantly,
in a distributed environment, it is risky for clients to share
raw data, making the contrastive learning strategy unfeasi-
ble. However, to assess its real performance in a federated
setting, we have retained its contrastive learning module,
with modifications made to the data partitioning strategy to
support multi-client scenarios.

o GCFAggMVC is a multi-view clustering method that employs
global and cross-view feature aggregation, with a structurally
guided contrastive learning module significantly enhancing
prediction accuracy. However, similar to MFLVC, this strat-
egy is challenging to sustain in a distributed environment.
Hence, we have made modifications to GCFAggMVC similar
to those applied to MFLVC for the purpose of comparison.

e FedDMVC and FCUIF consider multi-view clustering in a
federated setting. However, their assumption is too strict
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Table 1: The communication overhead required for HFMVC to reach convergence in various heterogeneous environments and

across different datasets.

MNIST-USPS

BDGP

Dirichlet(0.5) Dirichlet(1.0) Dirichlet(10) Dirichlet(co) ‘ Dirichlet(0.5) Dirichlet(1.0) Dirichlet(10) Dirichlet(co)

306.3MB 306.3MB 382.9MB 357.3MB ‘ 117.9MB 117.9MB 188.6MB 377.1MB
Table 2: Statistics of the related datasets. concept clustering. However, like most of the methods men-
tioned above, PMCC is based on traditional distributed learn-
Datasets Samples Views Classes Type ing schemes and is not open-source. Therefore, we did not

— choose it for comparison.
MNIST-USPS 5,000 2 10 Digits
BDGP ' 2,500 2 5 Images. a'nd text D.4 Implementation

Multi-Fashion 10,000 3 10 Digits he batch size i i ) he l .

Caltech-5V 1,400 5 7 RGB images The batch size in our experiments remains 2500. The learning rate

(each client possesses the complete data of one view, i.e.,
a one-to-one correspondence between views and clients),
making it challenging to apply in practice. Therefore, we
have modified them to broaden their applicability.

In addition, we conduct a detailed investigation of the following
methods related to federated multi-view clustering and provide
reasons why comparisons with these methods cannot be made.

e FMSC [13] is a distributed and secure framework that aims
to utilize Homomorphic Encryption (HE) and Differential
Privacy (DP) to achieve secure and private clustering. How-
ever, FMSC focuses on secure clustering in federated settings
rather than on high-quality multi-view data mining in het-
erogeneous environments. Moreover, as a method based on
traditional spectral clustering, FMSC’s experimental perfor-
mance is not satisfactory. More importantly, FMSC is not
open-source, and its specific process is difficult to reproduce.

e FedMVL [8] is based on orthogonal non-negative matrix fac-
torization to handle multi-view clustering tasks, primarily
addressing issues such as high communication costs, fault
tolerance, and stragglers in federated MVC. However, the
main issues with FedMVL are: (1) It assumes that M views
are distributed among M clients, so the number of clients
cannot be freely set. (2) Traditional orthogonal non-negative
matrix factorization methods have relatively poorer perfor-
mance compared to deep learning-based approaches. (3) Its
source code is not publicly available, making it challenging
to reproduce. Therefore, we did not choose FedMVL as the
baseline algorithm.

e FedMVFPC [7] is a federated multiview fuzzy C-means clus-
tering method that has demonstrated good performance in
practice. However, FedMVFPC focuses on a different scenario
than HFMVC: it assumes that each client has multi-view data
(rather than single-view data) and investigates cross-client
information mining based on this assumption. Additionally,
FedMVFPC is not based on deep learning methods, so we
did not choose it for comparison.

e PMCC [14] is built upon the concept decomposition based
on local manifold learning, referred to as parallel multiview

is set to 0.001. All experiments are performed on Windows PC with
11th Gen Intel(R) Core(TM) i7-11700K @ 3.60GHz, one NVIDIA
GeForce RTX 2060 with 6GB RAM and one NVIDIA GeForce RTX
3090 GPU with 24GB RAM. The temperature coefficients 77 and 7¢
in contrastive learning are always set to 0.5. All methods undergo
a pre-training phase of 500 epochs before training.

E ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present some additional experimental results
and analysis as a supplement to the main text.

E.1 Additional Parameter Analysis

In this subsection, we conduct experimental analysis on the two
non-critical temperature parameters 7c (defined in Eq. (4)) and 77
(defined in Eq. (6)) mentioned in the main text, as depicted in Figure
2. It can be clearly seen that when 7¢ and 77 are between 0.1 and 1,
the overall clustering performance is relatively good, with relatively
minor fluctuations. Therefore, for such non-critical parameters, we
uniformly set them to 0.5 in the experiments.

Additionally, Figure 5 provides experimental results (NMI and
ARI) on the parameter analysis of the trade-off coefficients & and f,
which are consistent with the conclusions drawn in Figure 4(a) and
Figure 4(b) of the main text.

E.2 Additional Convergence Analysis

We plot the convergence curves of individual clients on the BDGP
dataset under different heterogeneity settings, as shown in Figure 3.
It can be observed that as training progresses, the local loss of each
client gradually decreases. This indicates that HFMVC can facilitate
the learning process through collaboration among multiple clients,
resulting in better global clustering results and also benefiting
individual clients.

E.3 Additional Scalability Analysis

Figure 4 illustrates the variation in clustering performance (NMI
and ARI) of HFMVC and FedDMVC under different heterogeneous
environments as the number of clients changes. It can be observed
that, based on these metrics, HFMVC demonstrates superior scala-
bility when faced with multi-client scenarios, consistent with the
experimental results (ACC) in the main text.
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Figure 2: Parameter sensitivity analysis under Dirichlet(co) (IID) and Dirichlet(0.5) (Non-IID) settings on BDGP.
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Figure 3: Convergence analysis: the loss curves of individual clients during the training process on the BDGP dataset. And we

set up 10 clients in our experiments.
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Figure 4: Scalability analysis: clustering performance (NMI and ARI) of HFMVC and FedDMVC under IID and Non-IID scenarios

with different numbers of clients.

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421

422
423
424
425
426
427
428
429
430

431

432

434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451

452
453

454

455

456

457
458
459

461
462
463
464



465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522

Supplementary Materials:

Heterogeneity-Aware Federated Deep Multi-View Clustering towards Diverse Feature Representations

3 s
< z
1
0001 B 0001 B
100
g s
< =z

0.001 0.001

ARI (%)

ARI (%)

ACM MM, 2024, Melbourne, Australia

PUR (%)

0.001

PUR (%)

0.001 0.001

Figure 5: Parameter sensitivity analysis under Dirichlet(co) (IID) and Dirichlet(0.5) (Non-IID) settings on BDGP.

E.4 Additional Comparison Results

Table 3 supplements the standard deviation of the data for each
group and corrects some minor errors in Table 1 of the main text. It
is worth noting that unlike HFMVC, the clustering performance of
most comparative algorithms tends to decrease as the heterogeneity
decreases. We refer to this seemingly anomalous phenomenon as
the preference of autoencoders for heterogeneous data. Specifically,
if an autoencoder’s data is Non-IID, meaning that the classes and
quantities are unequal, the autoencoder only needs to reconstruct
these pure (i.e., "heterogeneous" in this context means "pure") data,
resulting in stronger representation capabilities for such hetero-
geneous data. On the other hand, if the data is IID, each client
needs to reconstruct data of the same classes and quantities, mak-
ing it difficult for individual clients to comprehensively reconstruct
each class of data they own, thus leading to poorer overall per-
formance. This characteristic is one of the significant differences
between unsupervised and supervised tasks. HFMVC strengthens
the communication of information between clients through selec-
tive aggregation, thereby improving its clustering performance as
the heterogeneity decreases. Therefore, based on this observation,
we propose a heterogeneity-aware module, which evaluates the
degree of system heterogeneity based on the statistical characteris-
tics of local clustering results from clients after pre-training. It is
worth noting that the choice to perform heterogeneity-aware mod-
ule after pre-training is because at this point, each client has only
reconstructed its local data (the model has not been aggregated),
thus reflecting the original data characteristics.

F GENERALIZABILITY AND APPLICATIONS
F.1 Generalizability

HFMVC is applicable to various scenarios, even though we primarily
assume that each client has data from only one view. For example,

if client 1 possesses data from two views and client 2 has data
from one view, we can treat client 1 as two separate clients. In
other words, we deploy two autoencoders within client 1, with
each autoencoder trained on data from a single view. This approach
ensures full compatibility with HFMVC. Therefore, the fundamental
assumption we rely on—that each client has data from only one
view—can be extended to accommodate more scenarios. This kind
of generalizability is lacking in other works [4, 7, 11].

F.2 Applications

HFMVC has wide-ranging applications in practice, including but
not limited to the following:

Healthcare. In the healthcare sector, multiple hospitals or re-
search institutions may possess distributed datasets with different
views, such as medical images and genomic data, which are often
non-IID. HFMVC can facilitate the collaboration and clustering
of these data sources while respecting data privacy regulations,
thereby promoting joint analysis and knowledge discovery across
multiple views. This can improve disease diagnosis, provide per-
sonalized treatment recommendations, and enhance understanding
of complex medical conditions.

Social Media Analysis. HFMVC can help uncover hidden patterns
and structures in multi-modal data sources. By clustering users or
content based on multiple views (such as text, images, and social
relationships), HFMVC can facilitate targeted advertising, content
recommendation, and user analysis.

Finance. Different financial institutions may have diverse cus-
tomer data and transaction data, including user behavior, transac-
tion patterns, credit scores, and more. HFMVC can assist financial
institutions in clustering customers across institutions to discover
potential customer groups or anomalous patterns.
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581 Table 3: The clustering performance (mean * standard deviation %) across four multi-view benchmark datasets. 639
582 640
583 g ‘ Heterogeneity ‘ Dirichlet (0.5) ‘ Dirichlet (1.0) ‘ Dirichlet (10) ‘ IID, Dirichlet(co) 641
584 a Metrics | Acc NMI ARl | ACC NMI ARl | ACC NMI ARl | ACC NMI ARI 642
o85 DEMVC [16] | 38.7242.94 32.38+4.55  20.34+2.92 | 36.42+0.80 13.28+0.74 7.35+0.45 |25.97+0.39 16.68+1.85 8.071.06 | 29.39+0.57 631046  4.060.33 043
586 n SDMVC [17] 36.57+£0.79  12.96+0.24 7.02£0.20 | 30.01£0.75 20.79£2.27 10.96+1.54 | 36.93+3.56 15.53%£3.99 10.10+3.20 | 25.16+0.95 18.26+2.07 9.16%1.71 644
587 X MFLVC [18] 39.74£3.05 39.55+3.25  23.11£2.51 | 31.89+1.88 29.65+1.12 14.88+1.13 | 31.88+2.55 29.65+1.91 15.25£1.54 | 33.36+4.30 34.71+4.27 17.44+3.85 645
E GCFAggMVC [19] | 49.38+2.98 43.27+2.28  28.37+2.71 | 42.51+x1.76 36.91+1.13 21.28+1.25 | 30.36+1.08 24.11+2.62 11.51+1.48 | 26.40£1.58 22.81+2.00 10.01+1.54
588 2] FedDMVC [4] 46.91+4.46 41.01+4.05  28.68+4.28 | 43.34+£3.13 31.67£4.95 25.60+5.53 | 29.48+1.52 21.11+1.45 11.94+1.31 | 26.80+1.83 20.31+1.81 10.97+1.80 646
589 é FCUIF [11] 45.14£6.59 38.80+7.09  24.82+6.32 | 31.5243.35 23.69+3.48 12.89+2.84 | 25.68+1.32 17.58+1.94 8.77+1.23 | 23.77£1.61 16.03+1.96 7.81+1.23 647
590 Ours 86.21+3.80 84.66+5.48  78.96+5.22 | 95.32+0.32 91.07+0.56 90.29+0.63 | 97.35+£1.15 94.04+1.85 94.31£2.38 | 98.27+1.01 96.04+1.34 96.31£1.95 648
591 ‘ Gain T ‘ 136.83 14139 150.28 ‘ 151.98 T54.16 1 64.69 ‘ 7 60.42 164.39 179.06 ‘ T64.91 16133 178.87 649
592 DEMVC [16] 56.78+8.70  35.01+8.69  28.66+9.40 | 50.94+1.54 27.17+4.85 20.24+2.64 | 33.44+£3.29 7.28+0.87 5.10+1.41 | 31.21£0.65 6.98+1.73  4.95%1.05 650
593 SDMVC [17] 57.24%£5.98 36.70+8.68  27.12+8.25 | 51.19+3.51 31.24+4.80 21.79+3.16 | 35.70+£0.34 15.98+2.02 10.66+1.47 | 43.42+1.19 18.43+1.03 13.71£1.26 651
S04 . MFLVC [18] 39.23+£3.88 17.84+3.74  13.59£5.70 | 37.19+3.92 13.2049.13 9.13+3.16 | 43.42+0.45 21.34+0.87 15.14£0.53 | 39.26+1.41 17.76+1.41 11.82+0.73 652
Q GCFAgg [19] 50.32£2.46  26.95+5.81  21.23£4.54 | 46.63+3.20 23.12+2.69 18.43+2.40 | 33.75£1.51 9.82£1.70  6.76+1.17 | 34.30£2.36 11.36+2.27 7.26+1.37
595 ;_% FedDMVC [4] 46.88+1.08 25.20+3.47  19.48+2.94 | 48.54+4.50 25.32+5.47 18.71+6.70 | 36.74+1.74 13.81£1.70 9.91£1.04 | 40.45+1.69 17.60+2.53 12.82+2.06 653
596 FCUIF [11] 59.76£7.70  38.89+9.14 31.36+11.08 | 48.01+4.90 25.18+5.95 18.31£5.25 | 36.59+4.07 14.44+2.12 9.38+3.79 | 39.62+5.31 16.58+5.16 12.46+5.27 654
597 Ours 73.32+8.44 55.24+10.17 48.98+13.62 | 85.69+4.66 71.81+6.58 69.97+7.79 | 98.42+0.47 94.89+1.46 96.13£1.14 | 98.67+£0.13 95.47+0.52 96.72+0.33 655
508 Gain T | 11356 11635 T17.62 | 13450 14057 14818 | 15500 17355 18099 | 15525 177.04 1 83.01 656
599 DEMVC [16] 39.17+£2.47 34.50+1.16  21.13£1.77 | 35.39+0.35 31.98+0.83 17.11£0.19 | 26.58+0.59 18.85+1.71 8.97+0.69 | 30.45+0.17 26.77+0.44 15.12+0.40 657
600 SDMVC [17] 40.16+3.00 32.86+3.61  20.53+3.91 | 39.45+£1.25 37.83+1.46 21.58+1.49 | 28.86+2.10 23.17+£3.10 11.53+2.04 | 30.98+0.71 31.55+0.52 15.87+0.37 658
o MEFLVC [18] 34.00£2.16 27.68+2.22  15.65+2.43 | 31.72+2.55 23.49+2.34 12.56+1.91 | 26.51+1.98 19.87+2.26 9.43+1.47 | 28.32+1.64 22.46+2.28 11.34£1.95
601 E GCFAggMVC [19] | 54.42+3.02 54.05+2.28  36.22%3.33 | 50.13+2.43 51.85+1.41 33.76+1.20 | 29.40+0.94 31.74+0.54 13.65%0.65 | 34.66£1.39 45.13+4.83 24.07+1.49 659
602 E FedDMVC [4] 33.53+2.83 28.03+2.27  15.52+1.91 | 34.92+0.79 28.14+0.95 16.11£1.22 | 29.02+1.78 23.24+0.96 11.85+1.05 | 38.12+0.65 38.87+1.08 23.09+0.30 660
603 FCUIF [11] 40.82+£2.93 36.59+3.87  22.29+£3.61 | 37.80+1.91 30.75+2.33 17.51+£1.33 | 25.96+1.81 21.51+0.65 10.05+0.62 | 24.91£1.50 19.63+2.18 9.37+1.44 661
Ours 75.08+5.25  80.3+£4.69 69.08+6.02 | 84.41+6.43 85.28+1.97 77.18+4.72 | 91.27+1.84 88.61+1.10 84.44+2.19 | 93.18+0.89 89.80+0.97 86.85+1.36
604 662
05 Gain 1 | 12066 126.25 73286 | 13428 133.43 14342 | 16187 156.87 17079 | 15506 1 44.67 162.78 o3
605 :
606 DEMVC [16] 35.89+1.71 24.91+2.04 14.88+1.50 | 37.87+2.69 25.13+3.74 16.02+2.59 | 35.01+£3.64 22.27+5.15 13.80+3.49 | 33.13+3.73 21.17+6.05 12.08+4.05 664
SDMVC [17] 38.83+£2.67 25.06+3.10  15.55%2.38 | 40.71+3.38 28.08+2.20 19.33+2.07 | 34.27+£2.24 18.16+2.41 10.72+1.94 | 29.16£1.89 14.85+1.70 8.02+1.37
007 2| MFLVC [18] 38.89+3.13  23.60+3.54 15.61+2.41 | 33.13+2.87 16.58+3.27 9.96+2.60 |29.09+2.25 13.48+257 7.45+2.04 | 27.37+1.93 13.50+2.30 7.25+151 065
608 -5 | GCFAggMVC [19] | 42.65£3.50  30.56£1.86  18.62+1.91 | 41.28+3.35 30.39+4.29 17.94+3.42 | 31.61+2.25 22.00+3.66 11.84%2.64 | 34.00+4.42 24.95+4.36 14.09+3.69 666
609 % FedDMVC [4] 39.93+£3.15 25.56+4.71  17.66+4.18 | 40.39+4.14 25.39+5.36 17.50+4.64 | 36.27+£1.66 19.13+2.19 12.25%2.00 | 35.30+2.23 21.67+1.99 13.29£1.85 667
10 ] FCUIF [11] 50.83+4.83 40.67+£5.33  28.53%£3.98 | 38.67+2.35 25.97+2.69 16.38+0.55 | 32.09+2.24 19.15+2.64 10.75%£1.86 | 32.56+1.16 19.30+2.27 11.70+1.71 665
6 Ours 60.24+8.86  50.02+6.52  40.62+7.37 | 63.26+2.01  55.04+3.17 45.42+3.61 | 69.69£5.90 62.02+6.17 52.97+6.51 | 66.76+4.33 56.97+6.20 47.98+6.21 06
611 669
\ Gain 1 | 1941 19.35 71209 | 12198 1 24.65 12609 | 133.42 139.75 13917 | 13146 132.02 133.89
612 670
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