
Published as a conference paper at ICLR 2025

DIFFPUTER: EMPOWERING DIFFUSION MODELS FOR
MISSING DATA IMPUTATION

Hengrui Zhang1 Liancheng Fang1 Qitian Wu2 Philip S. Yu1∗
1Computer Science Department, University of Illinois at Chicago
2Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard
{hzhan55,lfang87,psyu}@uic.edu
wuqitian@broadinstitute.org

ABSTRACT

Generative models play an important role in missing data imputation in that they
aim to learn the joint distribution of full data. However, applying advanced deep
generative models (such as Diffusion models) to missing data imputation is chal-
lenging due to 1) the inherent incompleteness of the training data and 2) the
difficulty in performing conditional inference from unconditional generative mod-
els. To deal with these challenges, this paper introduces DIFFPUTER, a tailored
diffusion model combined with the Expectation-Maximization (EM) algorithm
for missing data imputation. DIFFPUTER iteratively trains a diffusion model to
learn the joint distribution of missing and observed data and performs an accu-
rate conditional sampling to update the missing values using a tailored reversed
sampling strategy. Our theoretical analysis shows that DIFFPUTER’s training step
corresponds to the maximum likelihood estimation of data density (M-step), and
its sampling step represents the Expected A Posteriori estimation of missing values
(E-step). Extensive experiments across ten diverse datasets and comparisons with
17 different imputation methods demonstrate DIFFPUTER’s superior performance.
Notably, DIFFPUTER achieves an average improvement of 6.94% in MAE and
4.78% in RMSE compared to the most competitive existing method.

1 INTRODUCTION

In the field of data science and machine learning, missing data in tabular datasets is a common issue
that can severely impair the performance of predictive models and the reliability of statistical analysis.
Missing data can result from various factors, including data entry errors, non-responses in surveys,
and system errors during data collection (Barnard & Meng, 1999; Lillard et al., 1986; Eckert et al.,
2020). Properly handling missing data is essential, as improper treatment can lead to biased estimates,
reduced statistical power, and invalid conclusions.

A plethora of work proposed over the past decades has propelled the development of missing
data imputation research. Early classical methods often relied on partially observed statistical
features to impute missing values or were based on conventional machine learning techniques,
such as KNN (Pujianto et al., 2019), or simple parametric models, such as Bayesian models (Ma
& Chen, 2018) or Gaussian Mixture Models (García-Laencina et al., 2010). With the advent of
deep learning, recent research has primarily focused on predictive (Stekhoven & Bühlmann, 2012;
Van Buuren & Karin, 2011; Kyono et al., 2021) or generative deep models (Yoon et al., 2018; Mattei
& Frellsen, 2019; Richardson et al., 2020) for missing data imputation. Predictive models learn to
predict the target entries conditioned on other observed entries, guided by masking mechanisms (Du
et al., 2024) or graph regularization techniques (You et al., 2020; Zhong et al., 2023). By contrast,
generative methods learn the joint distribution of missing entries and observed entries and aim to
impute the missing data via conditional sampling (Richardson et al., 2020; Nazabal et al., 2020b;
Mattei & Frellsen, 2019; Yoon et al., 2018; Ouyang et al., 2023; Zheng & Charoenphakdee, 2022).
However, generative imputation methods still fall short compared to predictive methods even when
employing state-of-the-art generative models (Kingma & Welling, 2013; Rezende & Mohamed,

∗Corresponding author.

1

Published as a conference paper at ICLR 2025

2015; Goodfellow et al., 2014; Ho et al., 2020). We think this is primarily due to the incomplete
likelihood nature issue in missing data imputation: generative models need to estimate the joint
distribution of missing data and observed data. However, since the missing data itself is unknown,
there is an inherent error in the estimated data density. The classical Expectation-Maximization
(EM) algorithm (Dempster et al., 1977) offers an elegant route to handle this issue, being capable of
addressing the incomplete likelihood issue by iteratively refining the values of the missing data.

Integrating EM algorithms with generative models has been extensively studied (Richardson et al.,
2020), however, its combination with Diffusion models (Ho et al., 2020), currently the most powerful
generative models, is still unexplored. In the M-step, the diffusion models have been shown able to
faithfully reconstruct the ground-truth distribution. However, in the E-step, it is usually considered
challenging to utilize them to perform condition inference (e.g., predicting missing entries based on
observed entries). This is because diffusion models directly model and generate the complete joint
distribution of data across all dimensions simultaneously, lacking the flexibility found in VAE and
GAN-based approaches (Ma et al., 2020; Peis et al., 2022b; Ma et al., 2018).

This paper introduces DIFFPUTER, a principled generative method for missing data imputation.
DIFFPUTER explores a path that makes diffusion models compatible with the EM framework,
allowing both E-step and M-step to be effective. Specifically: 1) In the M-step, DIFFPUTER employs
a diffusion model to learn the joint distribution of the missing and observed data. With the powerful
ability of diffusion models to learn tabular data distributions, in the M-step, DIFFPUTER learns
a parameterized distribution that faithfully recovers the joint distribution of observed and missing
entries. 2) In the E-step, DIFFPUTER uses the learned diffusion model to perform flexible and accurate
conditional sampling by mixing the forward process for observed entries with the reverse process
for missing entries. Theoretically, we show that DIFFPUTER’s M-step corresponds to the maximum
likelihood estimation of the data density, while its E-step represents the Expected A Posteriori (EAP)
estimation of the missing values, conditioned on the observed values.

We conduct experiments1 on nine benchmark tabular datasets containing both continuous and discrete
features under various missing data scenarios. We compare the performance of DIFFPUTER with
17 competitive imputation methods from different categories. Experimental results demonstrate the
superior performance of DIFFPUTER across all settings and on almost all datasets.

2 RELATED WORKS

Iterative Methods for Missing Data Imputation. Iterative imputation is a widely used approach
due to its ability to continuously refine predictions of missing data, resulting in more accurate
imputation outcomes. This iterative process is especially crucial for methods requiring an initial
estimation of the missing data. The Expectation-Maximization (EM) algorithm (Dempster et al.,
1977), a classical method, can be employed for missing data imputation. However, earlier applications
often assume simple data distributions, such as mixtures of Gaussians for continuous data or Bernoulli
and multinominal densities for discrete data (García-Laencina et al., 2010). These assumptions limit
the imputation capabilities of these methods due to the restricted density estimation of simple
distributions. The integration of EM with deep generative models remains underexplored. A closely
related approach is MCFlow (Richardson et al., 2020), which iteratively imputes missing data using
normalizing flows (Rezende & Mohamed, 2015). However, MCFlow focuses on recovering missing
data through maximum likelihood rather than expectation, and its conditional imputation is achieved
through soft regularization instead of precise sampling based on the conditional distribution. Beyond
EM, the concept of iterative training is prevalent in state-of-the-art deep learning-based imputation
methods. For instance, IGRM (Zhong et al., 2023) constructs a graph from all dataset samples
and introduces the concept of friend networks, which are iteratively updated during the imputation
learning process. HyperImpute (Jarrett et al., 2022) proposes an AutoML imputation method that
iteratively refines both model selection and imputed values.

Diffusion Models for Missing Data Imputation. We are not the first to utilize diffusion models
for missing data imputation. In computer vision, diffusion models have been widely applied in image
inpainting, either in the data space (Lugmayr et al., 2022) or the latent space (Corneanu et al., 2024).
In the tabular data area, TabCSDI (Zheng & Charoenphakdee, 2022) employs a conditional diffusion

1The code is available at https://github.com/hengruizhang98/DiffPuter.

2

https://github.com/hengruizhang98/DiffPuter

Published as a conference paper at ICLR 2025

model to learn the distribution of masked observed entries conditioned on the unmasked observed
entries. MissDiff (Ouyang et al., 2023) uses a diffusion model to learn the density of tabular data
with missing values by masking the observed entries. Although MissDiff was not originally intended
for imputation, it can be easily adapted for this task. Other methods, despite claiming applicability
for imputation, are trained on complete data and evaluated on incomplete testing data (Zhang et al.,
2024; Jolicoeur-Martineau et al., 2024). This approach contradicts the focus of this study, where the
training data itself contains missing values. Additionally, all the aforementioned methods use one-step
imputations, which overlook the issue that missing data in the training set can lead to inaccurate data
density estimation. By contrast, the proposed DIFFPUTER is the first to integrate a diffusion-based
generative model into the EM framework. Additionally, we achieved accurate conditional sampling
by mixing the forward and reverse processes of diffusion and demonstrated the effectiveness of this
approach through theoretical analysis.

3 PRELIMINARIES

3.1 MISSING VALUE IMPUTATION FOR INCOMPLETE DATA

This paper addresses the missing value imputation task for incomplete data, where only partial data
entries are observable during the training process. Formally, let the complete d-dimensional data
be denoted as x ∼ pdata(x) ∈ Rd. For each data sample, x, there is a binary mask m ∈ {0, 1}d
indicating the location of missing entries for x. Let the subscript k denote the k-th entry of a vector,
then mk = 1 stands for missing entries while mk = 0 stands for observable entries.

We further use xobs and xmis to denote the observed data and missing data, respectively (i.e.,
x = (xobs,xmis)). Note that xobs is the fixed ground-truth observation, while xmis is conceptual
and unknown, and we we aim to estimate it. The missing value imputation task aims to predict the
missing entries xmis based on the observed entries xobs.

In-sample vs. Out-of-sample imputation. The missing data imputation task can be categorized
into two types: in-sample and out-of-sample. In-sample imputation means that the model only
has to impute the missing entries in the training set, while out-of-sample imputation requires the
model’s capacity to generalize to the unseen data records without fitting its parameters again. Not all
imputation methods can generalize to out-of-sample imputation tasks. For example, methods that
directly treat the missing values as learnable parameters (Muzellec et al., 2020; Zhao et al., 2023) are
hard to apply to unseen records. A desirable imputation method is expected to perform well on both
in-sample and out-of-sample imputation tasks, and this paper studies both of the two settings.

3.2 FORMULATING MISSING DATA IMPUTATION WITH EXPECTATION-MAXIMIZATION

Treating xobs as observed variables and xmis as latent variables, with the estimated density of the
complete data distribution parameterized as pθ(x), we can formulate the missing value imputation
problem using the Expectation-Maximization (EM) algorithm. Specifically, when the complete
data distribution pθ(x) is available, the optimal estimation of missing values is given by xmis∗ =
Exmisp(xmis|xobs,θ). Conversely, when the missing entries xmis are known, the density parameters
can be optimized via maximum likelihood estimation: θ∗ = argmax

θ
p(x|θ). Consequently, with the

initial estimation of missing values xmis, the model parameters θ and the missing value xmis can be
optimized by iteratively applying M-step and E-step:

• Maximization-step: Fix xmis, update θ∗ = argmax
θ

p(x|θ) = argmax
θ

pθ(x
obs,xmis).

• Expectation-step: Fix θ, update xmis∗ = Exmisp(xmis|xobs,θ).

4 METHODOLOGY

In this section, we introduce DIFFPUTER- Iterative Missing Data Imputation with Diffusion. Based
on the Expectation-Maximization (EM) algorithm, DIFFPUTER updates the density parameter θ
and hidden variables xmis in an iterative manner. Fig. 1 shows the overall architecture and training

3

Published as a conference paper at ICLR 2025

M step E step

Fix , estimate Fix , estimate

K iterations

Sync

One-hot decoding

First iteration

argmax

One-hot encoding Base mean imputation

age income

40 K

28

education

Masters

...
10th K

age income

40 K

28

education

Masters

...
10th K

Diffusion Model:

12th

NaN

NaN

NaN

K

age

40 1

28

mean

mean1

...
0 1mean

edu1 edu2 edu3 income

0

1

0

0
... ...

mean mean 1

0

age

40

28 1

...
0 1

edu1 edu2 edu3 income

0 0

0
... ...

31

0.40.4 0.7 0.6 1

0.3

0

age

40

28 1

...
0 1

edu1 edu2 edu3 income

0 0

0
... ...

38

0.40.1 0.4 0.8 1

0.7

0

Diffusion Model: age

40

28 1

...
0 1

edu1 edu2 edu3 income

0 0

0
... ...

NaN

NaNNaN NaN

NaN

0

1

age

40

28 1

...
0 1

edu1 edu2 edu3 income

0 0

0
... ...

38

0 0 1 1

1

0

Sync

38

Figure 1: An overview of the architecture of the proposed DIFFPUTER. DIFFPUTER utilizes one-hot
encoding to transform discrete variables into continuous ones and use the mean of observed values to
initialize the missing entries. The EM algorithm alternates the process of 1) fixing xmis and estimate
diffusion model parameter θ, 2) fixing θ and estimate xmis, for K iterations. The final imputation
result x∗ is returned from the E-step of the last iteration.

process of DIFFPUTER: 1) The M-step fixes the missing entries xmis, then a diffusion model is trained
to estimate the density of the complete data distribution pθ(x) = pθ(x

obs,xmis); 2) The E-step
fixes the model parameters θ, then we update the missing entries xmis via the reverse process of the
learned diffusion model pθ(x). The above two steps are executed iteratively until convergence. The
following sections introduce the M-step and E-step of DIFFPUTER, respectively. To avoid confusion,
we use x,xt,x

obs, etc. to denote samples from real data, x̃, x̃t, x̃
obs, etc. to denote samples obtained

by the model θ, while x̂, x̂t, x̂
obs, etc. to denote the specific values of variables.

4.1 M-STEP: DENSITY ESTIMATION WITH DIFFUSION MODELS

Given an estimation of complete data x = (xobs,xmis), M-step aims to learn the density of x,
parameterized by model θ, i.e., pθ(x). Inspired by the impressive generative modeling capacity
of diffusion models (Song et al., 2021b; Karras et al., 2022), DIFFPUTER learns pθ(x) through
a diffusion process, which consists of a forward process that gradually adds Gaussian noises of
increasing scales to x, and a reverse process that recovers the clean data from the noisy one:

xt = x0 + σ(t)ε, ε ∼ N (0, I), (Forward Process) (1)

dxt = −2σ̇(t)σ(t)∇xt
log p(xt)dt+

√
2σ̇(t)σ(t)dωt, (Reverse Process) (2)

In the forward process, x0 = x = (xobs,xmis) is the currently estimated data at time 0, and xt is the
diffused data at time t. σ(t) = t is the noise level (and σ̇(t) is its derivative w.r.t. t), i.e., the standard
deviation of Gaussian noise, at time t. The forward process has defined a series of data distribution
p(xt) =

∫
x0

p(xt|x0)p(x0)dx0, and p(x0) = p(x). Note that when restricting the mean of x0 to 0

and keeping the variance of x0 small (e.g., via standardization), p(xt) approaches a tractable prior
distribution π(x) at t = T when σ(T) is large enough, meaning p(xT) ≈ π(x) (Song et al., 2021a).
In our formulation in Eq. 1, p(xT) ≈ π(x) = N (0, σ2(T)I).

In the reverse process,∇xt log p(xt) is the gradient of xt’s log-probability w.r.t., to xt, and is also
known as the score function. ωt is the standard Wiener process. The model is trained by (conditional)
score matching (Song et al., 2021b), which utilizes a neural network ϵθ(xt, t) (called denoising/score
network) to approximate the conditional score-function ∇xt

log p(xt|x0), which in expectation
approximates∇xt

log p(xt):

LSM = Ex0∼p(x0)Et∼p(t)Eε∼N (0,I)∥ϵθ(xt, t)−∇xt
log p(xt|x0)∥22, where xt = x0+σ(t)ε. (3)

Since the score of conditional distribution has analytical solutions, i.e., ∇xt
log p(xt|x0) =

∇xtp(xt|x0)

p(xt|x0)
= −xt−x0

σ2(t) = − ε
σ(t) , Eq. 3 can be interpreted as training a neural network ϵθ(xt, t) to

4

Published as a conference paper at ICLR 2025

approximate the scaled noise. Therefore, ϵθ(xt, t) is also known as the denoising function, and in
this paper, it is implemented as a five-layer MLP (see Appendix D.4).

Remark 1. Starting from the prior distribution xT ∼ π(x), and apply the reverse process in Eq. 2
with∇xt

log p(xt) replaced with ϵθ(xt, t), we obtain a series of distributions pθ(xt),∀t ∈ [0, T]

Remark 2. (Corollary 1 in (Song et al., 2021a)) Let p(x) = p(x0) be the data distribution, and
pθ(x) = pθ(x0) be the marginal data distribution obtained from the reverse process, then the
score-matching loss function in Eq. 3 is an upper bound of the negative-log-likelihood of real data
x ∼ p(x) over θ. Formally,

−Ep(x)[log pθ(x)] ≤ LSM(θ) + Const, (4)

where Const is a constant independent of θ.

Remark 2 indicates that the θ optimized by Eq. 3 approximates the maximum likelihood estimation
of data distribution p(x). Consequently, pθ(x) approximates p(x) accurately with enough capacity.
The algorithmic illustration of DIFFPUTER’s M-step is summarized in Algorithm 1.

4.2 E-STEP: MISSING DATA IMPUTATION WITH A LEARNED DIFFUSION MODEL

Given the current estimation of data distribution pθ(x), the E-step aims to obtain the distribution of
complete data, conditional on the observed values, i.e., pθ(x|xobs), such that the estimated complete
data x∗ can be updated by taking the expectation, i.e., x∗ = Ex pθ(x|xobs).

When there is an explicit density function for pθ(x), or when the conditional distribution pθ(x|xobs)
is tractable (e.g., can be sampled), computing Ex p(x|xobs,θ) becomes feasible. While most deep
generative models such as VAEs and GANs support convenient unconditional sampling from pθ(x),
they do not naturally support conditional sampling, e.g., x̃ ∼ pθ(x|xobs). Luckily, since the diffusion
model preserves the size and location of features in both the forward diffusion process and the reverse
denoising process, it offers a convenient and accurate solution to perform conditional sampling
pθ(x|xobs) from an unconditional model pθ(x) = pθ(x

obs,xmis).

Specifically, let x be the data to impute, xobs = x̂obs
0 be the values of observed entries, m be the

0/1 indicators of the location of missing entries, and x̃t be the imputed data at time t. Then, we can
obtain the imputed data at time t−∆t via combining the observed entries from the forward process
on x0 = x, and the missing entries from the reverse process on x̃t from the prior step t (Lugmayr
et al., 2022; Song et al., 2021b):

xfoward
t−∆t = x+ σ(t−∆t) · ε, where ε ∼ N (0, I), (Forward for observed entries) (5)

xreverse
t−∆t = x̃t +

∫ t−∆t

t

dx̃t, where dx̃t is defined in Eq. 2 (Reverse for missing entries) (6)

x̃t−∆t = (1−m)⊙ xforward
t−∆t +m⊙ xreverse

t−∆t . (Merging) (7)

Based on the above process, starting at a random noise from the maximum time T , i.e., x̃T ∼
N (0, σ2(T)I), we can obtain a reconstructed x̃0, such that the observed entries of x̃0 are the same as
those of x0, i.e., x̃obs

0 = x̂obs
0 . In Theorem 1, we prove that via the algorithm above, the obtained x̃0

is sampled from the desired conditional distribution, i.e., x̃0 ∼ pθ(x|xobs = x̂obs
0).

Theorem 1. Let x̃T be a sample from the prior distribution π(x) = N (0, σ2(T)I), x be the data to
impute, and the known entries of x are denoted by xobs = x̂obs

0 . The score function ∇xt log p(xt)
is approximated by neural network ϵθ(xt, t) . Applying Eq. 5, Eq. 6, and Eq. 7 iteratively from
t = T ≫ 0 until t = 0 with ∆t → 0, then x̃0 is a sample from pθ(x), under the condition that its
observed entries x̃obs

0 = x̂obs
0 . Formally,

x̃0 ∼ pθ(x|xobs = x̂obs
0) (8)

See proof in Appendix B.1. Theorem 1 demonstrates that with a learned diffusion model θ, we are able
to obtain samples exactly from the conditional distribution pθ(x|xobs) through the aforementioned
imputation process. For inference, we use Monte Carlo estimation to compute the expectation of the
missing values, i.e., x∗ = Expθ(x|xobs) ≈

∑N
j=1 x̃

(j)
0 /N .

5

Published as a conference paper at ICLR 2025

Discretization. The above imputing process involves recovering x̃t continuously from t = T to
t = 0, which is infeasible in practice. In implementation, we discretize the process via M +1 discrete
descending timesteps tM , tM−1, · · · , ti, · · · , t0, where tM = T, t0 = 0. Therefore, starting from
x̃tM ∼ pθ(xtM |xobs = x̂obs

0), we obtain pθ(xti |xobs = x̂obs
0) from i = M − 1 to i = 0.

Algorithm 1: M-step: Density Es-
timation using Diffusion Model
Input: Data samples from p(x).
Output: Score network ϵθ

1 while not converging do
2 Sample x ∼ p(x) ∈ Rd

3 Sample t ∼ p(t)

4 Sample ε ∼ N (0, I) ∈ Rd

5 x0 = x
6 xt = x0 + σ(t) · ε
7 ℓ(θ) = ∥ϵθ(xt, t)− −ε

σ(t)∥
2
2

8 Update θ via Adam optimizer

Algorithm 2: E-step: Missing Data Imputation
Input: Score network ϵθ(xt, t). Data with missing

values x ∈ Rd, mask m ∈ {0, 1}d. Number of
samples N . Number of sampling steps M .

Output: Imputed data x∗

1 for j ← 1 to N do
2 Sample x̃

(j)
tM ∼ N (0, σ2(tM)I)

3 for i←M to 1 do
4 x

forward,(j)
ti−1

= x+ σ(ti−1) · ε
5 x

reverse,(j)
ti−1

= x̃
(j)
ti +

∫ ti−1

ti
dx̃

(j)
ti

6 x̃
(j)
ti−1

= m⊙xforward,(j)
ti−1

+(1−m)⊙xreverse,(j)
ti−1

7 x∗ =
∑N

j=1 x̃
(j)
t0 /N =

∑N
j=1 x̃

(j)
0 /N

Since the desired imputed data xmis∗ is the expectation, i.e., xmis∗ = Exmisp(xmis|xobs = x̂obs
0),

we sample x̃mis
0 for N times, and take the average value as the imputed xmis∗. The algorithmic

illustration of DIFFPUTER’s E-step is summarized in Algorithm 2.

4.3 IMPLEMENTATIONS

Data Processing. Diffusion models are inherently suited for continuous data but not for discrete
data. Given that real-world tabular data often contains both types of data, we use one-hot encoding
to convert each dimension of discrete data into multi-dimensional 0/1 encoding, thereby treating it
as continuous data . After that, we perform standardization on each column of data, ensuring that it
has a mean of 0 and a variance of 1. The final imputation performance is measured by the difference
between the predicted value and the ground-truth missing value after standardization.

Initialization of Missing Data. The execution of the EM algorithm requires the initialized values of
missing entries xmis(0), which might have a huge impact on the model’s convergence. For simplicity,
we initialize the missing entries of each column to be the mean of the column’s observed values,
equivalent to setting xmis(0) = 0 everywhere (since the data has been standardized).

Training. To obtain a more accurate estimation of complete data x, DIFFPUTER iteratively executes
the M-step and E-step. To be specific, let x(k) = (xobs(k),xobs(k)) = (xobs,xobs(k)) be the
estimation of complete data at k-th iteration, θ(k) be the diffusion model’s parameters at k-th
iteration, we write θ(k+1) as a function of x(k), i.e., θ(k+1) = M-step (x(k)), and x(k+1) as a
function of θ(k+1) and x(k), i.e., x(k+1) = E-step (x(k),θ(k+1)). Therefore, with the initialized x(0)

and the maximum iteration K, we are able to obtain x(k) from k = 1 to K.

Inference. For in-sample imputation, the imputed values are obtained iteratively during the training
process. For out-of-sample imputation, with the observed incomplete data x, the mask m, and the
trained score network ϵθ, we directly apply the E-step once in Algorithm 2 to obtain the imputation
values x∗.

5 EXPERIMENTS

In this section, we conduct experiments to study the efficacy of the proposed DIFFPUTER in missing
data imputation tasks.

6

Published as a conference paper at ICLR 2025

5.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate the proposed DIFFPUTER on ten public real-world datasets of varying scales.
We consider five datasets of only continuous features: California, Letter, Gesture, Magic, and
Bean, and four datasets of both continuous and discrete features: Adult, Default, Shoppers, and
News. The detailed information of these datasets is presented in Appendix D.2. Following previous
works (Muzellec et al., 2020; Zhao et al., 2023), we study three missing mechanisms: MCAR,
MAR, and MNAR. Differences between the three settings are in Appendix D.3. In this section, we
only report the performance in the MCAR setting, while the results of the other two settings are in
Appendix E. In the main experiments, we set the missing rate as r = 30%. For each dataset, we
generate 10 masks according to the missing mechanism and report the mean and standard deviation
of the imputing performance.

Baselines. We compare DIFFPUTER with 16 powerful imputation methods from different categories:
1) Distribution-matching methods based on optimal transport, including TDM (Zhao et al., 2023)
and MOT (Muzellec et al., 2020). 2) Graph-based imputation methods, including GRAPE (You
et al., 2020): a pure bipartite graph-based framework for data imputation, and IGRM (Zhong et al.,
2023): a graph-based imputation method that iteratively reconstructs the friendship network. 3)
Iterative methods, including EM with multivariate Gaussian priors (García-Laencina et al., 2010),
MICE (Van Buuren & Karin, 2011), MIRACLE (Kyono et al., 2021), SoftImpute (Hastie et al.,
2015), and MissForest (Stekhoven & Bühlmann, 2012). 4) Deep generative models, including
MIWAE (Mattei & Frellsen, 2019), GAIN (Yoon et al., 2018), MCFlow (Richardson et al., 2020),
MissDiff (Ouyang et al., 2023) and TabCSDI (Zheng & Charoenphakdee, 2022). It is worth noting
that MissDiff and TabCSDI are also based on diffusion. We also compare with two recent SOTA
imputing methods ReMasker (Du et al., 2024) and HyperImpute (Jarrett et al., 2022).

Evaluation Protocols. For each dataset, we use 70% as the training set, and the remaining 30% as the
testing set. All methods are trained on the training set. The imputation is applied to both the missing
values in the training set and the testing set. Consequently, the imputation of the training set is the
’in-sample’ setting, while imputing the testing set is the ’out-of-sample’ setting. The performance of
DIFFPUTER is evaluated by the divergence between the predicted values and ground-truth values
of missing entries. For continuous features, we use Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE), while for discrete features, we use Accuracy. Note that both the MAE and
RMSE are calculated based on the input data after standardization (zero mean and unit variance). The
implementation details and hyperparameter settings are presented in Appendix D.4.

5.2 MAIN RESULTS (MASK COMPLETELY AT RANDOM)

We first evaluate DIFFPUTER’s performance in the in-sample imputation task. Figure 2 compares the
performance of different imputation methods regarding continuous columns using MAE and RMSE.
Table 1 compares the performance of different methods regarding discrete columns using accuracy.
Our observations on these experimental results are summarized as follows.

Superior performance of DIFFPUTER. Across all datasets, DIFFPUTER provides high-quality
imputation results, matching the best methods on some datasets and significantly outperforming
the second-best methods on the remaining datasets. Compared with the other two diffusion-based
methods, MissDiff and TabCSDI, the substantial performance advantage of DIFFPUTER convincingly
demonstrates the correctness and superiority of combining the EM algorithm with Diffusion.

Traditional machine learning methods are still powerful imputors. A well-recognized claim in
tabular data machine learning is that traditional machine learning methods can sometimes be better
than deep learning methods (Lalande & Doya, 2022; Suh & Song, 2023; Jolicoeur-Martineau et al.,
2024), and we have similar observations in missing data imputation. For example, the simple EM
algorithm under the mixture-Gaussian assumption and the KNN algorithm give decent imputation
performance and outperform a lot of early deep generative imputation methods.

The preference of different types of algorithms for heterogeneous tabular data. Another in-
teresting finding is that discriminative methods (e.g., Remasker, GRAPE, MOT) and generative
methods (e.g., DIFFPUTER) have different preferences for continuous data and discrete data. Overall,
generative models appear to be more effective at imputing continuous columns. As shown in Figure 2,
our model significantly outperforms these discriminative models. Conversely, discriminative models

7

Published as a conference paper at ICLR 2025

California Letter Gesture Magic Bean Adult Default Shoppers News0.0

0.5

1.0
M

AE

DiffPuter
Remasker
HyperImpute

GRAPE
IGRM
MissDiff

TabCSDI
TDM
MOT

MCFlow
SoftImpute
GAIN

Missforest
MIWAE
MICE

EM
MIRACLE
KNN

Average0.2

0.4

0.6

0.8

California Letter Gesture Magic Bean Adult Default Shoppers News
Dataset

0.0

0.5

1.0

RM
SE

Average0.4

0.6

0.8

1.0

Figure 2: MCAR, In-sample imputation performance on continuous columns: Comparing DIFF-
PUTER with 17 baselines on imputing continuous data on all the nine datasets. A blank column
indicates that the method fails or gets out-of-memory for that dataset. DIFFPUTER outperforms the
most competitive baseline method by 6.94% (MAE score) and 4.78% (RMSE score) by average. The
circled number after the model name denotes its ranking among all methods.

0 2 4 6
0.4

0.6

0.8

1.0

Sc
or

e

California
MAE
RMSE

0 2 4 6
0.4
0.6
0.8
1.0

Letter
MAE
RMSE

0 2 4 6

0.50

0.75

1.00
Gesture

MAE
RMSE

0 2 4 6
Iteration k

0.6

0.8

1.0

Sc
or

e

Adult
MAE
RMSE
ACC

0 2 4 6
Iteration k

0.25

0.50

0.75

1.00
Default

MAE
RMSE
ACC

0 2 4 6
Iteration k

0.4
0.6
0.8
1.0

Shoppers
MAE
RMSE
ACC

Figure 3: Impacts of the number of EM iterations.
DIFFPUTER’s performance steadily improves as the
number of EM interactions increases.

5 10 15 20

0.4

0.5

M
AE

California

5 10 15 20

0.4

0.6
Letter

5 10 15 20
Number of samples: N

0.5

0.6

M
AE

Adult

5 10 15 20
Number of samples: N

0.25

0.30

0.35

Default

Figure 4: Impacts of the number of sampled
imputations per iteration. A very small N
leads to poor performance and large variance.

are more proficient at imputing discrete data: in Table 1, the best discriminative model, Remasker,
can achieve results comparable to our method on almost all datasets.

Next, we compare the performance in the out-of-sample imputation tasks. Noting that some im-
putation methods are specifically designed for in-sample imputation and cannot be applied to the
out-of-sample setting, the number of baselines in this task is significantly reduced. Table 6 in Ap-
pendix E.1 compares the MAEs and RMSEs in the OOS imputation task. Comparing it with the
results of in-sample imputation, we can easily observe that some methods exhibit significant perfor-
mance differences between the two settings. For example, graph-based methods GRAPE and IGRM
perform well in in-sample imputation, but their performance degrades significantly in out-of-sample
imputation. IGRM even fails on all datasets in the out-of-sample imputation setting. In contrast, our
DIFFPUTER demonstrates excellent performance in both in-sample and out-of-sample imputation.
This highlights DIFFPUTER’s superior performance and robust generalization capabilities.

5.3 ABLATION STUDIES

Impacts of the number of EM iterations. In Fig. 3, we present the performance of DIFFPUTER’s
imputation results from increasing EM iterations. Note that k = 0 represents the imputation result of
a randomly initialized denoising network, and k = 1 represents the performance of a pure diffusion
model without iterative refinement. It is clearly observed that a single diffusion imputation achieves
only suboptimal performance, while DIFFPUTER’s performance steadily improves as the number of

8

Published as a conference paper at ICLR 2025

Table 1: MCAR, In-sample imputation performance on discrete columns. Comparison of the
imputation accuracy on discrete columns on five datasets. DIFFPUTER ranks the first among 19
imputation methods. Mean/Median/MF means using the mean/median/most frequent value as the
imputation, which will give the same imputation result in this case.

Method Adult Default Shoppers News Average Rank

Statistical
Mean/Median/MF 55.20±0.02 53.37±0.11 50.60±0.29 18.60±0.14 44.44 15

Traditional iterative
EM (García-Laencina et al., 2010) 61.27±0.12 57.80±0.22 50.94±0.27 39.37±0.06 52.35 10

MICE (Van Buuren & Karin, 2011) 50.31±0.21 51.88±0.30 43.43±0.19 30.05±1.17 43.92 16

MIRACLE (Kyono et al., 2021) 62.28±0.21 55.79±1.52 45.74±0.69 39.33±0.27 50.79 12

SoftImpute (Hastie et al., 2015) 56.18±0.08 56.01±0.07 50.94±0.27 18.70±0.05 45.46 14

MissForest (Stekhoven & Bühlmann, 2012) 63.51±0.31 56.97±0.23 51.10±0.61 37.55±0.84 52.28 11

Dist. match
MOT (Muzellec et al., 2020) 63.85±0.16 71.95±0.06 56.91±0.11 38.62±0.20 57.83 5
TDM (Zhao et al., 2023) 62.64±1.36 63.41±7.16 55.00±0.46 30.62±1.22 52.92 8

GNN
GRAPE (You et al., 2020) 69.84±0.25 73.85±0.01 57.32±0.15 40.83±0.44 60.46 3
IGRM (Zhong et al., 2023) 69.21±0.29 OOM 57.45±0.16 OOM - -

Generative models
MIWAE (Mattei & Frellsen, 2019) 51.33±0.08 48.11±0.02 49.23±0.61 17.32±0.01 41.50 18

GAIN (Yoon et al., 2018) 53.73±0.38 54.49±1.80 47.25±0.95 34.20±0.06 47.42 13
MCFlow (Richardson et al., 2020) 60.31±0.18 68.36±0..9 52.73±0.29 30.08±3.01 52.87 9
TabCSDI (Zheng & Charoenphakdee, 2022) 58.72±0.25 50.57±0.02 43.24±0.05 17.49±0.14 42.51 17
MissDiff (Ouyang et al., 2023) 57.39±7.34 66.01±1.88 48.10±1.86 41.39±0.59 53.22 7

Other
KNN (Pujianto et al., 2019) 63.28±0.52 71.64±0.34 53.93±0.28 38.59±0.17 56.86 6
Remasker (Du et al., 2024) 69.18±0.08 76.88±0.62 57.86±0.09 44.33±0.08 62.06 2
HyperImpute (Jarrett et al., 2022) 64.99±0.06 74.39±2.07 59.19±0.04 40.29±0.96 59.72 4

DIFFPUTER 70.12±0.17 77.64±0.32 58.82±0.09 44.69±0.13 62.82 1

20 40
California: Sampling Step

1400

1600

1800

To
ta

l T
ra

in
g

Ti
m

e
(s

)

0.30

0.35

0.40

0.45

0.50

20 40
Adult: Sampling Step

1400

1600

1800

2000

0.40

0.45

0.50

0.55

0.60

M
AE

Training Time MAE

Figure 5: Impacts of sampling steps on the training
time and imputation performance (MAE). Reducing
diffusion sampling steps greatly reduces the training
time at the cost of a slight performance drop.

10 210 1

California: Observed ratio

0.4

0.5

0.6

0.7 Mean impute
10 210 1

Adult: Observed ratio

0.500

0.525

0.550

0.575

0.600

M
AE

Mean impute

Figure 6: Impacts of extremely large miss-
ing ratios. The performance of DIFFPUTER
is upper-bounded by the initialized missing
values via mean imputation

iterations increases. Additionally, we observe that DIFFPUTER does not require a large number of
iterations to converge. In fact, 4 to 5 iterations are sufficient for DIFFPUTER to converge to a stable
and satisfying state.

Impacts of the number of sampled imputations per iteration. To obtain the expected value of
missing entries, we have to sample a number of examples from the conditional distribution (via the
reverse diffusion process). Therefore, the number N should have a huge impact on DIFFPUTER’s
performance. In Figure 4, we study the impacts of the number of samples on the imputation results.
As expected, a very small N leads to poor performance and large variance, while increasing the
sampling number consistently improves the performance and reduces the variance. An optimal and
stable performance can be achieved at N ≥ 10. Since the sampling time is linear w.r.t. to the sample
number, we use N = 10 by default.

Impacts of the number of sampling steps in diffusion. Another hyperparameter impacting the
performance and training speed is the number of sampling steps M in the reverse process of diffusion.

9

Published as a conference paper at ICLR 2025

Table 2: Comparison of the real training time on an Nvidia RTX 4090 GPU. DIFFPUTER has a similar
training cost to SOTA methods, yet brings from 8% to 25% performance improvement.

Datasets MOT TDM GRAPE IGRM HyperImpute Remasker DIFFPUTER

Time: California 446.47s 216.91s 635.7s 1267.5s 1277.3s 1320.1s 1927.2s
Time: Adult 396.68s 514.56s 2347.1s 3865.1s 1806.9s 1902.4s 2142.9s

DIFFPUTER’s perf. improve. 21.47% 21.37% 25.94% 20.97% 8.44% 10.65% -

By default, DIFFPUTER set M = 50, and we study the impact of reducing M in Figure 5. As
demonstrated, reducing the diffusion sampling steps can greatly reduce the training time at the cost
of only a slight performance drop. More detailed, reducing the sampling step from 50 to 20 reduces
about 25% of training time cost, with only 3% performance drop. Therefore, when time costs are
high, and precision requirements are not stringent, the training speed can be further increased by
reducing the sampling steps.

Impacts of large missing ratios. In Figure 6, we study the performance of DIFFPUTER with missing
ratio from 30% to 99% (observed ratio from 70% to 1%). Consistent with the intuition, when the
observed ratio decreases (i.e., missing ratio increases), there is a significant increase in the imputation
MAE score, indicating that the imputation performance becomes increasingly worse. However, we
can observe a clear performance lower bound when the missing ratio approaches 99%, which is
close to the performance of directly imputing using the mean of observed values. This is because,
in DIFFPUTER’s first E-step, each column’s missing values are always initialized as the mean of
the observed ones. Therefore, DIFFPUTER can still give a reasonable imputation result even if the
missing ratio is extremely large.

Comparison of Training Time. Intuitively, the training of DIFFPUTER would be very time-
consuming, as it requires iteratively alternating between the training and sampling processes of
the diffusion model. However, in practice, DIFFPUTER’s training efficiency is significantly im-
proved through the following design: 1) light-weighted MLP-architectured denoising function; 2)
reduced number of sampling steps (M = 50≪ 1000 in traditional diffusion methods). To demon-
strate this, we compare the training time of DIFFPUTER with other SOTA imputation methods. As
demonstrated in Table 2, DIFFPUTER has similar training cost (similar scale) to these representa-
tive SOTA methods, yet brings from 8% to 25% performance improvement, which is acceptable.

Table 3: Effects of combining EM with other
Deep Generative Models.

Methods Adult Default Shoppers News

MIWAE 0.5763 0.5194 0.5047 0.6349
HIWAE 0.6155 0.3989 0.4707 0.5032
VAEM 0.5568 0.4292 0.4626 0.5204

HH-VAEM 0.5673 - 0.4589 -

EM + MIWAE 0.5661 0.4993 0.4554 0.4171
EM + HIWAE 0.5974 0.4314 0.4961 0.5222
EM + VAEM 0.5492 0.4121 0.4362 0.5045

EM + HH-VAEM 0.5402 - 0.4262 -

DIFFPUTER 0.3425 0.2661 0.3485 0.2855

Incorporating EM with other DGMs. Finally, we
try to combine EM algorithms with other deep gener-
ative models that are easy to perform conditional sam-
pling, including MIWAE (Mattei & Frellsen, 2019),
HIWAE (Nazabal et al., 2020a), VAEM (Ma et al.,
2020) and HH-VAEM (Peis et al., 2022a). Based
on Table 3, our experimental results demonstrate that
combining EM with other Deep Generative Models
leads to performance improvements. However, it’s
noteworthy that despite these improvements, our pro-
posed DIFFPUTER still outperforms all combinations,
achieving superior results, where lower scores indicate
better performance. This demonstrates the effectiveness and robustness of our approach compared to
existing methods, even when they are enhanced through combination with EM.

6 CONCLUSIONS

In this paper, we have proposed DIFFPUTER for missing data imputation. DIFFPUTER is an iterative
method that combines the Expectation-Maximization algorithm and diffusion models, where the
diffusion model serves as both the density estimator and missing data imputer. We demonstrate
theoretically that the training and sampling process of a diffusion model precisely corresponds to
the M-step and E-step of the EM algorithm. Therefore, we can iteratively update the density of the
complete data and the values of the missing data. Extensive experiments have demonstrated the
efficacy of the proposed method.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This work is supported in part by NSF under grants III-2106758, and POSE-2346158.

REFERENCES

John Barnard and Xiao-Li Meng. Applications of multiple imputation in medical studies: from aids
to nhanes. Statistical methods in medical research, 8(1):17–36, 1999.

Ciprian Corneanu, Raghudeep Gadde, and Aleix M Martinez. Latentpaint: Image inpainting in latent
space with diffusion models. In Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pp. 4334–4343, 2024.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the royal statistical society: series B (methodological), 39(1):
1–22, 1977.

Tianyu Du, Luca Melis, and Ting Wang. Remasker: Imputing tabular data with masked autoencoding.
In International Conference on Learning Representations, 2024.

Fabian Eckert, Teresa C Fort, Peter K Schott, and Natalie J Yang. Imputing missing values in the
us census bureau’s county business patterns. Technical report, National Bureau of Economic
Research, 2020.

Pedro J García-Laencina, José-Luis Sancho-Gómez, and Aníbal R Figueiras-Vidal. Pattern classifica-
tion with missing data: a review. Neural Computing and Applications, 19:263–282, 2010.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Proceedings of the 27th
International Conference on Neural Information Processing Systems, pp. 2672–2680, 2014.

Trevor Hastie, Rahul Mazumder, Jason D Lee, and Reza Zadeh. Matrix completion and low-rank svd
via fast alternating least squares. The Journal of Machine Learning Research, 16(1):3367–3402,
2015.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Proceedings
of the 34th International Conference on Neural Information Processing Systems, pp. 6840–6851,
2020.

Daniel Jarrett, Bogdan C Cebere, Tennison Liu, Alicia Curth, and Mihaela van der Schaar. Hyperim-
pute: Generalized iterative imputation with automatic model selection. In International Conference
on Machine Learning, pp. 9916–9937. PMLR, 2022.

Alexia Jolicoeur-Martineau, Kilian Fatras, and Tal Kachman. Generating and imputing tabular data
via diffusion and flow-based gradient-boosted trees. In International Conference on Artificial
Intelligence and Statistics, pp. 1288–1296. PMLR, 2024.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. In Proceedings of the 36th International Conference on Neural Informa-
tion Processing Systems, pp. 26565–26577, 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: Modelling
tabular data with diffusion models. In International Conference on Machine Learning, pp. 17564–
17579. PMLR, 2023.

Trent Kyono, Yao Zhang, Alexis Bellot, and Mihaela van der Schaar. Miracle: Causally-aware
imputation via learning missing data mechanisms. Advances in Neural Information Processing
Systems, 34:23806–23817, 2021.

11

Published as a conference paper at ICLR 2025

Florian Lalande and Kenji Doya. Numerical data imputation: Choose knn over deep learning. In
International Conference on Similarity Search and Applications, pp. 3–10. Springer, 2022.

Lee Lillard, James P Smith, and Finis Welch. What do we really know about wages? the importance
of nonreporting and census imputation. Journal of Political Economy, 94(3, Part 1):489–506, 1986.

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11461–11471, 2022.

Chao Ma, Sebastian Tschiatschek, Konstantina Palla, José Miguel Hernández-Lobato, Sebastian
Nowozin, and Cheng Zhang. Eddi: Efficient dynamic discovery of high-value information with
partial vae. arXiv preprint arXiv:1809.11142, 2018.

Chao Ma, Sebastian Tschiatschek, Richard Turner, José Miguel Hernández-Lobato, and Cheng
Zhang. Vaem: a deep generative model for heterogeneous mixed type data. Advances in Neural
Information Processing Systems, 33:11237–11247, 2020.

Zhihua Ma and Guanghui Chen. Bayesian methods for dealing with missing data problems. Journal
of the Korean Statistical Society, 47:297–313, 2018.

Pierre-Alexandre Mattei and Jes Frellsen. Miwae: Deep generative modelling and imputation of
incomplete data sets. In International conference on machine learning, pp. 4413–4423. PMLR,
2019.

Boris Muzellec, Julie Josse, Claire Boyer, and Marco Cuturi. Missing data imputation using optimal
transport. In International Conference on Machine Learning, pp. 7130–7140. PMLR, 2020.

Alfredo Nazabal, Pablo M Olmos, Zoubin Ghahramani, and Isabel Valera. Handling incomplete
heterogeneous data using vaes. Pattern Recognition, 107:107501, 2020a.

Alfredo Nazabal, Pablo M Olmos, Zoubin Ghahramani, and Isabel Valera. Handling incomplete
heterogeneous data using vaes. Pattern Recognition, 107:107501, 2020b.

Yidong Ouyang, Liyan Xie, Chongxuan Li, and Guang Cheng. Missdiff: Training diffusion models
on tabular data with missing values. arXiv preprint arXiv:2307.00467, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: an imperative style, high-
performance deep learning library. In Proceedings of the 33rd International Conference on Neural
Information Processing Systems, pp. 8026–8037, 2019.

Ignacio Peis, Chao Ma, and José Miguel Hernández-Lobato. Missing data imputation and acquisition
with deep hierarchical models and hamiltonian monte carlo. Advances in Neural Information
Processing Systems, 35:35839–35851, 2022a.

Ignacio Peis, Chao Ma, and José Miguel Hernández-Lobato. Missing data imputation and acquisition
with deep hierarchical models and hamiltonian monte carlo. Advances in Neural Information
Processing Systems, 35:35839–35851, 2022b.

Utomo Pujianto, Aji Prasetya Wibawa, Muhammad Iqbal Akbar, et al. K-nearest neighbor (k-nn)
based missing data imputation. In 2019 5th International Conference on Science in Information
Technology (ICSITech), pp. 83–88. IEEE, 2019.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In International
conference on machine learning, pp. 1530–1538. PMLR, 2015.

Trevor W Richardson, Wencheng Wu, Lei Lin, Beilei Xu, and Edgar A Bernal. Mcflow: Monte carlo
flow models for data imputation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 14205–14214, 2020.

Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of
score-based diffusion models. In Advances in Neural Information Processing Systems, 2021a.

12

Published as a conference paper at ICLR 2025

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In The Ninth
International Conference on Learning Representations, 2021b.

Daniel J Stekhoven and Peter Bühlmann. Missforest—non-parametric missing value imputation for
mixed-type data. Bioinformatics, 28(1):112–118, 2012.

Heajung Suh and Jongwoo Song. A comparison of imputation methods using machine learning
models. Communications for Statistical Applications and Methods, 30(3):331–341, 2023.

Stef Van Buuren and Karin. mice: Multivariate imputation by chained equations in r. Journal of
statistical software, 45:1–67, 2011.

Jinsung Yoon, James Jordon, and Mihaela Schaar. Gain: Missing data imputation using generative
adversarial nets. In International Conference on Machine Learning, pp. 5689–5698. PMLR, 2018.

Jiaxuan You, Xiaobai Ma, Yi Ding, Mykel J Kochenderfer, and Jure Leskovec. Handling missing
data with graph representation learning. Advances in Neural Information Processing Systems, 33:
19075–19087, 2020.

Hengrui Zhang, Jiani Zhang, Balasubramaniam Srinivasan, Zhengyuan Shen, Xiao Qin, Chris-
tos Faloutsos, Huzefa Rangwala, and George Karypis. Mixed-type tabular data synthesis with
score-based diffusion in latent space. In The twelfth International Conference on Learning Repre-
sentations, 2024.

He Zhao, Ke Sun, Amir Dezfouli, and Edwin V Bonilla. Transformed distribution matching for
missing value imputation. In International Conference on Machine Learning, pp. 42159–42186.
PMLR, 2023.

Shuhan Zheng and Nontawat Charoenphakdee. Diffusion models for missing value imputation in
tabular data. In NeurIPS 2022 First Table Representation Workshop, 2022.

Jiajun Zhong, Ning Gui, and Weiwei Ye. Data imputation with iterative graph reconstruction. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 11399–11407, 2023.

13

Published as a conference paper at ICLR 2025

A DEFINITION OF SYMBOLS

In Table 4, we explain the definition of every symbol used in this paper.

Table 4: Explanations of the symbols used in this paper.

Symbol Explanation

d the number of columns of tabular data
x ∈ Rd random variable, representing a row of the tabular data
p(x) = pdata(x) the distribution of the complete data
m ∈ {0, 1}d binary mask vector
xobs the observed part of x, indicated by mk = 0
xmis the missing part of x, indicated by mk = 1

t the timestep of diffusion process
σ(t) = t the noise level at timestep t
T the maximum timestep
ε ∼ N (0, I) standard Gaussian noise
x0 = x unforwarded x (at timestep 0)
xobs
0 = xobs observed part of x

xmis
0 = xmis missing part of x

xt = x0 + σ(t)ε forwarded x at timestep t
xobs
t = xobs

0 + σ(t)ε observed part of xt

xmis
t = xmis

0 + σ(t)ε missing part of xt

θ diffusion model’s parameters
pθ(x) density of data induced by the diffusion model
x̃T ∼ π(x) = N (0, σ2(T)I) sampled random noise for the reverse process
x̃obs
T observed part of x̃T

x̃mis
T missing part of x̃T

x̃t sampled data at timestep t in the reverse process
x̃obs
t observed part of x̃t

x̃mis
t missing part of x̃t

x̂obs
0 The exact ground-truth value(s) of the observed part

B PROOFS

B.1 PROOF FOR THEOREM 1

Proof. First, it is obvious that the observed entries from Eq. 7, i.e., x̃obs
t , satisfy

x̃obs
t ∼ p(xobs

t |xobs = x̂obs
0), ∀t. (9)

Then, we introduce the following Lemma.

Lemma 1. Let x̃t ∼ pθ(xt|xobs = x̂obs
0). If x̃t−∆t is a sample obtained from Eq. 5, Eq. 6, and

Eq. 7, then x̃t−∆t ∼ pθ(xt−∆t|xobs = x̂obs
0), when ∆t→ 0+.

Proof. First, note that xt (xt−∆t) is obtained via adding dimensionally-independent Gaussian
noises to x0 = x (see the forward process in Eq. 1), we have

pθ(xt−∆t|xobs = x̂obs
0) = pθ(x

obs
t−∆t,x

mis
t−∆t|xobs = x̂obs

0)

= p(xobs
t−∆t|xobs = x̂obs

0)︸ ︷︷ ︸
Correspond to x̃obs

t−∆t in Eq. 5

·pθ(xmis
t−∆t|xobs = x̂obs

0). (10)

14

Published as a conference paper at ICLR 2025

Therefore, x̃t−∆t’s observed entries x̃obs
t−∆t is sampled from distribution p(xobs

t−∆t|xobs = x̂obs
0).

Then, we turn to the missing entries, where we have the following derivation:

pθ(x
mis
t−∆t|xobs = x̂obs

0) =

∫
pθ(x

mis
t−∆t|xt,x

obs = x̂obs
0)pθ(xt|xobs = x̂obs

0)dxt

= Epθ(xt|xobs=x̂obs
0)pθ(x

mis
t−∆t|xt,x

obs = x̂obs
0)

≈ Epθ(xt|xobs=x̂obs
0)pθ(x

mis
t−∆t|xt)

= pθ(x
mis
t−∆t|x̃t),

(11)

where x̃t is a random sample from pθ(xt|xobs = x̂obs
0). The first ’≈’ holds because when ∆t→ 0,

xmis
t−∆t is almost predictable via xt without xobs

0 . Therefore, when x̃t ∼ pθ(xt|xobs = x̂obs
0),

pθ(x
mis
t−∆t|xobs = x̂obs

0) is approximately tractable via pθ(x
mis
t−∆t|x̃t).

Note that xmis
t−∆t denotes the missing entries of xt−∆t. According to the reverse denoising process in

Eq. 2, given xt = x̃t, xt−∆t is obtained via integrating dxt from t to t−∆t, i.e.,

xt−∆t = x̃t +

∫ t−∆t

t

dxt. (12)

Therefore, x̃mis
t−∆t = xmis

t−∆t obtained from Eq. 6 is a sample from pθ(x
mis
t−∆t|x̃t). And, approximately,

x̃mis
t−∆t ∼ pθ(x

mis
t−∆t|xobs = x̂obs

0).

Since x̃obs
t−∆t ∼ p(xobs

t−∆t|xobs = x̂obs
0), x̃mis

t−∆t ∼ pθ(x
mis
t−∆t|xobs = x̂obs

0), we have x̃t−∆t ∼
pθ(xt−∆t|xobs = x̂obs

0), according to Eq. 10. Therefore, the proof for Lemma 1 is completed.

With Lemma 1, we are able to prove Theorem 1 via induction, as long as x̃T is also sampled from
p(xT |xobs = x̂obs

0). This holds because p(xT |x0) ≈ p(xT), given the condition that x0 = x has
zero mean and unit variance, and σ(T)≫ 1.

Note that the score function ∇xt
log p(xt) in Eq. 2 is intractable, it is replaced with the output of

the score neural network ϵθ(xt, t). Therefore, the finally obtained distribution can be rewritten as
pθ(x|xobs = x̂obs

0). Therefore, the proof for Theorem 1 is complete.

C FURTHER EXPLANATION OF THE DIFFUSION MODEL

The diffusion model we adopt in Section 4.1 is actually a simplified version of the Variance-Exploding
SDE proposed in (Song et al., 2021b).

Note that (Song et al., 2021b) has provided a unified formulation via the Stochastic Differential
Equation (SDE) and defines the forward process of Diffusion as

dx = f(x, t)dt+ g(t) dwt, (13)

where f(·) and g(·) are the drift and diffusion coefficients and are selected differently for different
diffusion processes, e.g., the variance preserving (VP) and variance exploding (VE) formulations. ωt

is the standard Wiener process. Usually, f(·) is of the form f(x, t) = f(t) x. Thus, the SDE can be
equivalently written as

dx = f(t) x dt+ g(t) dwt. (14)

Let x be a function of the time t, i.e., xt = x(t), then the conditional distribution of xt given x0

(named as the perturbation kernel of the SDE) could be formulated as:

p(xt|x0) = N (xt; s(t)x0, s
2(t)σ2(t)I), (15)

where

s(t) = exp

(∫ t

0

f(ξ)dξ

)
, and σ(t) =

√∫ t

0

g2(ξ)

s2(ξ)
dξ. (16)

15

Published as a conference paper at ICLR 2025

Therefore, the forward diffusion process could be equivalently formulated by defining the perturbation
kernels (via defining appropriate s(t) and σ(t)).

Variance Exploding (VE) implements the perturbation kernel Eq. 15 by setting s(t) = 1, indicating
that the noise is directly added to the data rather than weighted mixing. Therefore, The noise variance
(the noise level) is totally decided by σ(t). The diffusion model used in DIFFPUTER belongs to VE-
SDE, but we use linear noise level (i.e., σ(t) = t) rather than σ(t) =

√
t in the vanilla VE-SDE (Song

et al., 2021b). When s(t) = 1, the perturbation kernels become:

p(xt|x0) = N (xt;0, σ
2(t)I) ⇒ xt = x0 + σ(t)ε, (17)

which aligns with the forward diffusion process in Eq. 1.

The sampling process of diffusion SDE is given by:

dx = [f(x, t)− g2(t)∇x log pt(x)]dt+ g(t)dwt. (18)

For VE-SDE, s(t) = 1⇔ f(x, t) = f(t) · x = 0, and

σ(t) =

√∫ t

0

g2(ξ)dξ ⇒
∫ t

0

g2(ξ)dξ = σ2(t),

g2(t) =
dσ2(t)

dt
= 2σ(t)σ̇(t),

g(t) =
√
2σ(t)σ̇(t).

(19)

Plugging g(t) into Eq. 18, the reverse process in Eq. 2 is recovered:

dxt = −2σ(t)σ̇(t)∇xt
log p(xt)dt+

√
2σ(t)σ̇(t)dωt. (20)

D EXPERIMENTAL DETAILS

D.1 CONFIGURATIONS.

We conduct all experiments with:

• Operating System: Ubuntu 22.04.3 LTS

• CPU: Intel 13th Gen Intel(R) Core(TM) i9-13900K

• GPU: NVIDIA GeForce RTX 4090 with 24 GB of Memory

• Software: CUDA 12.2, Python 3.9.16, PyTorch (Paszke et al., 2019) 1.12.1

D.2 DATASETS

We use ten real-world datasets of varying scales, and all of them are available at Kaggle2 or the UCI
Machine Learning repository3. We consider five datasets of only continuous features: California4,
Letter5, Gestur6, Magic7, and Bean8, and five datasets of both continuous and discrete features:
Adult9, Default10, Shoppers11, and News12. The statistics of these datasets are presented in Table 5.

2https://www.kaggle.com/
3https://archive.ics.uci.edu/
4https://www.kaggle.com/datasets/camnugent/california-housing-prices
5https://archive.ics.uci.edu/dataset/59/letter+recognition
6https://archive.ics.uci.edu/dataset/302/gesture+phase+segmentation
7https://archive.ics.uci.edu/dataset/159/magic+gamma+telescope
8https://archive.ics.uci.edu/dataset/602/dry+bean+dataset
9https://archive.ics.uci.edu/dataset/2/adult

10https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
11https://archive.ics.uci.edu/dataset/468/online+shoppers+purchasing+

intention+dataset
12https://archive.ics.uci.edu/dataset/332/online+news+popularity

16

https://www.kaggle.com/
https://archive.ics.uci.edu/
https://www.kaggle.com/datasets/camnugent/california-housing-prices
https://archive.ics.uci.edu/dataset/59/letter+recognition
https://archive.ics.uci.edu/dataset/302/gesture+phase+segmentation
https://archive.ics.uci.edu/dataset/159/magic+gamma+telescope
https://archive.ics.uci.edu/dataset/602/dry+bean+dataset
https://archive.ics.uci.edu/dataset/2/adult
https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
https://archive.ics.uci.edu/dataset/468/online+shoppers+purchasing+intention+dataset
https://archive.ics.uci.edu/dataset/468/online+shoppers+purchasing+intention+dataset
https://archive.ics.uci.edu/dataset/332/online+news+popularity

Published as a conference paper at ICLR 2025

Table 5: Statistics of datasets. # Num stands for the number of numerical columns, and # Cat stands
for the number of categorical columns.

Dataset # Rows # Num # Cat # Train (In-sample) # Test (Out-of-Sample)

California Housing 20, 640 9 - 14, 303 6, 337
Letter Recognition 20, 000 16 - 14, 000 6, 000
Gesture Phase Segmentation 9, 522 32 - 6, 665 2, 857
Magic Gamma Telescope 19, 020 10 - 13, 314 5, 706
Dry Bean 13, 610 17 - 9, 527 4, 083

Adult Income 32, 561 6 8 22, 792 9, 769
Default of Credit Card Clients 30, 000 14 10 21, 000 9, 000
Online Shoppers Purchase 12, 330 10 7 8, 631 3, 699
Online News Popularity 39, 644 45 2 27, 790 11, 894

D.3 MISSING MECHANISMS

According to how the masks m are generated, there are three mainstream mechanisms of missingness,
namely missing patterns: 1) Missing completely at random (MCAR) refers to the case that the
probability of an entry being missing is independent of the data, i.e., p(m|x) = p(m). 2) In
missing at random (MAR), the probability of missingness depends only on the observed values, i.e.,
p(m|x) = p(m|xobs) 3) All other cases are classified as missing not at random (MNAR), where the
probability of missingness might also depend on other missing entries.

We follow the methods proposed in Zhao et al. (2023) to implement MAR and MNAR.

• "For MAR, we first sample a subset of features (columns in X) that will not contain
missing values, and then we use a logistic model with these non-missing columns as input
to determine the missing values of the remaining columns, and we employ line search of the
bias term to get the desired proportion of missing values."

• For MNAR, we use the first approach proposed in [4], "Using a logistic model with the
input masked by MCAR". Specifically, similar to the MAR setting, we first divide the data
columns into two groups, with one group serving as input for the logistic model, outputting
the missing probability for the other set of columns. The difference is that after determining
the missing probability of the second set, we apply MCAR to the input columns (the first
set). Hence, missing values from the second set will depend on the masked values of the
first set.

The code for generating masks according to the three missing mechanisms is also provided at
https://anonymous.4open.science/r/ICLR-DiffPuter.

D.4 IMPLEMENTATIONS AND HYPERPARAMETERS

We use a fixed set of hyperparameters, which will save significant efforts in hyperparameter-tuning
when applying DIFFPUTER to more datasets. For the diffusion model, we set the maximum time
T = 80, the noise level σ(t) = t, which is linear to t. The score/denoising neural network ϵ(xt, t) is
implemented as a 5-layer MLP with hidden dimension 1024. t is transformed to sinusoidal timestep
embeddings and then added to xt, which is subsequently passed to the denoising function. When
using the learned diffusion model for imputation, we set the number of discrete steps M = 50 and
the number of sampling times per data sample N = 10. DIFFPUTER is implemented with Pytorch,
and optimized using Adam (Kingma & Ba, 2015) optimizer with a learning rate of 1× 10−4.

Architecture of denoising neural network. We use the same architecture of denoising neural
network as in two recent tabular diffusion models for tabular data synthesis (Kotelnikov et al.,
2023; Zhang et al., 2024). The denoising MLP takes the current time step t and the feature vector
xt ∈ R1×d as input. First, xt is fed into a linear projection layer that converts the vector dimension
to be dhidden = 1024:

h0 = FCin(xt) ∈ R1×dhidden , (21)
where h0 is the transformed vector, and dhidden is the output dimension of the input layer.

17

https://anonymous.4open.science/r/ICLR-DiffPuter

Published as a conference paper at ICLR 2025

Then, following the practice in TabDDPM (Kotelnikov et al., 2023), the sinusoidal timestep embed-
dings temb ∈ R1×dhidden is added to h0 to obtain the input vector hhidden:

hin = h0 + temb. (22)

The hidden layers are three fully connected layers of the size dhidden−2∗dhidden−2∗dhidden−dhidden,
with SiLU activation functions:

h1 = SiLU(FC1(h0) ∈ R1×2∗dhidden),

h2 = SiLU(FC2(h1) ∈ R1×2∗dhidden),

h3 = SiLU(FC3(h2) ∈ R1×dhidden).

(23)

The estimated score is obtained via the last linear layer:

ϵθ(xt, t) = hout = FCout(h3) ∈ R1×d. (24)

Finally, ϵθ(xt, t) is applied to Eq. 3 for model training.

D.5 IMPLEMENTATIONS OF BASELINES

We implement most of the baseline methods according to the publicly available codebases:

• Remasker (Du et al., 2024): https://github.com/tydusky/remasker.

• TDM (Zhao et al., 2023): https://github.com/hezgit/TDM

• MOT (Muzellec et al., 2020): https://github.com/BorisMuzellec/
MissingDataOT

• GRAPE (You et al., 2020): https://github.com/maxiaoba/GRAPE

• IGRM (Zhong et al., 2023): https://github.com/G-AILab/IGRM

• TabCSDI (Zheng & Charoenphakdee, 2022): https://github.com/
pfnet-research/TabCSDI

• MCFlow (Richardson et al., 2020): https://github.com/trevor-richardson/
MCFlow.

• For HyperImputer (Jarrett et al., 2022), MissForest (Stekhoven & Bühlmann, 2012),
MICE (Van Buuren & Karin, 2011), SoftImpute (Hastie et al., 2015), EM (García-
Laencina et al., 2010), GAIN (Yoon et al., 2018), MIRACLE (Kyono et al., 2021), and
MIWAE (Mattei & Frellsen, 2019), we use the implementations at: https://github.
com/vanderschaarlab/hyperimpute.

MissDiff (Ouyang et al., 2023) does not provide its official implementations. Therefore, we obtain its
results based on our own implementation.

The codes for all the methods are available at https://anonymous.4open.science/r/
ICLR-DiffPuter

D.6 HYPERPARAMETER SETTINGS OF BASELINES

Most of the deep learning baselines recommend the use of one set of hyperparameters for all datasets.
For these methods, we directly follow their guidelines and use the default hyperparameters:

• ReMasker (Du et al., 2024): we use the recommended hyperparameters provided in Ap-
pendix A.2 in the original paper (Du et al., 2024). This set of hyperparameters is searched
by tuning on the Letter dataset and is deployed for all the datasets in the original paper;
hence, we follow this setting.

• HyperImpute (Jarrett et al., 2022): since HyperImpute works by searching over the space
of classifiers/regressors and their hyperparameters, it does not have hyperparameters itself
except parameters related to the AutoML search budget. We adopt the default budget
parameters of HyperImpute’s official implementation for all datasets. The default budget

18

https://github.com/tydusky/remasker
https://github.com/hezgit/TDM
https://github.com/BorisMuzellec/MissingDataOT
https://github.com/BorisMuzellec/MissingDataOT
https://github.com/maxiaoba/GRAPE
https://github.com/G-AILab/IGRM
https://github.com/pfnet-research/TabCSDI
https://github.com/pfnet-research/TabCSDI
https://github.com/trevor-richardson/MCFlow
https://github.com/trevor-richardson/MCFlow
https://github.com/vanderschaarlab/hyperimpute
https://github.com/vanderschaarlab/hyperimpute
https://anonymous.4open.science/r/ICLR-DiffPuter
https://anonymous.4open.science/r/ICLR-DiffPuter

Published as a conference paper at ICLR 2025

parameters and AutoML search space are provided13 and Table 5 in the original paper (Jarrett
et al., 2022).

• MOT (Muzellec et al., 2020) and TDM (Zhao et al., 2023): There is a main hyperparameter
representing the number of subset pairs sampled from the dataset for computing optimal
transport loss. Sinkhorn algorithm and TDM are controlled by hyperparameter n_iter. While
the default value is 3000, we set it as 12000 for all datasets to ensure the algorithm converges
sufficiently. For the round-robin version of the algorithm, the number of sampled pairs is
controlled by max_iter and rr_iter; we adopt the default value 15, which is enough for the
algorithm to converge. For the remaining hyperparameters related to network architectures,
we use the default ones for all datasets.

• kNN: we follow the common practice of selecting the number of nearest neighbors as
√
n,

where n is the number of samples in the dataset.
• GRAPE (You et al., 2020) and IGRM (Zhong et al., 2023): we adopt the recommended set

of hyperparameters used in the original paper for all datasets. For a detailed explanation of
the meaning of the parameters, please see the github repos: GRAPE14 and IGRM15.

• MissDiff: since the original implementation is not available and it is based on the diffusion
model, for a fair comparison, we simply use the same set of hyperparameters with our
DiffPuter.

• TabCSDI (Zheng & Charoenphakdee, 2022): we follow the guide for selecting hyperparam-
eters in the original paper (Appendix B in [3]). Specifically, we use a large version of the
TabCSDI model with a number of layers set to 4 (see more detailed hyperparameters about
the large TabCSDI model16. For batch size, we take the official choice of batch size (8) for
the breast dataset (700 samples) as a base and scale the batch size accordingly with the
sample size of our datasets: since most of the datasets we used have the number of samples
between 20000 to 40000, we scale the batch size to 256 and use it for all datasets.

• MCFlow (Richardson et al., 2020): we adopt the recommended hyperparameters provided
in the official implementation for all datasets17.

• For the remaining classical machine learning methods, including EM, GAIN, MICE, Miracle,
MissForest, and Softimpute where hyperparameters might be important. Since we use the
implementations from the ’hyperimpute’ package, we tune the hyperparameters within
the hyperparameter space provided in the package18. To be specific, we set the maximum
budge as 50, then we sample 50 different hyperparameter combinations according to the
hyperparameter space. Finally, we report the optimal performance over the 50 trials.

E ADDITIONAL RESULTS

E.1 MCAR: OUT-OF-SAMPLE IMPUTATION

We present the out-of-sample imputation performance comparison under MCAR setting in Table 6.

E.2 MISSING AT RANDOM (MAR)

We present the performance comparison under MAR setting in Table 7 and Table 8.

E.3 MISSING NOT AT RANDOM (MNAR)

We present the performance comparison under MNAR setting in Table 9 and Table 10.
13https://github.com/vanderschaarlab/hyperimpute/blob/main/src/

hyperimpute/plugins/imputers/plugin_hyperimpute.py
14https://github.com/maxiaoba/GRAPE/blob/master/train_mdi.py
15https://github.com/G-AILab/IGRM/blob/main/main.py
16https://github.com/pfnet-research/TabCSDI/blob/main/config/census_

onehot_analog.yaml
17https://github.com/trevor-richardson/MCFlow/blob/master/main.py
18https://github.com/vanderschaarlab/hyperimpute/tree/main/src/

hyperimpute/plugins/imputers/plugin_missforest.py

19

https://github.com/vanderschaarlab/hyperimpute/blob/main/src/hyperimpute/plugins/imputers/plugin_hyperimpute.py
https://github.com/vanderschaarlab/hyperimpute/blob/main/src/hyperimpute/plugins/imputers/plugin_hyperimpute.py
https://github.com/maxiaoba/GRAPE/blob/master/train_mdi.py
https://github.com/G-AILab/IGRM/blob/main/main.py
https://github.com/pfnet-research/TabCSDI/blob/main/config/census_onehot_analog.yaml
https://github.com/pfnet-research/TabCSDI/blob/main/config/census_onehot_analog.yaml
https://github.com/trevor-richardson/MCFlow/blob/master/main.py
https://github.com/vanderschaarlab/hyperimpute/tree/main/src/hyperimpute/plugins/imputers/plugin_missforest.py
https://github.com/vanderschaarlab/hyperimpute/tree/main/src/hyperimpute/plugins/imputers/plugin_missforest.py

Published as a conference paper at ICLR 2025

Table 6: MCAR, Out-of-sample imputation performance on MAE and RMSE metrics (using base
10−2 for better presentation). DIFFPUTER outperforms the most competitive baseline methods by
13.37% on MAE, and by 4.43% on RMSE.

Method California Letter Gesture Adult Default Shoppers Average

M
A

E

MCFlow 60.74±5.99 66.35±0.62 82.72±2.43 77.54±0.98 64.12±2.16 73.90±3.34 70.90
IGRM 138.22±4.25 121.59±1.16 149.88±3.92 149.64±0.18 OOM 132.28±0.01 -
GRAPE 36.54±0.12 42.41±0.19 92.50±0.07 59.25±0.58 57.51±0.09 51.94±1.20 56.69
MOT 44.20±0.81 46.75±0.13 36.74±0.01 51.17±0.32 31.42±0.50 41.55±0.42 41.97
Remasker 33.97±0.40 34.03±0.33 35.29±4.13 49.27±0.53 37.02±3.38 41.59±1.39 38.53

DIFFPUTER 33.47±0.25 30.69±0.61 28.53±0.18 49.14±0.62 24.63±0.24 34.46±0.48 33.49
Improv. 1.47% 9.81% 19.16% 0.26% 21.61% 17.06% 13.09%

R
M

SE

MCFlow 84.57±7.57 87.73±0.58 119.73±1.10 120.68±0.66 101.33±1.82 115.75±0.82 104.97
IGRM 170.00±4.72 151.16±2.05 172.25±2.99 179.17±0.88 OOM 174.42±1.73 -
GRAPE 56.05±0.03 58.11±0.29 120.31±0.11 99.19±0.50 91.94±0.42 92.37±0.41 86.33
MOT 71.02±1.19 64.69±0.44 71.64±0.84 94.67±1.50 71.35±1.08 82.63±2.19 76
Remasker 52.96±0.09 48.60±0.45 68.78±3.60 90.38±1.41 76.94±1.72 80.00±0.88 69.61

DIFFPUTER 54.18±0.25 47.74±0.39 60.90±0.52 91.31±0.61 70.50±0.83 74.01±0.40 66.41
Improv. - 1.77% 11.46% - 1.19% 7.49% 4.60%

Table 7: MAR, In-sample imputation MAE.

Method California Letter Gesture Magic Bean Adult Default Shoppers News

Traditional iterative
EM 39.17 58.05 35.43 48.13 15.41 62.54 33.78 43.01 39.52
MICE 58.56 82.32 65.14 72.81 22.17 98.44 63.92 75.70 61.12
MIRACLE 47.13 71.10 62.56 53.87 29.06 73.06 43.72 56.89 38.21
SoftImpute 59.47 67.01 53.95 58.55 31.55 70.39 42.66 61.91 64.85
MissForest 45.90 62.51 37.69 47.70 29.21 73.25 38.09 41.97 41.18

Dist. match
MOT 44.52 50.86 44.38 46.95 30.41 58.00 36.48 40.53 49.92
TDM 39.27 46.86 42.69 45.31 29.11 59.59 37.93 45.00 63.25

GNN
GRAPE 35.14 42.45 38.08 39.87 18.81 60.73 48.43 53.73 50.85
IGRM 35.23 41.31 36.45 40.09 18.97 61.35 − 59.86 −

Generative models
MIWAE 76.27 72.30 57.30 77.31 62.64 57.99 51.10 46.74 63.26
GAIN 69.68 67.50 73.70 66.11 53.46 92.81 60.04 46.69 57.49
MCFlow 60.00 68.23 65.59 55.27 30.40 84.36 67.87 72.99 56.36
TabCSDI 83.17 77.42 54.64 76.93 75.34 57.11 46.48 58.53 66.41
MissDiff 119.49 56.69 229.19 55.82 45.62 55.01 50.62 48.19 54.41

Other
KNN 49.25 49.41 45.52 49.70 30.81 50.83 35.15 46.81 48.53
ReMasker 34.26 33.93 36.52 50.21 16.85 52.60 40.58 38.24 30.37
HyperImpute 36.22 39.74 36.44 42.23 16.93 49.91 29.66 36.93 26.85

DIFFPUTER 32.66 32.22 30.39 29.66 15.92 49.51 26.61 35.19 28.22

20

Published as a conference paper at ICLR 2025

Table 8: MAR, In-sample imputation RMSE.

Method California Letter Gesture Magic Bean Adult Default Shoppers News

Traditional iterative
EM 60.28 77.77 67.68 74.17 39.37 88.74 79.48 65.76 82.32
MICE 85.13 106.80 92.85 102.74 49.96 126.50 109.18 89.10 105.35
MIRACLE 105.54 96.64 104.10 105.48 100.19 102.18 107.70 105.52 105.53
SoftImpute 83.23 88.33 99.13 87.11 56.32 95.44 100.26 94.04 90.61
MissForest 72.08 84.20 75.70 74.75 51.24 106.97 83.22 70.15 93.03

Dist. match
MOT 74.86 69.71 86.57 76.53 57.92 85.96 88.74 81.01 92.78
TDM 67.88 64.66 80.44 80.77 62.96 86.98 91.34 95.22 95.02

GNN
GRAPE 55.73 57.71 72.88 66.88 42.33 86.67 96.19 80.85 95.50
IGRM 56.13 56.44 69.51 67.45 41.61 85.55 97.30 0.00 0.00

Generative models
MIWAE 105.54 96.64 104.10 105.48 100.19 102.18 107.70 105.52 105.53
GAIN 98.01 88.89 112.56 93.54 79.02 123.26 103.13 90.26 117.09
MCFlow 82.84 90.07 109.49 89.02 52.83 112.48 117.18 86.55 112.21
TabCSDI 111.64 100.27 101.72 101.65 101.15 87.37 101.74 100.07 104.73
MissDiff 256.09 79.60 1183.01 90.38 97.26 98.17 121.62 676.10 1464.76

Other
KNN 80.05 68.59 92.64 75.52 62.92 90.24 85.50 74.04 89.12
ReMasker 56.08 47.97 70.55 77.09 36.87 78.08 78.43 58.94 93.74
HyperImpute 61.94 57.50 71.98 69.71 39.01 88.73 79.84 58.96 71.46

DIFFPUTER 57.12 48.12 68.59 67.29 35.19 79.42 77.52 60.11 65.53

Table 9: MNAR, In-sample imputation MAE.

Method California Letter Gesture Magic Bean Adult Default Shoppers News

Traditional iterative
EM 38.71 56.10 37.49 50.75 10.48 56.17 30.06 42.57 38.93
MICE 57.63 81.26 66.33 77.06 17.12 98.34 59.55 76.30 62.27
MIRACLE 42.42 71.68 71.83 45.59 15.27 59.32 37.41 78.56 41.05
SoftImpute 64.13 65.58 55.31 60.76 28.86 61.11 43.39 60.12 63.48
MissForest 43.11 58.61 39.74 51.15 25.37 57.40 34.49 42.58 39.57

Dist. match
MOT 42.48 47.70 44.78 48.05 25.21 49.39 35.84 42.20 48.14
TDM 35.93 45.22 43.43 46.24 20.91 50.29 41.07 43.48 53.17

GNN
GRAPE 35.82 41.00 40.46 40.68 13.24 57.97 44.70 55.06 49.36
IGRM 34.89 40.18 40.82 40.92 13.57 54.52 0.00 58.14 0.00

Generative models
MIWAE 75.91 83.18 60.93 79.34 62.09 59.03 56.06 49.34 64.40
GAIN 79.60 67.04 83.73 64.75 39.68 123.87 85.44 55.89 57.33
MCFlow 59.23 65.53 67.03 60.37 26.30 81.16 67.03 77.87 54.96
TabCSDI 72.26 77.71 58.16 75.46 75.69 62.09 58.88 60.29 65.88
MissDiff 52.37 49.11 325.12 113.14 38.52 98.34 63.11 168.17 75.23

Other
KNN 54.23 53.21 48.79 49.26 24.00 62.99 40.17 46.27 47.83
ReMasker 33.22 33.65 38.98 75.05 12.94 47.66 39.44 39.89 29.24
HyperImpute 33.96 40.20 38.30 42.88 11.96 50.19 28.36 39.80 31.74

DIFFPUTER 34.08 33.13 31.54 40.82 11.42 48.59 26.94 37.25 28.51

21

Published as a conference paper at ICLR 2025

Table 10: MNAR, In-sample imputation RMSE.

Method California Letter Gesture Magic Bean Adult Default Shoppers News

Traditional iterative
EM 59.75 75.78 74.88 76.01 28.90 92.30 83.26 66.16 71.03
MICE 84.36 105.91 98.00 106.59 41.91 132.01 112.55 91.16 96.87
MIRACLE 73.98 109.85 125.48 74.93 50.36 106.10 150.95 82.04 100.59
SoftImpute 102.74 87.02 103.04 90.21 48.27 96.65 99.56 95.59 83.84
MissForest 65.80 80.53 81.17 76.66 42.72 99.58 91.87 70.15 85.34

Dist. match
MOT 70.10 66.95 88.63 76.35 49.43 91.16 93.92 83.08 86.44
TDM 59.81 63.17 86.36 78.16 47.59 91.81 96.36 88.88 94.51

GNN
GRAPE 55.78 56.43 78.33 63.91 32.66 94.56 99.99 81.17 84.97
IGRM 55.34 55.32 78.74 64.30 32.57 93.64 97.58 − −

Generative models
MIWAE 102.77 107.54 111.03 107.10 96.50 102.70 113.33 107.99 114.09
GAIN 106.38 88.99 128.97 89.24 58.92 184.39 116.56 93.92 145.92
MCFlow 82.16 86.87 114.77 91.89 47.98 117.01 123.68 88.87 105.53
TabCSDI 93.59 101.11 107.65 100.20 101.99 98.54 106.69 102.92 107.07
MissDiff 137.09 68.98 6116.33 227.21 61.13 229.50 893.48 449.46 829.78

Other
KNN 83.15 73.01 101.66 75.44 53.33 103.03 86.35 85.52 98.56
ReMasker 54.34 48.02 75.66 102.23 32.15 85.60 82.65 58.61 80.17
HyperImpute 58.93 57.84 75.84 69.87 31.24 89.04 86.96 61.48 76.42

DIFFPUTER 57.48 48.54 69.54 67.66 32.59 85.26 78.82 59.83 66.74

22

	Introduction
	Related Works
	Preliminaries
	Missing Value Imputation for Incomplete Data
	Formulating Missing Data Imputation with Expectation-Maximization

	Methodology
	M-step: Density Estimation with Diffusion Models
	E-Step: Missing Data Imputation with a Learned Diffusion Model
	Implementations

	Experiments
	Experimental Settings
	Main Results (Mask Completely at Random)
	Ablation Studies

	Conclusions
	Definition of Symbols
	Proofs
	Proof for Theorem 1

	Further explanation of the Diffusion Model
	Experimental Details
	Configurations.
	Datasets
	Missing mechanisms
	Implementations and hyperparameters
	Implementations of baselines
	Hyperparameter settings of baselines

	Additional Results
	MCAR: out-of-sample imputation
	Missing at Random (MAR)
	Missing Not at Random (MNAR)

