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Abstract
Group-invariant probability distributions appear
in many data-generative models in machine learn-
ing, such as graphs, point clouds, and images. In
practice, one often needs to estimate divergences
between such distributions. In this work, we study
how the inherent invariances with respect to any
smooth action of a Lie group on a manifold im-
prove sample complexity when estimating the
Wasserstein distance. Our result indicates a two-
fold gain: (1) reducing the sample complexity
by a multiplicative factor corresponding to the
group size (for finite groups) or the normalized
volume of the quotient space (for groups of pos-
itive dimension), (2) improving the exponent in
the convergence rate (for groups of positive di-
mension). These results are completely new for
groups of positive dimension and tighten recent
bounds for finite group actions.

1. Introduction
Estimating the optimal transportation cost between proba-
bility measures is a fundamental problem in statistics, with
many applications in machine learning, from Generative
Adversarial Networks (GANs) (Goodfellow et al., 2020)
to domain adaptation (Flamary et al., 2016; Courty et al.,
2014), geometric data processing (e.g., Wasserstein barycen-
ters (Cuturi and Doucet, 2014)), and biomedical research
(Zhang et al., 2021).

Estimating the Wasserstein distance is known to be a diffi-
cult task in general, and many algorithms suffer from the
curse of dimensionality (Tsybakov, 2009). The slow con-
vergence rate is unimprovable in general, as there exist
difficult probability measures to estimate. However, those
hard instances barely appear in practice when we study more

1MIT CSAIL. Correspondence to: Behrooz Tahmasebi
<bzt@mit.edu>.

Presented at the 2nd Annual Workshop on Topology, Algebra, and
Geometry in Machine Learning (TAG-ML) at the 40 th Interna-
tional Conference on Machine Learning, Honolulu, Hawaii, USA.
2023. Copyright 2023 by the author(s).

structured probability measures. Indeed, in many applica-
tions (e.g., graphs, point clouds, molecules, spectral data)
the underlying probability measures are invariant with re-
spect to a group action on the input space. As observed
in recent works (Birrell et al., 2022; Chen et al., 2023),
considering the group invariances into the model can help
improve the convergence rate of the Wasserstein distance,
with applications in GANs for invariant data.

In this paper, we study the sample complexity of estimat-
ing the Wasserstein distance under group invariances, for
any probability measures supported on a connected com-
pact smooth manifold M being invariant with respect to a
smooth action of a Lie group G on M. Under this general
setting, given any two (Borel) probability measures µ, ν sup-
ported on the manifold M, we prove the following upper
bound on the convergence rate of the Wasserstein distance
W1(., .) using the modified empirical measures µ̂, ν̂ (from
n i.i.d. samples from each distribution):

E[|W1(µ̂, ν̂)−W1(µ, ν)|] ≤ 2C
(vol(M/G)

n

) 1
d

, (1)

where C is an absolute constant (does not depend on
the group G or the number of samples n). Also, d and
vol(M/G) denote the dimension and the volume of the
quotient space M/G, respectively.

The new sample complexity bound shows two different as-
pects of gain of invariances. Compared to the general case
(i.e., without invariances, G = {idG}), first, the exponent is
improved from 1/ dim(M) to 1/d, where d can be poten-
tially as small as dim(M)− dim(G). Second, vol(M/G)
can be potentially much smaller than vol(M), as for finite
groups, it can be vol(M)/|G|. This shows that for finite
groups (i.e., dim(G) = 0), the gain of invariances for sam-
ple complexity (compared to the general case), is to replace
n by n×|G| in the classical convergence rate of the Wasser-
stein distance estimation. This proves the intuitive belief
about the gain of invariances for finite groups that each sam-
ple conveys the information of |G| samples while comparing
the invariant case to the general case.

The upper bound proved in this paper is completely new for
groups of positive dimension, and for finite groups, extends
the recent result on submanifolds (of full dimension) of
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Rd under 1-Lipschitz group actions (Chen et al., 2023) to
arbitrary manifolds and arbitrary Lie groups.

We also study the convergence rate of estimating the Wasser-
stein distance for smooth distributions. Indeed, for probabil-
ity measures having a density with respect to the uniform
distribution on the manifold, with s times square-integrable
derivatives (known as being in the Sobolev space Hs(M)),
we prove an upper bound on the convergence rate which also
exhibits the same two-fold gain for the sample complexity
of estimating the Wasserstein distance under invariances.
Note that all the proven upper bounds in the paper reduce
to the known tight bounds on estimating the Wasserstein
distance if we set G = {idG} (i.e., the trivial group).

We note that our findings cannot be derived immediately
from the known results on estimating the Wasserstein dis-
tance under invariances. Instead of the idea of using cover-
ing numbers, which is used in a recent work (Chen et al.,
2023), we use a Fourier approach to bounding the Wasser-
stein distance. We use the theory of the Laplace-Beltrami
operator on manifolds, and via a new version of Weyl’s
law which captures the sparsity of the Fourier series on
manifolds, as well as ideas from differential geometry and
Fourier analysis (such as mollifiers), we prove the main
result.

In short, in this paper, we make the following contributions:

• We prove an upper bound on the sample complexity of
estimating the Wasserstein distance under group invari-
ances, for any smooth Lie group action on a connected
compact manifold (Theorem 1).

• We also study the convergence rate of the Wasserstein
distance for smooth distributions and prove an upper
bound for the same setup as above (Theorem 2).

2. Problem Statement
Let M denote an arbitrary compact, connected, and smooth
manifold without boundary1. Let P(M) denote the set of
Borel probability measures on M, and also let Lip(M)
denote the set of all measurable functions f : M → R such
that |f(x) − f(y)| ≤ dist(x, y), for all x, y ∈ M, where
dist(., .) denotes the geodesic distance between points on
M. The Wasserstein distance between any two µ, ν ∈
P(M) is defined as follows:

W1(µ, ν) := sup
f∈Lip(M)

{∫
M

fdµ−
∫
M

fdν
}
. (2)

For two arbitrary (unknown) probability measures µ, ν ∈
P(M), assume that we are given independent samples

1The results can be generalized to manifolds with boundaries,
too. But we consider boundaryless manifolds here for simplicity.

X1, X2, . . . , Xn
i.i.d.∼ µ and Y1, Y2, . . . , Yn

i.i.d.∼ ν. The goal
is to estimate W1(µ, ν) using the given 2n independent sam-
ples. Let µ̂ := 1

n

∑n
i=1 δXi

denote the empirical measure
of µ given X1, X2, . . . , Xn, where δx denotes the Dirac
measure supported on x ∈ M. The modified empirical
measure modifies the empirical measure by restricting it
to the invariant eigenfunctions in the Fourier basis (see the
proof of Theorem 1 in the full version). We denote it (with
a slight abuse of notation) by µ̂, too. Define ν̂ similarly, and
consider the modified empirical estimation W1(µ̂, ν̂), as a
candidate to estimate W1(µ, ν) with samples. Note that by
the triangle inequality:

|W1(µ̂, ν̂)−W1(µ, ν)| ≤ W1(µ, µ̂) +W1(ν, ν̂). (3)

Thus, to study the convergence of the empirical estima-
tor W1(µ̂, ν̂), one just needs to prove an upper bound on
W1(µ, µ̂) for any arbitrary measure µ ∈ P(M).

Let G be an arbitrary Lie group acting smoothly on M.
Without loss of generality, we assume that M is equipped
with a Riemannian metric g such that the action of G is
isometric on M with respect to g. A probability measure
µ ∈ P(M) is called G-invariant if for any Borel set A ⊆
M and all τ ∈ G, one has µ(A) = µ(τA). For example,
the uniform distribution on (M, g) is invariant with respect
to any isometric group action.

3. Main Results
Theorem 1 (Convergence rate of the Wasserstein distance
under invariances). For any G-invariant probability mea-
sure µ ∈ P(M),

E[W1(µ, µ̂)] ≤ C
(vol(M/G)

n

) 1
d

, (4)

where C can only depend on the manifold M. Also,
vol(M/G) is the volume of the quotient space M/G and
d := dim(M/G) ≥ 3. Consequently, one has

E[|W1(µ̂, ν̂)−W1(µ, ν)|] ≤ 2C
(vol(M/G)

n

) 1
d

, (5)

for any µ, ν ∈ P(M).

Even though we used the notation dim(M/G) and
vol(M/G), we notice that the quotient space M/G is
not necessarily a manifold. Also, it may exhibit bound-
ary, even though M is assumed to be boundaryless (see
the full version for examples). To address this issue, we
define dim(M/G) (or vol(M/G)) as the dimension (or the
volume) of the principal part of the quotient space. The
principal part, denoted as M0/G, is a connected dense
subset of M/G, such that it has a manifold structure in-
herited from M. Since it is a manifold, one can define
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its dimension/volume in a natural way. It is guaranteed
that the principal part exists, and is unique, under the as-
sumptions of this paper. Besides the principal part, M/G
is only a disjoint union of finitely many other manifolds,
all of lower dimension than the principal part. Note that
vol(M/G) is defined with respect to the dimension of
the quotient space dim(M/G), so it is nonzero even if
dim(M/G) < dim(M).

To compare the convergence rate with the general case (i.e.,
not necessarily G-invariant probability measures), note that
if G = {idG}, then the convergence rate is E[W1(µ, µ̂)] ≤

C
(

vol(M/G)
n

) 1
dim(M)

, as expected from the standard results
for arbitrary probability measures (Fournier and Guillin,
2015). This shows that the sample complexity of estimating
the Wasserstein distance is improved under invariances; (1)
the new exponent is 1

d with d = dim(M/G), which can
be potentially much better than 1

dim(M) , (2) the number of
samples is multiplied by vol(M)/ vol(M/G). For finite
groups, if its action on M is effective2, then Theorem 1
shows that

E[W1(µ, µ̂)] ≤ C
(vol(M)

n|G|

) 1
dim(M)

. (6)

This means that under invariances, each sample is worth the
same as |G| samples compared to the general (non-invariant)
case. This improves a recent result on the convergence of
the Wasserstein metric under invariances (Chen et al., 2023).
Chen et al. (2023) prove that this rate is achievable for finite
group actions on a compact submanifold (of full dimen-
sion) of the Euclidean space Rd. However, our result is
more general, holding for arbitrary smooth compact man-
ifolds, including spheres, tori, hyperbolic spaces, and also
for arbitrary groups, not only finite groups. Indeed, to the
best of our knowledge, the improvement in the exponent is
new for the convergence of the Wasserstein distance under
invariances.

Let us observe the result of Theorem 1 in the following
example.

Example 1 (Point clouds). Consider a point cloud as a
set {p1, p2, . . . , pm} ⊆ (R/Z)3 of m points. For fixed m,
we can think of each point cloud as a point on the man-
ifold (R/Z)3m. Point clouds are typically assumed to be
unchanged under a change of coordinates for all the points:

{p1, p2, . . . , pm} ∼= {Ap1, Ap2, . . . , Apm}, (7)

for any orthogonal matrix A. Also, permuting the points
won’t change the point clouds. Let G denote the group of
invariances for point clouds defined on (R/Z)3m as above.
Then, after doing the calculations, the gain of invariances

2The action of a group G on a manifold M is called effective,
if any τ ̸= idG corresponds to a non-trivial bijection on M.

(i.e., estimating the Wasserstein distance on point clouds by
considering the invariances of the problem) is (1) improving
the exponent from 3m to 3m − 6, and (2) multiplying the
number of samples n by m!.

Proof sketch for Theorem 1. In this part, we give a quick
proof sketch for Theorem 1. The complete proof is available
in the full version.

To prove the theorem, we focus on an approach for upper
bounding the Wasserstein distance using the orthonormal
basis ϕℓ ∈ L2(M), ℓ = 0, 1, . . ., of eigenfunctions of
Laplacian on M in L2(M) (see (Bobkov and Ledoux, 2021)
for more details). This allows us to conclude that

W 2
1 (µ, ν) ≤

∞∑
ℓ=1

(µℓ − νℓ)
2

λℓ
× vol(M), (8)

where µℓ =
∫
M ϕℓdµ for each ℓ (defined similarly for ν),

and λℓ, ℓ = 0, 1, . . ., are the eigenvalues of the Laplacian op-
erator on M. This approach shows that to upper bound the
Wasserstein distance, all we need is to know how sparse the
sequence µℓ, ℓ = 0, 1, . . ., is for a G-invariant probability
measure µ. To this end, we use recent results on quantifying
the sparsity of the series for G-invariant functions defined
on a connected compact smooth manifold (M, g).

However, it turns out that using this method cannot guar-
antee a finite convergence rate since high-frequency com-
ponents in the sum accumulate a lot of noise for empirical
measures. To solve this issue, we use a mollifier function
with exponential tail decay (in the Laplacian basis) and use
the theory of heat kernel on manifolds to achieve the final
result. We provide more explanations in the full version.

3.1. Convergence Rate for Smooth Distributions

Assume that µ ∈ P(M) is absolutely continuous
with respect to the uniform probability measure dx =

1
vol(M)d vol(x) on (M, g). Assume that dµ

dx ∈ Hs(M),
for some s ≥ 0, where Hs(M) denotes the Sobolev space
of real-valued measurable functions on (M, g) having s
times square-integrable derivatives. In this spacial case, the
probability measure is smoother as s grows.

It turns out that in this special case, the convergence rate
of estimating the Wasserstein distance as a function of the
number of samples can be improved using a new estimator
µ̃ (which is different from the modified empirical estimator
µ̂). The following theorem states the main result for smooth
distributions.

Theorem 2 (Convergence rate of the Wasserstein dis-
tance for smooth distributions under invariances). For
any G-invariant probability measure µ ∈ P(M) with
dµ
dx ∈ Hs(M) for some s ≥ 0, there exists an esti-
mator µ̃ ∈ P(M), as a function of n i.i.d. samples
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X1, X2 . . . , Xn ∼ µ, such that

E[W1(µ,µ̃)] ≤
√
vol(M)

×
( 1

4κ2

ωd

(2π)d
vol(M/G)

n

) s+1
2s+d

∥∥∥dµ
dx

∥∥∥ s+1
s+d/2

Hs(M)
,

where κ = s+1
d−2 , and ωd is the volume of the unit ball in Rd.

Also, vol(M/G) is the volume of the quotient space M/G
and d := dim(M/G) ≥ 3.

To define the estimator µ̃, we need to review some facts
about manifolds. The set of square-integrable G-invariant
functions on a connected, compact, smooth manifold M
has an orthonormal basis ϕinv

ℓ ∈ L2(M), ℓ = 0, 1, . . . of
eigenfunctions of Laplacian on M (see the full version
for more details). For the case of the circle M = S1,
these functions correspond to the sinusoidal waves/Fourier
basis that are invariant under the group action. Given n
samples X1, X2, . . . , Xn, the Borel measure µ̃ is defined
using its Radon–Nikodym derivative with respect to the
uniform probability measure on (M, g) as follows:

dµ̃

dx
:=

vol(M)

n

T−1∑
ℓ=0

n∑
i=1

ϕinv
ℓ (Xi)ϕℓ, (9)

where T is a fixed positive integer (to be set). For any T , µ̃
is a Borel measure, but in general, it can be a signed measure
with

∫
M dµ̃ ̸= 1. We can then take the closest probability

measure to µ̃ in Wasserstein distance as the final estimation
for µ. With a slight abuse of notation, we denote the final
output of the algorithm by µ̃ again.

Choosing larger T corresponds to higher variance due to
the randomness of sampling while it reduces the bias of
the estimator. Therefore, optimizing T to balance the bias
and variance terms, according to the problem’s parameters,
allows to achieve the best algorithm of this type (in terms
of the convergence rate). We follow this approach to prove
Theorem 2.

Theorem 2 shows that the gain of invariances for estimat-
ing the Wasserstein distance for smooth distributions under
invariances follows the same behavior as before, for any
s ≥ 0. The two-fold gain is observed on the exponent and
the multiplicative factor. The new upper bound’s exponent
interpolates between the worst-case exponent 1/ dim(M)
and 1/2. As s enlarges, the exponent converges to 1/2, as
expected. If G = {idG}, the bound reduces to the known
convergence rate of the Wasserstein distance estimation un-
der smoothness (without invariances) (Liang, 2021; Niles-
Weed and Berthet, 2022).
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