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1 More Quantitative Results1

In the supplementary materials, we provide additional detailed results of our QuantSR to demonstrate2

its comprehensive advantages in accuracy and efficiency.3

1.1 Implementations4

For the implementation of various methods, we have strived to adhere as closely as possible to the5

results and official code provided in their respective papers. Specifically, when using the same settings6

as QuantSR, we directly utilized the reported results from the paper [4, 2]. When different settings7

were employed, we aligned our model and training setup with the official code ([5] for PAMS and [2]8

for CADyQ), trained the model accordingly, and tested the obtained results.9

1.2 Accuracy Results10

In terms of accuracy, we present the results of the QuantSR approach. For each QuantSR variant11

(including QuantSR-C and QuantSR-T with different bit widths), four weight-sharing variants with12

varying numbers of blocks are included to achieve flexible inference with resource adaptation13

while breaking the accuracy upper limit. For QuantSR-C, variants with 32, 16, and 8 blocks are14

simultaneously trained, and for fairness, a 16-block variant equivalent to full precision is used for15

comparison in the paper. As for QuantSR-T, lighter variants with 4, 2, and 1 block(s) are used since16

SwinIR typically involves higher computational complexity, and smaller variants are advantageous17

for practical edge applications. From the complete results in Tab. 1, it can be observed that the largest18

variants almost match the full precision performance, and some 4-bit results even surpass it. This19

demonstrates the powerful potential of our proposed QuantSR approach in unleashing the accuracy20

of quantized SR networks. Furthermore, even considering the smallest variants, the accuracy remains21

at a reasonable level, albeit with the inference efficiency of the model pushed to the extreme.22

1.3 Efficiency Results23

In terms of efficiency, we present comprehensive results in Tab. 2, including QuantSR-T. To obtain24

more realistic estimates, we compute the FLOPs and storage savings of the quantization portion as25
b
32 , where b represents the quantization bit-width. We found that due to the combined improvements26

in operators and architecture, QuantSR exhibits significant reductions in computation and FLOPs,27

particularly for its transformer version. This implies that it holds great potential for edge applications28

of transformer-based SR networks.29
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#Bit Set5 Set14 B100 Urban100 Manga109Method Scale (w/a) #Blk PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Bicubic ×2 -/- - 33.66 0.9299 30.24 0.8688 29.56 0.8431 26.88 0.8403 30.80 0.9339
SRResNet [3] ×2 32/32 16 38.00 0.9605 33.59 0.9171 32.19 0.8997 32.11 0.9282 38.56 0.9770
SwinIR_S [6] ×2 32/32 4 38.14 0.9611 33.86 0.9206 32.31 0.9012 32.76 0.9340 39.12 0.9783

32 38.04 0.9606 33.66 0.9185 32.22 0.9002 32.19 0.9296 38.90 0.9776
QuantSR-C ×2 4/4 16 37.97 0.9603 33.53 0.9176 32.15 0.8993 31.91 0.9268 38.67 0.9772

8 37.80 0.9597 33.35 0.9158 32.04 0.8979 31.46 0.9221 38.25 0.9762
4 38.10 0.9604 33.65 0.9186 32.21 0.8998 32.20 0.9295 38.85 0.9774

QuantSR-T ×2 4/4 2 37.93 0.9602 33.51 0.9173 32.14 0.8991 31.88 0.9262 38.55 0.9768
1 37.80 0.9596 33.31 0.9155 32.01 0.8973 31.39 0.9207 38.19 0.9759

32 37.70 0.9594 33.21 0.9148 31.96 0.8970 31.11 0.9189 37.93 0.9754
QuantSR-C ×2 2/2 16 37.57 0.9589 33.09 0.9136 31.84 0.8954 30.77 0.9149 37.60 0.9745

8 37.32 0.9579 32.88 0.9114 31.68 0.8930 30.29 0.9087 37.01 0.9729
4 37.55 0.9587 33.12 0.9143 31.89 0.8958 30.96 0.9172 37.61 0.9745

QuantSR-T ×2 2/2 2 37.44 0.9583 33.02 0.9134 31.83 0.8952 30.82 0.9156 37.40 0.9740
1 37.33 0.9576 32.89 0.9119 31.71 0.8933 30.48 0.9112 37.04 0.9730

Bicubic ×4 -/- - 28.42 0.8104 26.00 0.7027 25.96 0.6675 23.14 0.6577 24.89 0.7866
SRResNet [3] ×4 32/32 16 32.16 0.8951 28.60 0.7822 27.58 0.7364 26.11 0.7870 30.46 0.9089
SwinIR_S [6] ×4 32/32 4 32.44 0.8976 28.77 0.7858 27.69 0.7406 26.47 0.7980 30.92 0.9151

32 32.17 0.8943 28.60 0.7821 27.59 0.7368 26.12 0.7885 30.52 0.9082
QuantSR-C ×4 4/4 16 32.00 0.8924 28.50 0.7799 27.52 0.7342 25.88 0.7807 30.15 0.9040

8 31.75 0.8894 28.35 0.7763 27.42 0.7307 25.59 0.7700 29.73 0.8985
4 32.18 0.8941 28.63 0.7822 27.59 0.7367 26.11 0.7871 30.49 0.9087

QuantSR-T ×4 4/4 2 32.02 0.8922 28.52 0.7795 27.52 0.7343 25.89 0.7797 30.20 0.9051
1 31.79 0.8891 28.36 0.7757 28.37 0.7301 27.41 0.7687 29.69 0.8982

32 31.47 0.8849 28.19 0.7725 27.31 0.7277 25.29 0.7604 29.16 0.8897
QuantSR-C ×4 2/2 16 31.30 0.8819 28.08 0.7694 27.23 0.7246 25.13 0.7537 28.81 0.8844

8 31.04 0.8771 27.87 0.7643 27.11 0.7202 24.85 0.7423 28.21 0.8743
4 31.53 0.8845 28.16 0.7715 27.28 0.7274 25.26 0.7609 29.06 0.8898

QuantSR-T ×4 2/2 2 31.45 0.8832 28.11 0.7703 27.25 0.7261 25.18 0.7575 28.89 0.8871
1 31.26 0.8801 27.97 0.7665 27.15 0.7223 24.99 0.7490 28.52 0.8801

Table 1: Full quantitative results of QuantSR. SRResNet and SwinIR-S are used as full-precision
backbones. ‘w/a’ denotes the weight/activation bits. Results for variants with the same number of
blocks as their full-precision counterparts are colored with red.

#Bit Params (K) Ops (G) Urban100Method (w/a) #Blk (↓ Ratio) (↓ Ratio) PSNR SSIM
SRResNet 32/32 16 1,367 (0%) 90.1 (0%) 32.16 0.8951

32 451 (↓ 67.0%) 29.9 (↓ 66.9%) 32.17 0.8943
QuantSR-C 4/4 16 303 (↓ 77.8%) 20.2 (↓ 77.5%) 32.00 0.8924

8 230 (↓ 83.1%) 15.4 (↓ 82.9%) 31.75 0.8894
32 170 (↓ 87.6%) 11.5 (↓ 87.2%) 31.48 0.8849

QuantSR-C 2/2 16 161 (↓ 88.2%) 10.9 (↓ 87.9%) 31.30 0.8819
8 156 (↓ 88.6%) 10.6 (↓ 88.3%) 31.04 0.8771

SwinIR_S 32/32 4 930 (0%) 56.47 (0%) 32.44 0.8976
4 154 (↓ 83.37%) 9.39 (↓ 83.37%) 32.18 0.8941

QuantSR-T 4/4 2 98.8 (↓ 89.38%) 6.03 (↓ 89.32%) 32.02 0.8922
1 71.0 (↓ 92.36%) 4.34 (↓ 92.31%) 31.97 0.8891
4 50.2 (↓ 94.60%) 3.08 (↓ 94.55%) 31.53 0.8845

QuantSR-T 2/2 2 46.8 (↓ 94.97%) 2.87 (↓ 94.92%) 31.45 0.8832
1 45.1 (↓ 95.15%) 2.77 (↓ 95.09%) 31.26 0.8801

Table 2: Compression ratio of 2-bit and 4-bit SRResNet and SwinIR_S (×4), and their input sizes are
3×256×256 for calculating Ops.
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(a) !𝑣! for weight

(b) 𝜏̂ for activation (c) Changes in gradient
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Figure 1: v̂b for weight quantizer. We use a box plot to count the change of the distribution of the
learnable parameter v̂b in the entire QuantSR network with the training epoch, where for each epoch,
we show the maximum value, minimum value, and variance of the parameter.

(a) !𝑣! for weight
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Figure 2: τ̂ for activation quantizer. The form of statistics is the same as Figure 1.

2 More Visualization Results30

2.1 Visualization Analysis31

Figures 1 and 2 present statistics on the learnable parameters of the proposed quantizer. For the32

quantized step parameters vb and τ̂ , the statistics indicate that the range of these types of learnable33

parameters in the network generally increases with training time. Since the form of the proposed34

quantizer depends on these two learnable redistribution parameters, this phenomenon suggests an35

increasing diversity of quantizers in our QuantSR. This increase in diversity signifies that, under a36

limited fixed bit-width, we effectively utilize the diversity provided by quantization to significantly37

recover the forward representation capacity of the quantized SR model.38

Figure 3 illustrates the impact of the ϕ(·) function on a single backward propagation and a single39

sample. In the proposed quantizer, the transformation function ϕ(·) is embedded within each40

quantization interval, causing no effect during the forward propagation but guiding parameter updates41

to better reflect the behavior of the quantizer during backward. As shown in the figure, our ϕ(·)42

function influences parameter updates within each propagation, and this influence is generally present43

but not significantly pronounced at the individual update level. This allows for more stable updates of44
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Figure 3: Gradient effect of ϕ(·). In the 4-bit QuantSR-C, we present the gradient effect caused by
ϕ(·) in the weight quantizer in a random quantized volume set. After obtaining the gradient before
and after the derivation of the function, we make a pixel-wise difference between them and then
statistic the value. The resulting statistic can be defined as the effect of this function on the gradient.

the quantized SR network, gradually accumulating the impact throughout the process to accurately45

reflect the quantizer’s influence in the final well-trained network.46

In Fig. 4, we further visualize the output of the high-level feature extractor of our quantized SR model.47

Compared to the existing DoReFa method, our QuantSR-C and QuantSR-T exhibit clearer and richer48

details at the same bit-width, indicating that QuantSR has achieved better representation capacity.49

2.2 Visual Results50

We utilize SRResNet [3] as the underlying architecture for CNN-based image super-resolution (SR)51

networks. Our QuantSR-C approach is compared with DoReFa [4, 7], PAMS [4], and CADyQ [1]52

using 2-bit and 4-bit precision. For Transformer-based image SR networks, we adopt the lightweight53

SwinIR_S [6] as the backbone. Given the increased difficulty in Transformer binarization and our54

observations from CNN-based methods, we exclusively apply our proposed techniques to quantize55

SwinIR_S. Additionally, we present the results of our quantized Transformer baseline, QuantSR-T.56

We present additional visual results in Figs. 5 and 6 for 4-bit setting and Figs. 7 and 8 for the more57

challenging 2-bit setting. These figures reveal that our proposed QuantSR achieves comparable or58

superior performance compared to other methods in most instances. Particularly in more challenging59

scenarios, our QuantSR outperforms other approaches, delivering the highest quality reconstructions.60

Comparing QuantSR to its corresponding full-precision model SwinIR_S, we observe minimal61

discrepancies between them. These findings further validate the efficacy of our proposed techniques62

QuantSR-C and QuantSR-T.63

3 Checklist Explanations64

3.1 Code65

We have provided code to reproduce the results in this work.66

3.2 Limitations67

We would provide more analyses about the limitations of our method. (1) Although we have further68

narrowed the performance gap between the low-bit quantized model and its full-precision one, the69

very low-bit (e.g., 2-bit) quantized model would suffer from obvious performance drops. (2) Currently,70

we only investigate low-bit quantization for image super-resolution. It is better to generalize the71

quantized networks for other image restoration applications (e.g., image denoising and deblurring).72

4



0 50 100 150 200

0

50

100

150

200

250

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) DoReFa (2-bit)
0 50 100 150 200

0

50

100

150

200

250

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

(b) DoReFa (4-bit)
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(c) QuantSR-C (2-bit)
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(d) QuantSR-C (4-bit)
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(e) QuantSR-T (2-bit)
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(f) QuantSR-T (4-bit)

Figure 4: Feature visualization for quantized SR networks. We visualize 2- and 4-bit DoReFa,
QuantSR-C, and QuantSR-T features (Test sample: SaladDays_vol18 in Manga109 dataset).
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Urban100: img_003 (×4)

HR / Bit-width Bicubic / - SRResNet [3] / 32-bit DoReFa [7] / 4-bit

PAMS [4] / 4-bit CADyQ [1] / 4-bit QuantSR-C (ours) / 4-bit QuantSR-T (ours) / 4-bit

Urban100: img_004 (×4)

HR / Bit-width Bicubic / - SRResNet [3] / 32-bit DoReFa [7] / 4-bit

PAMS [4] / 4-bit CADyQ [1] / 4-bit QuantSR-C (ours) / 4-bit QuantSR-T (ours) / 4-bit

Urban100: img_005 (×4)

HR / Bit-width Bicubic / - SRResNet [3] / 32-bit DoReFa [7] / 4-bit

PAMS [4] / 4-bit CADyQ [1] / 4-bit QuantSR-C (ours) / 4-bit QuantSR-T (ours) / 4-bit

Urban100: img_006 (×4)

HR / Bit-width Bicubic / - SRResNet [3] / 32-bit DoReFa [7] / 4-bit

PAMS [4] / 4-bit CADyQ [1] / 4-bit QuantSR-C (ours) / 4-bit QuantSR-T (ours) / 4-bit

Urban100: img_059 (×4)

HR / Bit-width Bicubic / - SRResNet [3] / 32-bit DoReFa [7] / 4-bit

PAMS [4] / 4-bit CADyQ [1] / 4-bit QuantSR-C (ours) / 4-bit QuantSR-T (ours) / 4-bit

Urban100: img_061 (×4)

HR / Bit-width Bicubic / - SRResNet [3] / 32-bit DoReFa [7] / 4-bit

PAMS [4] / 4-bit CADyQ [1] / 4-bit QuantSR-C (ours) / 4-bit QuantSR-T (ours) / 4-bit

Figure 5: Visual comparison (×4) with lightweight SR in terms of 4-bit.
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Urban100: img_062 (×4)

HR / Bit-width Bicubic / - SRResNet [3] / 32-bit DoReFa [7] / 4-bit

PAMS [4] / 4-bit CADyQ [1] / 4-bit QuantSR-C (ours) / 4-bit QuantSR-T (ours) / 4-bit

Urban100: img_067 (×4)

HR / Bit-width Bicubic / - SRResNet [3] / 32-bit DoReFa [7] / 4-bit

PAMS [4] / 4-bit CADyQ [1] / 4-bit QuantSR-C (ours) / 4-bit QuantSR-T (ours) / 4-bit

Urban100: img_068 (×4)

HR / Bit-width Bicubic / - SRResNet [3] / 32-bit DoReFa [7] / 4-bit

PAMS [4] / 4-bit CADyQ [1] / 4-bit QuantSR-C (ours) / 4-bit QuantSR-T (ours) / 4-bit

Urban100: img_072 (×4)

HR / Bit-width Bicubic / - SRResNet [3] / 32-bit DoReFa [7] / 4-bit

PAMS [4] / 4-bit CADyQ [1] / 4-bit QuantSR-C (ours) / 4-bit QuantSR-T (ours) / 4-bit

Urban100: img_076 (×4)

HR / Bit-width Bicubic / - SRResNet [3] / 32-bit DoReFa [7] / 4-bit

PAMS [4] / 4-bit CADyQ [1] / 4-bit QuantSR-C (ours) / 4-bit QuantSR-T (ours) / 4-bit

Urban100: img_078 (×4)

HR / Bit-width Bicubic / - SRResNet [3] / 32-bit DoReFa [7] / 4-bit

PAMS [4] / 4-bit CADyQ [1] / 4-bit QuantSR-C (ours) / 4-bit QuantSR-T (ours) / 4-bit

Figure 6: Visual comparison (×4) with lightweight SR in terms of 4-bit.
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Urban100: img_004 (×4)

HR / Bit-width Bicubic / - SRResNet [3] / 32-bit DoReFa [7] / 2-bit

PAMS [4] / 2-bit CADyQ [1] / 2-bit QuantSR-C (ours) / 2-bit QuantSR-T (ours) / 2-bit

Urban100: img_012 (×4)

HR / Bit-width Bicubic / - SRResNet [3] / 32-bit DoReFa [7] / 2-bit

PAMS [4] / 2-bit CADyQ [1] / 2-bit QuantSR-C (ours) / 2-bit QuantSR-T (ours) / 2-bit

Urban100: img_015 (×4)

HR / Bit-width Bicubic / - SRResNet [3] / 32-bit DoReFa [7] / 2-bit

PAMS [4] / 2-bit CADyQ [1] / 2-bit QuantSR-C (ours) / 2-bit QuantSR-T (ours) / 2-bit

Urban100: img_017 (×4)

HR / Bit-width Bicubic / - SRResNet [3] / 32-bit DoReFa [7] / 2-bit

PAMS [4] / 2-bit CADyQ [1] / 2-bit QuantSR-C (ours) / 2-bit QuantSR-T (ours) / 2-bit

Urban100: img_024 (×4)

HR / Bit-width Bicubic / - SRResNet [3] / 32-bit DoReFa [7] / 2-bit

PAMS [4] / 2-bit CADyQ [1] / 2-bit QuantSR-C (ours) / 2-bit QuantSR-T (ours) / 2-bit

Urban100: img_026 (×4)

HR / Bit-width Bicubic / - SRResNet [3] / 32-bit DoReFa [7] / 2-bit

PAMS [4] / 2-bit CADyQ [1] / 2-bit QuantSR-C (ours) / 2-bit QuantSR-T (ours) / 2-bit

Figure 7: Visual comparison (×4) with lightweight SR in terms of 2-bit.
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Urban100: img_032 (×4)

HR / Bit-width Bicubic / - SRResNet [3] / 32-bit DoReFa [7] / 2-bit

PAMS [4] / 2-bit CADyQ [1] / 2-bit QuantSR-C (ours) / 2-bit QuantSR-T (ours) / 2-bit

Urban100: img_034 (×4)

HR / Bit-width Bicubic / - SRResNet [3] / 32-bit DoReFa [7] / 2-bit

PAMS [4] / 2-bit CADyQ [1] / 2-bit QuantSR-C (ours) / 2-bit QuantSR-T (ours) / 2-bit

Urban100: img_038 (×4)

HR / Bit-width Bicubic / - SRResNet [3] / 32-bit DoReFa [7] / 2-bit

PAMS [4] / 2-bit CADyQ [1] / 2-bit QuantSR-C (ours) / 2-bit QuantSR-T (ours) / 2-bit

Urban100: img_039 (×4)

HR / Bit-width Bicubic / - SRResNet [3] / 32-bit DoReFa [7] / 2-bit

PAMS [4] / 2-bit CADyQ [1] / 2-bit QuantSR-C (ours) / 2-bit QuantSR-T (ours) / 2-bit

Urban100: img_052 (×4)

HR / Bit-width Bicubic / - SRResNet [3] / 32-bit DoReFa [7] / 2-bit

PAMS [4] / 2-bit CADyQ [1] / 2-bit QuantSR-C (ours) / 2-bit QuantSR-T (ours) / 2-bit

Urban100: img_055 (×4)

HR / Bit-width Bicubic / - SRResNet [3] / 32-bit DoReFa [7] / 2-bit

PAMS [4] / 2-bit CADyQ [1] / 2-bit QuantSR-C (ours) / 2-bit QuantSR-T (ours) / 2-bit

Figure 8: Visual comparison (×4) with lightweight SR in terms of 2-bit.
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