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1. Introduction
Fast ionic conductors are essential for advanc-

ing electrochemical devices, such as batteries, gas
sensors, and ceramic membranes [1]. Traditional
searches for these materials rely on costly high-
throughput (HT) density functional theory (DFT)
calculations across diverse chemical and structural
spaces. To accelerate technological advancement in
this area, HT schemes must be optimized by replac-
ing DFT with accurate and fast surrogate models for
rapid materials screening. Here, we benchmark ex-
isting machine learning (ML) models for HT search
of Li-ion conductors.

2. Datasets
For the benchmarks, we introduce four datasets

with calculated characteristics of Li-ion conductors.
The descriptive statistics of each dataset is given in
Table 1.

Table 1: The description of datasets for benchmark-
ing ML models.

Dataset Specs

nebDFT2k target: migration barrier, geometry
# of samples: 1,681

MPLiTrj target: energy, forces, stress tensor
# of samples: 929,066

BVEL13k target: 1-3D percolation barrier
# of samples: 12,807

nebBVSE122k target: migration barrier
# of samples: 122,421

The BVEL13k dataset is designed to benchmark
graph neural network (GNN) models in predicting
Li-ion 1, 2, and 3D percolation barriers correspond-
ing to an energy threshold required for a mobile ion
to percolate through the unit cell in 1, 2, or 3 dimen-
sions, enabling macroscopic diffusion. This prop-
erty is calculated using the bond valence site energy
(BVSE) method utilizing tabulated empirical param-
eters [2]. The nebBVSE122k and nebDFT2k datasets
are used to evaluate GNNs for predicting Li-ion mi-
gration barriers, defined as the relative height of the
energy profile along the migration trajectory, using
the BVSE and density functional theory (DFT) lev-
els, respectively. Finally, the nebDFT2k and MPLiTrj
datasets are employed to test the universal ML inter-
atomic potentials (uMLIPs) for correct prediction of

the geometry and energetics of minimum energy Li-
ion migration pathways as predicted by DFT-based
nudged elastic band (NEB) calculations.

3. Benchmark

Fig. 1: a) A scheme for benchmarking uMLIPs on the
nebDFT2k dataset, b) Parity plot for the predic-
tions of the SevenNet model.

We show that the GNNs for the structure-to-
property prediction of the BVSE-calculated 1-3D per-
colation and migration barriers achieve a reason-
able accuracy, which is sufficient for identifying
“fast” and “poor” ionic conductors for reducing can-
didate list in the HT scheme. Among the studied
pre-trained uMLIPs, MACE-MP-0 [3], and Seven-
Net [4] possess the highest accuracy when solv-
ing the trajectory optimization task. An illustrative
scheme for benchmarking uMLIPs and parity plots
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for the SevenNet model predictions is given in Fig-
ure 1. Fine-tuning this uMLIP on a subsample of the
MPLiTrj dataset, representing the crystal structure
configurations obtained during DFT optimization of
the trajectories, yields near-DFT accuracy (mean ab-
solute error = 0.1 eV).
We discuss the practical application of the uM-

LIPs, and suggest methodology for integrating these
steps into the HT screenings of fast ionic conduc-
tors. The datasets will be made available at https:
//github.com/AIRI-Institute/LiTraj after hav-
ing published the manuscript related to the present
study.

4. Related work
The classical ML and GNN models were previ-

ously utilized for predicting BVSE-calculated Li-ion
(or other mobile specie) percolation barriers [5, 6].
Our models achieve comparable accuracy even in
the face of a higher variance of the target property.
As for the DFT part of the study, to the best of our
knowledge, this is the first structured dataset with
optimized Li-ion migration trajectories.
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