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ABSTRACT

Video generation models hold substantial potential in areas such as filmmaking.
However, current video diffusion models need high computational costs and pro-
duce suboptimal results due to high complexity of video generation task. In this
paper, we propose ConFiner, an efficient high-quality video generation frame-
work that decouples video generation into easier subtasks: structure control and
spatial-temporal refinement. It can generate high-quality videos with chain of
off-the-shelf diffusion model experts, each expert responsible for a decoupled
subtask. During the refinement, we introduce coordinated denoising, which can
merge multiple diffusion experts’ capabilities into a single sampling. Further-
more, we design ConFiner-Long framework, which can generate long coherent
video with three constraint strategies on ConFiner. Experimental results indi-
cate that with only 10% of the inference cost, our ConFiner surpasses repre-
sentative models like Lavie and Modelscope across all objective and subjective
metrics. And ConFiner-Long can generate high-quality and coherent videos with
up to 600 frames. All the code will be available at project website: https:
//confiner2025.github.io.

1 INTRODUCTION

Generative AI Cao et al. (2023); Zhang et al. (2023a); Wu et al. (2023) has recently emerged as a
hotspot in research, influencing various aspects of our daily life. For visual AIGC, numerous image
generation models, such as Stable Diffusion Rombach et al. (2022) and Imagen Saharia et al. (2022),
have achieved significant success. These models can create high-resolution images that are rich in
creativity and imagination, rivaling those created by human artists. Compared to image generation,
video generation models Ho et al. (2022c;b); Xing et al. (2023); Esser et al. (2023) hold higher
practical value with the potential to reduce expenses in the fields of filmmaking and animation.

However, current video generation models are still in their early stages of development. Existing
video diffusion models can primarily be categorized into three types. The first type uses T2I (Text
to Image) models to generate videos directly without further training Khachatryan et al. (2023). The
second type incorporates a temporal module into T2I models and trains on video datasets Wang
et al. (2023b); Blattmann et al. (2023); Lin & Yang (2024). The third type is trained from scratch
Ma et al. (2024). Regardless of which type, these methods use a single model to undertake the
entire task of video generation. However, video generation is an extremely intricate task. After our
in-depth analysis, we believe that this complex task consists of three subtasks: modeling the video
structure, which includes designing the overall visual structure and plot of the video; generating
spatial details, ensuring that each frame is produced with sufficient clarity and high aesthetic score;
and producing temporal details, maintaining consistency and coherence between frames to ensure
natural and logical transitions. Therefore, relying on a single model to handle such a complex and
multidimensional task is challenging.

Overall, there are three main challenges in the current field of video generation. 1) The quality of the
generated videos is low, hard to achieve high-quality temporal and spatial modeling simultaneously.
2) The generation process is time-consuming, often requiring hundreds of inference steps. Utilizing
a single model to handle complex video generation task is one of the key reasons for these two
issues. 3) The length of the generated videos are typically short. Due to limitations in VRAM, the
length of videos generated in a single attempt generally ranges between only 2-3 seconds.
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Figure 1: Comparison between Our ConFiner-Long and StreamingT2V Henschel et al. (2024).

In order to enhance generation quality, some methods employ multiple models on different resolu-
tions or in different spaces to perform progressive generation. Methods like Imagen Video Ho et al.
(2022a) and I2VGen-XL Zhang et al. (2023c) train several diffusion models on gradually increas-
ing resolutions to first generate a video of low resolution, and then progressively scale up. Show-1
Zhang et al. (2023b) trains a model in pixel space to generate low-quality videos, followed by a la-
tent space model to enhance quality. Compared to methods using a single model, these approaches
achieve higher performance. However, each model still needs to handle both spatial and temporal
modeling in generation. This leaves each model still heavily burdened.

To improve quality of videos while reducing inference time, we rethink the demands of video gen-
eration tasks, which include modeling video structure, generating spatial details, and producing
temporal details. We find out that a more rational approach is utilizing three specialized models,
each handling one demand. By doing so, these models can collaboratively accomplish the compre-
hensive task of video generation. To this end, we propose a framework named ConFiner, which
decouples the video generation process into three parts: structure control, temporal refinement, and
spatial refinement. During generation, we employ chain of three ready-made diffusion experts, each
specializing in their respective tasks. In the control stage, a highly controllable T2V (Text to Video)
model is employed as control expert, tasked with structure control. During the refinement stage,
a T2I model and a T2V model skilled at generating details are employed as spatial and temporal
experts to refine details. This framework can reduce the burden on individual models, enhancing
both the quality and speed of generation. Moreover, as it utilizes ready-made diffusion experts, this
framework does not incur additional training costs.

Moreover, during refinement stage, to enable simultaneous use of spatial and temporal experts within
a single denoising process, we proposed coordinated denoising. Due to the varying noise schedulers
employed by different diffusion experts, their noise distributions differ. Therefore, they cannot be
directly combined during generation. In coordinated denoising, we build a bridge between two noise
schedulers, enabling the collaboration of two diffusion models at the granularity of timesteps.

In terms of increasing video lengths, some methodsWang et al. (2024; 2023a); Qiu et al. (2023a); Gu
et al. (2023) propose generating video segments and then stitching them together to create longer
videos. They use techniques such as noise control to ensure consistency between segments. Al-
though these methods can produce extended videos within limited VRAM, the transitions between
segments tend to be abrupt.
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Therefore, based on ConFiner, we propose ConFiner-Long framework with three strategies to ensure
the coherence and consistency between segments in long video generation. As the initial noise
significantly impacts the final videos, we first introduce a segments consistency initialization strategy
to ensure the consistency of the initial noise between segments by sharing a base noise. Additionally,
in order to enhance the coherence of the motion modes between segments, we propose a coherence
guidance strategy that uses the gradient of noise differences between two segments to guide the
denoising direction. Also, to address the problem of flickering at the junctions of segments, we
design a staggered refinement strategy that staggers the control stage and the refinement stage. It
places the tail of one video structure and the head of the next into the same refinement process to
achieve more natural transitions between segments.

Experimental results have shown that ConFiner requires only 9 sampling steps (less than 5 seconds)
to surpass the performance of models like AnimateDiff-Lightning Lin & Yang (2024), LaVie Wang
et al. (2023c), and ModelScope T2V Wang et al. (2023b) with 100-step sampling (more than 1
minute) in all metrics. Furthermore, ConFiner-Long can generate high-quality coherent videos up
to 600 frames long. To sum up, our contributions are as follows:

1. We introduced ConFiner, which decouples the video generation task into three sub-tasks.
It utilizes three ready-made diffusion experts, each handling its specialized task. This ap-
proach reduces the model’s burden, enhancing the quality and speed of generation.

2. We developed coordinated denoising, allowing two experts on different noise schedulers to
collaborate timestep-wise in video generation process.

3. We proposed ConFiner-Long framework, building on the ConFiner with three strategies to
achieve high-quality, coherent long video production.

2 RELATED WORK

Diffusion models (DMs). DMs have achieved remarkable successes in the generation of images
Nichol & Dhariwal (2021), music Mittal et al. (2021), and 3D models Poole et al. (2022); Lin
et al. (2023). These models typically involve thousands of timesteps, controlled by a scheduler
that manages the noise level at each step. Diffusion models consist of two processes. In the forward
process, noise is progressively added to the original data until it is completely transformed into noise.
During the reverse denoising process, the model starts with random noise and gradually eliminates
the noise using a denoising model, ultimately transforming it into a target sample.

Video Diffusion Models (VDMs). Compared to the success of diffusion models in image generation
and other areas, VDMs are still at a very early stage. Models like text2video-zero Khachatryan
et al. (2023) that use stable diffusion without additional training for direct video generation suffer
from poor coherence and evident visual tearing. Models like SVD Blattmann et al. (2023) and
Modelscope T2V Wang et al. (2023b) convert the U-Net of stable diffusion Wang et al. (2023c) into
a 3D U-Net through the addition of temporal convolution or attention, and train it on video datasets
to achieve video generation. Although these video generation models each have their strengths, none
fully satisfy all the demands of video generation, such as coherence and clarity.

3 METHOD

3.1 OVERVIEW

Our ConFiner consists of two stages: the control stage and the refinement stage. In the control
stage, it generates a video structure containing coarse-grained spatio-temporal information, which
determines the overall structure and plot of the final video. During the refinement stage, it refines
spatial and temporal details based on video structure. In this stage, we propose coordinated denois-
ing to enable cooperation of spatial expert and temporal expert. Based on ConFiner, we introduce
ConFiner-Long framework for producing coherent and consistent long videos.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

×T

Video
Structure

Spatial Expert

Temporal Expert

Control
Expert

Text P

Spatial Expert

Convert

Base
Noise

 
i kjText P Text P Text P

ConFiner-Long

Consistency 

Initialization 

Coherence
Guidance

Structure i Structure kStructure j
Refine kRefine jRefine i

Structure Generation Spatio-temporal Refinement

Convert

…
…

Coordinated Denoising

Figure 2: Pipeline of Our ConFiner and ConFiner-Long. ConFiner decouples the video genera-
tion process. Firstly, control expert generates a video structure. Subsequently, temporal and spatial
experts perform the refinement of spatio-temporal details. Spatial and temporal experts work to-
gether with our coordinated denoising. By adding consistency initialization, coherence guidance
and staggered refinement to ConFiner, ConFiner-Long can generate coherent long videos.

3.2 REVISITING DIFFUSION MODELS

The workflow of diffusion models consists of two processes: the forward process and the reverse
denoising process. The forward process from timestep 0 to timestep t can be expressed as follows:

xt =
√
αtx0 +

√
1− αtϵ (1)

where αt = 1−βt, αt =
∏t

i=1 αi, t is the diffusion step, ϵ is a random noise sampled from Standard
Gaussian Distribution N (0, 1) and βt is a small positive constant between 0 and 1, representing the
noise level of each timestep.

During the reverse denoising process, starting from a random noise at timestep T , the denoising
model progressively predicts xt−1 from xt, ultimately getting the target data x0. Taking DDIM
Song et al. (2020) as an example, the denoising model initially uses xt to predict the noise. Then,
xt and the predicted noise are utilized together to predict x0 via the following expression:

x̂0 =
xt −

√
1− αtϵ

(t)
θ (xt)√

αt
(2)

where ϵ
(t)
θ (xt), x̂0 represents the predicted noise and x0.

Then, based on the predicted noise and x̂0 , a prediction for xt−1 is derived as:

xt−1 =
√

αt−1 · x̂0 +
√
1− αt−1·ϵ(t)θ (xt) (3)

By combining eq. (2) and eq. (3), single-step denoising can be expressed as:

x̂0,xt−1 = Denoising(θ,xt, t, S) (4)
where S denotes the noise scheduler and θ represents the corresponding denoising model.

3.3 VIDEO STRUCTURE GENERATION

In the control stage, we select a video diffusion model skilled at handling video structure and employ
it as control expert. The scheduler used in this expert can be denoted as Scon. During inference,
to reduce computational overhead, we opt for a DDIM scheduler with a total inference step of
Ti1 . When conducting inference, the list of timesteps utilized is: [t1(i1), t2(i1), ..., tTi1

(i1)]. The
selection of timesteps is made at uniform intervals.

4
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Algorithm 1 ConFiner (Control + Refinement)

1: Input: Prompt P , Control Expert Con, Spatial Expert S, Temporal Expert T , Noisy timestep
Te

2: Output: Generated video V
3: // Control Stage
4: V0 ← Generate(P,Con) ▷ Generate video with coarse-grained details.
5: V ideo Structure← Add noise(V0, Te, Con) ▷ Extract structure from low-quality video.
6: // Refinement Stage
7: V ′

Te
← V ideo Structure

8: for each refinement step Tk do
9: if Standard Denoising then

10: V ′
Tk−1

← Denoise(V ′
Tk
, Tk, S) ▷ Using spatial expert for denoising.

11: else if Coordinated Denoising then
12: V ′

0(Tk)← Denoise(V ′
Tk
, Tk, S, P ) ▷ Add spatial details.

13: V ′′
Tk
← Add noise(V ′

0(Tk), Tk, T ) ▷ Transfer to temporal expert’s scheduler.
14: V ′′

0 (Tk)← Denoise(V ′′
Tk
, Tk, T, P ) ▷ Add temporal details.

15: V ′
Tk
← Add noise(V ′′

0 (Tk), Tk, S) ▷ Transfer to Spatial expert’s scheduler.
16: V ′

Tk−1
← Denoise(V ′

Tk
, Tk, S, P ) ▷ Add spatial details and denoise.

17: end if
18: end for
19: Return V = V ′

0

After obtaining the timesteps list, we start with a random noise VtTi1
(i1)

and progressively perform
denoising over these timesteps, getting the first version of the video V0. Single-step sampling from
eq. (4) can be rewritten as follows.

V̂0(tk(i1)),Vtk−1(i1) = Denoising(θcon,Vtk(i1), tk(i1), Scon) (5)

where V̂0(tk(i1)) represents the predicted V0 at timestep tk(i1), Vtk(i1) denotes V at timestep tk(i1),
θcon represents control expert and Scon is the scheduler of control expert.

While we completed the entire sampling process to obtain the first version of video V0, the quality
and coherence of the video are compromised due to our choice of a small Ti1 .

Therefore, we introduce Te steps of noise to V0. This operation is intended to create refinement op-
portunities for spatial and temporal experts. In this noise addition process, we utilize the Scheduler
Ss from the spatial expert used in refinement stage, resulting in the noisy video V ′

Te
at timestep Te.

Transformed from eq. (1), this noise addition process can be expressed as:

V ′
Te

=
√
αTe

(Ss) · V0 +
√
1− αTe

(Ss) · ϵ (6)

where αTe(Ss) is the αt in scheduler Ss at timestep Te.

3.4 SPATIAL AND TEMPORAL DETAILS REFINEMENT

During the refinement stage, we add spatial and temporal details with spatial expert and tem-
poral expert in the process of transforming V ′

Te
to V ′

0. Similar to the control stage, we se-
lect Ti2 steps for sampling between timestep Te and timestep 0. The list of timesteps used is:
[t1(i2), t2(i2), ..., tTi2

(i2)].

Given that two experts respectively excel in spatial and temporal modeling, we aim to synergistically
utilize both experts in the process of denoising V ′

Te
to V ′

0, thus enhancing the spatio-temporal detail.
A straightforward approach is alternating between the two experts at each timestep, leveraging the
strengths of both models concurrently. In this case, eq. (4) can be rewritten as follows:

V̂0(tk(i2)),V ′
tk−1(i2)

= Denoising(θX ,V ′
tk(i2)

, tk(i2), Ss)

where θX =

{
θS if k ≡ 2 (mod 0)

θT if k ≡ 2 (mod 1)

(7)

5
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where θS , θT represent sptial expert and temporal expert, and Ss denotes spatial expert’s scheduler.

However, this method is ineffective because spatial expert and temporal expert are often on different
noise scheduler. The data distributions for the spatial and temporal experts at the same timestep are
inconsistent. The original data is on the scheduler of spatial expert, and directly switching to the
scheduler of temporal expert at a certain timestep leads to conflicts and inconsistencies. To transform
V ′
tk(i2)

to V ′
tk−1(i2)

, we provide two options.

Option 1 (Standard Denoising): Since the original data V ′
Te

is on the scheduler of spatial expert,
we can directly employ the spatial expert for denoising at time step tk(i2):

V̂0(tk(i2)),V ′
tk−1(i2)

= Denoising(θS ,V ′
tk(i2)

, tk(i2), Ss) (8)

Option 2 (Coordinated Denoising): Although two experts’ schedulers differ, both schedulers
share the same distribution at timestep 0. Hence, we can utilize timestep 0 to establish a connection
between the two schedulers, facilitating the concurrent use of two experts within the same timestep.
The specific details of this process are as follows.

First, at timestep tk(i2), given V ′
tk(i2)

, we employ the spatial expert for a one-step inference as

eq. (8). After obtaining the predicted V̂0(tk(i2)), it can be converted to V ′′
tk(i2)

on the scheduler of
temporal expert.

V ′′
tk(i2)

=
√

αtk(i2)(St) · V̂0(tk(i2)) +
√

1− αtk(i2)(St) · ϵ (9)

where St represents the noise scheduler of temporal expert.

Then we can employ the temporal expert for denoising:

V̂0(tk(i2)),V ′′
tk−1(i2)

= Denoising(θT ,V ′′
tk(i2)

, tk(i2), St) (10)

This version of V̂0(tk(i2)) predicted by temporal expert contains richer temporal information and
demonstrates enhanced inter-frame coherence. Subsequently, we transform V̂0(tk(i2)) using the
scheduler of spatial expert into a V ′

tk(i2)
with more extensive temporal information.

V ′
tk(i2)

=
√
αtk(i2)(Ss) · V̂0(tk(i2)) +

√
1− αtk(i2)(Ss) · ϵ (11)

Finally, the spatial expert is used again to predict V ′
tk−1(i2)

including augmented spatio-temporal
information as eq. (8).

3.5 CONFINER-LONG FRAMEWORK

We also leverage ConFiner to design a pipeline for long video generation. This pipeline generate
multiple short video segments and introduces three strategies to ensure consistency and coherence
between these segments.

First, we design consistency initialization strategy to promote consistency between segments. The
initial noise affects the content of the generated video significantly. To improve the consistency
between segments, we first sample a Noise base ∈ RH×W×C×F , which is then subjected to frame-
wise shuffling to obtain the initial noise for each segment. Sharing base noise enhances the content
consistency between segments while shuffling maintains a little randomness.

Additionally, we introduce a staggered refinement mechanism to further improve the overall coher-
ence of the video. In our segmented generation approach, the transition points between segments
tend to exhibit the highest inconsistency. Therefore, in long video generation, we perform the Con-
trol Stage and Refinement Stage in a staggered manner. Specifically, the latter half of the preceding
structure and the former half of the succeeding structure are used as inputs for a same refinement
pass. The refinement stage can seamlessly stitch the two structures together, which ensures a more
natural and smoother transition between segments.

6
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Table 1: Objective Evaluation Results. In this experiment, ConFiner utilized AnimateDiff-
Lightning as the control expert and selected stable diffusion 1.5 for spatial expert. Lavie and Mod-
elscope T2V are chosen as temporal expert.

Method Inference
Steps

Subject
Consistency↑

Motion
Smoothness↑

Aesthetic
Quality ↑

Imaging
Quality ↑

Lavie Wang et al. (2023c) 10 0.940 0.967 0.570 0.658
Lavie Wang et al. (2023c) 20 0.954 0.966 0.587 0.683
Lavie Wang et al. (2023c) 50 0.958 0.965 0.597 0.696
Lavie Wang et al. (2023c) 100 0.957 0.965 0.596 0.695

AnimateDiff-Lightning Lin & Yang (2024) 10 0.983 0.983 0.635 0.689
AnimateDiff-Lightning Lin & Yang (2024) 20 0.984 0.980 0.636 0.697
AnimateDiff-Lightning Lin & Yang (2024) 50 0.981 0.971 0.638 0.705
AnimateDiff-Lightning Lin & Yang (2024) 100 0.977 0.964 0.623 0.699

Modelscope T2V Wang et al. (2023b) 10 0.983 0.980 0.570 0.670
Modelscope T2V Wang et al. (2023b) 20 0.985 0.980 0.575 0.702
Modelscope T2V Wang et al. (2023b) 50 0.988 0.990 0.592 0.716
Modelscope T2V Wang et al. (2023b) 100 0.987 0.990 0.594 0.715

ConFiner w/ Lavie 9 0.993 0.991 0.699 0.734
ConFiner w/ Lavie 18 0.993 0.990 0.703 0.739

ConFiner w/ Modelscope 9 0.994 0.991 0.698 0.731
ConFiner w/ Modelscope 18 0.994 0.991 0.707 0.739

Although consistency initialization and staggered refinement have ensured content consistency and
smooth transitions between segments, if the motion modes of video structures are not coherent, it
will be impossible to combine them into a reasonable long video. Thus, we propose a coherent
guidance to promote the motion mode of new segment to follow the preceding segment. In video
generation, predicted noises affect the direction of generation and determine the motion mode. So
we generate each structure one by one, using noises of the previous segments to guide the subsequent
structure. Specifically, during the sampling process, we use the gradient of the L2 loss to guide the
sampling direction. The L2 loss is calculated between the predicted noise of the current segment
and the noise in the previous segment. The guided noise is calculated as follows:

ϵS2
t = ϵ̂S2

t − γ∇
ϵ̂
S2
t
∥ϵ̂S2

t − ϵS1
t ∥2 (12)

where ϵ̂S2
t represents the noise of current segment predicted by denoising model at timestep t, ϵS1

t is
the noise of former segment at timestep t and γ is a constant.

In this way, coherent guidance can make the noise of the two segments similar, which allows the
motion mode of the latter segment to inherit that of the previous segment. Additionally, coherence
guidance also reduces the pixel distance between noises of two segments, which can help maintain
content consistency between segments.

4 EXPERIMENTS

In the experiment, we selected AnimateDiff-Lightning Lin & Yang (2024) as control expert, and
Stable Diffusion 1.5 Rombach et al. (2022) as the spatial expert. For the temporal expert, we opted
for two open-source models, lavie Wang et al. (2023c) and modelscope Wang et al. (2023b).

4.1 OBJECTIVE EVALUATION

For objective evaluation experiments, we utilized the cutting-edge benchmark, Vbench Huang et al.
(2023). Vbench provides 800 prompts that test various capabilities of video generation models. In
our experiments, each model generated 800 videos using these prompts, and the resulting videos
were assessed using four metrics to evaluate their Temporal Quality and Frame-wise Quality.

7
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Table 2: Subjective Evaluation Results. Each model generates videos using the top 100 prompts
from Vbench Huang et al. (2023). The videos were evaluated by 30 users, with each video being
rated as good, normal, or bad on three dimensions.

Coherence Text-Match Visual Quality

Method Bad↓ Normal∼ Good↑ Bad↓ Normal∼ Good↑ Bad↓ Normal∼ Good↑

AnimateDiff-Lightning 0.37 0.42 0.21 0.06 0.51 0.43 0.29 0.51 0.20
Modelscope T2V 0.14 0.48 0.38 0.21 0.53 0.26 0.34 0.45 0.21
Lavie 0.11 0.46 0.43 0.24 0.46 0.30 0.32 0.49 0.19
ConFiner w/ Lavie 0.08 0.43 0.49 0.08 0.48 0.44 0.13 0.36 0.51
ConFiner w/ Modelscope 0.07 0.42 0.51 0.08 0.50 0.42 0.09 0.41 0.50

Table 3: Ablation Study of Te. In most cases, as Te increases, the temporal metric decreases and the
imaging quality improves. However, when the control stage involves only 4 steps, too high values
of Te (such as 300 or 500) can lead to imaging collapse.

Method
Control Stage

Steps Te
Subject

Consistency↑
Motion

Smoothness↑
Aesthetic
Quality ↑

Imaging
Quality ↑

ConFiner w/ Lavie 4 50 0.993 0.991 0.703 0.733
ConFiner w/ Lavie 4 100 0.993 0.990 0.702 0.737
ConFiner w/ Lavie 4 200 0.992 0.989 0.710 0.744
ConFiner w/ Lavie 4 300 0.978 0.986 0.383 0.303
ConFiner w/ Lavie 4 500 0.967 0.983 0.338 0.265

ConFiner w/ Modelscope 4 50 0.995 0.991 0.701 0.733
ConFiner w/ Modelscope 4 100 0.994 0.991 0.698 0.733
ConFiner w/ Modelscope 4 200 0.994 0.990 0.712 0.736
ConFiner w/ Modelscope 4 300 0.990 0.987 0.560 0.429
ConFiner w/ Modelscope 4 500 0.993 0.992 0.513 0.370

ConFiner w/ Lavie 8 50 0.994 0.991 0.708 0.741
ConFiner w/ Lavie 8 100 0.993 0.990 0.706 0.739
ConFiner w/ Lavie 8 200 0.991 0.989 0.716 0.742
ConFiner w/ Lavie 8 300 0.983 0.985 0.718 0.744
ConFiner w/ Lavie 8 500 0.978 0.980 0.721 0.751

ConFiner w/ Modelscope 8 50 0.994 0.991 0.708 0.740
ConFiner w/ Modelscope 8 100 0.994 0.991 0.707 0.739
ConFiner w/ Modelscope 8 200 0.993 0.990 0.716 0.742
ConFiner w/ Modelscope 8 300 0.992 0.989 0.720 0.747
ConFiner w/ Modelscope 8 500 0.991 0.987 0.727 0.752

For Temporal Quality Metrics, we use Subject Consistency and Motion Smoothness. For Frame-
wise Quality Metrics, we use Aesthetic Quality and Imaging Quality.

In this experiment, we employed AnimateDiff-Lightning, Lavie, and mocelscope T2V to generate
over total timesteps of 10, 20, 50, and 100. We then utilize our ConFiner to conduct generation
with 9(4+5) and 18(8+10) timesteps, where Te is set to 100. All evaluation results are presented in
table 1. Each individual experiment can be completed in 3-5 hours on a single RTX 4090. In each
experiment, we repeated for five times with different random seeds.

4.2 SUBJECTIVE EVALUATION

In our subjective evaluation, we employed our ConFiner with 18 inference steps to generate videos
using the top 100 prompts from Vbench. These videos were evaluated alongside those generated
by AnimateDiff-Lightning, Modelscope T2V, and Lavie with 50-step inference, by 30 users. Users
rated each video across three dimensions: coherence, text-match, and visual quality, each dimension
being categorized into three levels: good, normal, and bad. The scoring results are shown in table 2.
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Table 4: Comparison of Training and Inference Time.

Time Cost ConFiner LavieWang et al.
(2023c)

Animate DiffusionGuo
et al. (2023)

ModelscopeWang
et al. (2023b)

Training 0 > 100× A100 day > 100× A100 day > 100× A100 day
Inference ≈5S >1min >1min >1min

Table 5: Ablation Study of Denoising Type.

Method
Inference

Steps
Denoising

Type
Subject

Consistency↑
Motion

Smoothness↑
Aesthetic
Quality ↑

Imaging
Quality ↑

ConFiner w/ Lavie 9 Coordinated Denoising 0.993 0.991 0.699 0.734
ConFiner w/ Lavie 9 Only Temporal Expert 0.994 0.993 0.552 0.618
ConFiner w/ Lavie 9 Only Spatial Expert 0.883 0.907 0.749 0.766
ConFiner w/ Lavie 18 Coordinated Denoising 0.993 0.990 0.703 0.739
ConFiner w/ Lavie 18 Only Temporal Expert 0.993 0.991 0.583 0.632
ConFiner w/ Lavie 18 Only Spatial Expert 0.859 0.880 0.754 0.758

ConFiner w/ Modelscope 9 Coordinated Denoising 0.994 0.991 0.698 0.731
ConFiner w/ Modelscope 9 Only Temporal Expert 0.995 0.993 0.518 0.599
ConFiner w/ Modelscope 9 Only Spatial Expert 0.912 0.922 0.732 0.758
ConFiner w/ Modelscope 18 Coordinated Denoising 0.994 0.991 0.707 0.739
ConFiner w/ Modelscope 18 Only Temporal Expert 0.993 0.992 0.577 0.641
ConFiner w/ Modelscope 18 Only Spatial Expert 0.861 0.893 0.765 0.772

"A spectacular fireworks display over Sydney Harbour, 4K, high resolution"

ConFiner-Long

FreeNoise

Figure 3: Comparison of Our ConFiner-Long with FreeNoise Qiu et al. (2023b).

4.3 COMPARISON OF COMPUTATION EFFICIENCY

In this section, we compare the training and inference cost of our ConFiner with other video diffusion
models. The results are shown in table 4.

4.4 ABLATION STUDY ON CONTROL AND REFINEMENT LEVEL

As eq. (6), we apply noise for Te steps to the videos generated during the control stage to create
optimization space for the refinement stage. A larger Te value increases the impact of the refinement
stage. For the four settings same as objective experiment, we set Te to 50, 100, 200, 300, and 500,
with other experimental settings consistent. The performance comparison is shown in table 3.

4.5 ABLATION STUDY ON COORDINATED DENOISING

To verify the effectiveness of coordinated denoising, we conducted ablation experiments on the
denoising type during the refinement stage. Specifically, in this experiment, we used Lavie and
ModelScope as the temporal experts, setting the total inference steps to 9 and 18, respectively, thus
constructing four experimental settings. For each setting, we refined using three different denoising
types during the refinement stage: using coordinated denoising; using only the temporal expert; and
using only the spatial expert. The performance of the three denoising types is shown in table 5.
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All Strategies

W/O Staggered
Refinement

W/O Coherence 
Guidance

W/O consistency 
initialization

"A clownfish in the seabed, with background of sand."

Frame 0 Frame 2 Frame 4 Frame 6 Frame 8 Frame 10 Frame 12 Frame 14
From Structure i From Structure i+1

Figure 4: Ablation Study on Three Strategies of ConFiner-Long.

4.6 ABLATION STUDY ON STRATEGIES OF CONFINER-LONG

In this section, we conducted ablation experiments on three strategies within the ConFiner-Long
framework. Using the same preceding video segments, we generated subsequent video segments
with either all strategies or only two. The visual comparison of the four video segments against the
preceding one is shown in fig. 4. The overall visual comparison between ConFiner-Long and the
existing training-free long video generation method FreenoiseQiu et al. (2023b) is shown in fig. 3.

5 CONCLUSION

In this paper, we introduce ConFiner, a training-free framework that can generate high-quality videos
with chain of diffusion experts. It decomposes video generation into three components: structure
control, spatial refinement and temporal refinement. Each component is handled by a off-the-shelf
expert that specializes in this task. Additionally, we propose coordinated denoising to enable two ex-
pert cooperate when denoising. We also design ConFiner-Long framework to generate long coherent
videos. Experimental results confirm that our ConFiner enhances the aesthetics and coherence of
generated videos while reducing sampling time significantly. And our ConFiner-Long can generate
consistent and coherent videos with up to 600 frames. Our approach paves the way for cost-effective
new possibilities in filmmaking, animation production, and video editing.

ETHICS STATEMENT

While ConFiner has significant potential for creative industries, such as filmmaking and animation,
we recognize the potential misuse of such technology for generating misleading or harmful content.
To mitigate these risks, we advocate for responsible use in line with industry standards and ethical
guidelines, and will include an NSFW detector in the open-source code.

REPRODUCIBILITY STATEMENT

We utilize an open-source evaluation framework Vbench, and our experiments are conducted using
prompts publicly available from Vbench, ensuring the reproducibility of our results. The code for
our ConFiner framework, including the implementation details, is submitted in the appendix. More-
over, we have provided a comprehensive README file along with a detailed guide for reproducing
the experimental metrics.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip S Yu, and Lichao Sun. A com-
prehensive survey of ai-generated content (aigc): A history of generative ai from gan to chatgpt.
arXiv preprint arXiv:2303.04226, 2023.

Patrick Esser, Johnathan Chiu, Parmida Atighehchian, Jonathan Granskog, and Anastasis Germani-
dis. Structure and content-guided video synthesis with diffusion models. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 7346–7356, 2023.

Jiaxi Gu, Shicong Wang, Haoyu Zhao, Tianyi Lu, Xing Zhang, Zuxuan Wu, Songcen Xu, Wei
Zhang, Yu-Gang Jiang, and Hang Xu. Reuse and diffuse: Iterative denoising for text-to-video
generation. arXiv preprint arXiv:2309.03549, 2023.

Yuwei Guo, Ceyuan Yang, Anyi Rao, Yaohui Wang, Yu Qiao, Dahua Lin, and Bo Dai. Animatediff:
Animate your personalized text-to-image diffusion models without specific tuning. arXiv preprint
arXiv:2307.04725, 2023.

Roberto Henschel, Levon Khachatryan, Daniil Hayrapetyan, Hayk Poghosyan, Vahram Tadevosyan,
Zhangyang Wang, Shant Navasardyan, and Humphrey Shi. Streamingt2v: Consistent, dynamic,
and extendable long video generation from text. arXiv preprint arXiv:2403.14773, 2024.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition
video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022a.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition
video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022b.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. Advances in Neural Information Processing Systems, 35:8633–
8646, 2022c.

Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianx-
ing Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for
video generative models. arXiv preprint arXiv:2311.17982, 2023.

Levon Khachatryan, Andranik Movsisyan, Vahram Tadevosyan, Roberto Henschel, Zhangyang
Wang, Shant Navasardyan, and Humphrey Shi. Text2video-zero: Text-to-image diffusion models
are zero-shot video generators. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 15954–15964, 2023.

Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang, Karsten
Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution text-to-3d con-
tent creation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 300–309, 2023.

Shanchuan Lin and Xiao Yang. Animatediff-lightning: Cross-model diffusion distillation. arXiv
preprint arXiv:2403.12706, 2024.

Xin Ma, Yaohui Wang, Gengyun Jia, Xinyuan Chen, Ziwei Liu, Yuan-Fang Li, Cunjian Chen,
and Yu Qiao. Latte: Latent diffusion transformer for video generation. arXiv preprint
arXiv:2401.03048, 2024.

Gautam Mittal, Jesse Engel, Curtis Hawthorne, and Ian Simon. Symbolic music generation with
diffusion models. arXiv preprint arXiv:2103.16091, 2021.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International conference on machine learning, pp. 8162–8171. PMLR, 2021.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
diffusion. arXiv preprint arXiv:2209.14988, 2022.

Haonan Qiu, Menghan Xia, Yong Zhang, Yingqing He, Xintao Wang, Ying Shan, and Ziwei
Liu. Freenoise: Tuning-free longer video diffusion via noise rescheduling. arXiv preprint
arXiv:2310.15169, 2023a.

Haonan Qiu, Menghan Xia, Yong Zhang, Yingqing He, Xintao Wang, Ying Shan, and Ziwei
Liu. Freenoise: Tuning-free longer video diffusion via noise rescheduling. arXiv preprint
arXiv:2310.15169, 2023b.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural informa-
tion processing systems, 35:36479–36494, 2022.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Fu-Yun Wang, Wenshuo Chen, Guanglu Song, Han-Jia Ye, Yu Liu, and Hongsheng Li. Gen-l-video:
Multi-text to long video generation via temporal co-denoising. arXiv preprint arXiv:2305.18264,
2023a.

Jiuniu Wang, Hangjie Yuan, Dayou Chen, Yingya Zhang, Xiang Wang, and Shiwei Zhang. Mod-
elscope text-to-video technical report. arXiv preprint arXiv:2308.06571, 2023b.

Xingrui Wang, Xin Li, and Zhibo Chen. Cono: Consistency noise injection for tuning-free long
video diffusion. arXiv preprint arXiv:2406.05082, 2024.

Yaohui Wang, Xinyuan Chen, Xin Ma, Shangchen Zhou, Ziqi Huang, Yi Wang, Ceyuan Yang, Yinan
He, Jiashuo Yu, Peiqing Yang, et al. Lavie: High-quality video generation with cascaded latent
diffusion models. arXiv preprint arXiv:2309.15103, 2023c.

Jiayang Wu, Wensheng Gan, Zefeng Chen, Shicheng Wan, and Hong Lin. Ai-generated content
(aigc): A survey. arXiv preprint arXiv:2304.06632, 2023.

Zhen Xing, Qijun Feng, Haoran Chen, Qi Dai, Han Hu, Hang Xu, Zuxuan Wu, and Yu-Gang Jiang.
A survey on video diffusion models. arXiv preprint arXiv:2310.10647, 2023.

Chaoning Zhang, Chenshuang Zhang, Sheng Zheng, Yu Qiao, Chenghao Li, Mengchun Zhang,
Sumit Kumar Dam, Chu Myaet Thwal, Ye Lin Tun, Le Luang Huy, et al. A complete sur-
vey on generative ai (aigc): Is chatgpt from gpt-4 to gpt-5 all you need? arXiv preprint
arXiv:2303.11717, 2023a.

David Junhao Zhang, Jay Zhangjie Wu, Jia-Wei Liu, Rui Zhao, Lingmin Ran, Yuchao Gu, Difei
Gao, and Mike Zheng Shou. Show-1: Marrying pixel and latent diffusion models for text-to-
video generation. arXiv preprint arXiv:2309.15818, 2023b.

Shiwei Zhang, Jiayu Wang, Yingya Zhang, Kang Zhao, Hangjie Yuan, Zhiwu Qin, Xiang Wang,
Deli Zhao, and Jingren Zhou. I2vgen-xl: High-quality image-to-video synthesis via cascaded
diffusion models. arXiv preprint arXiv:2311.04145, 2023c.

12


	Introduction
	Related Work
	Method
	Overview
	Revisiting Diffusion Models
	Video Structure Generation
	Spatial and Temporal Details Refinement
	ConFiner-Long Framework

	Experiments
	Objective Evaluation
	Subjective Evaluation
	Comparison of Computation Efficiency
	Ablation Study on Control and Refinement Level
	Ablation Study on Coordinated Denoising
	Ablation Study on Strategies of ConFiner-Long

	Conclusion

