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ABSTRACT

This research highlights the convergence of probabilistic graphical models and
neural networks, shedding light on their inherent similarities and interactions. By
interpreting Bayesian neural networks within the framework of Markov random
fields, we uncovered deep connections between message passing and neural
network propagation. Our exploration unveiled a striking equivalence between
gradients in neural networks and posterior-prior differences in graphical models.
Empirical evaluations across diverse scenarios and datasets showcased the efficacy
and generalizability of our approach. This work introduces a novel perspective on
Bayesian Neural Networks and probabilistic graphical models, offering insights
that could pave the way for enhanced models and a deeper understanding of their
relationship.

1 INTRODUCTION

Probabilistic graphical models and neural networks are two distinct paradigms for modeling data
generation within networks composed of fundamental computational units. A probabilistic graphical
model defines the joint probability distribution of a network of random variables by leveraging
conditional probabilities or clique potentials. In contrast, a neural network characterizes the
transformation of a tensor “particle” as it progresses through multiple layers, encompassing both
linear and nonlinear operations, to achieve specific outcomes defined by a loss function. In a
broader context, each computational graph, trained with a dataset sampled from a data distribution
via stochastic gradient descent, gives rise to a probabilistic graphical model. This model delineates a
joint probability distribution involving synaptic weights and the data. Conversely, every probabilistic
graphical model leads to a computational graph in which stochastic message passing strives to attain
detailed balance, ultimately resulting in a stationary joint probability distribution. While simulation-
based approaches are often more scalable for processing extensive datasets when compared to
analytical methods, the exploration of connections between deterministic and stochastic perspectives
within network-based computational models holds the promise of yielding enhanced models and
deeper insights (Bishop, 2006; Goodfellow et al., 2016).

In our research, we conceptualized a Bayesian neural network as a Markov random field (Neal,
1995), where the loss function serves as potential energy governing the trajectories of tensors
as they navigate through the computational graph and interact with synaptic weights. The
focus was on identifying mean parameters of tensors during forward propagation and computing
gradients with respect to their canonical parameters in backward propagation (Rockafellar, 1970;
Wainwright & Jordan, 2008; Khan & Rue, 2021). This process reveals the gradient as the
difference in mean parameters between the posterior and prior distributions, highlighting a parallel
between probabilistic graphical models’ message-passing and neural networks’ forward/backward
propagation. Furthermore, we formulated the mean parameters during forward propagation and
their sensitivities during backward propagation in terms of the statistics of tensor particles as they
advanced through the computational graph and the gradients of loss with respect to these tensors
as they propagated backward within the graph. This approach sheds light on the duality between
probabilistic graphical models and Bayesian neural networks, linking population dynamics and
distributions. In our paper, we use the term “particle” to describe a set comprising inputs, post-
activations, synaptic weights, and labels that collectively constitute the state of a Bayesian neural
network. This terminology is borrowed from Monte Carlo methods prevalent in statistical physics
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and computational mathematics, where a particle represents a possible state of the system under
study, analogous to how physical particles behave and interact (Gardiner et al., 1985).

Our algorithm underwent extensive testing across various datasets including CIFAR 10/100, Tiny
ImageNet, and UCI regression, using neural network architectures like DenseNet, ResNet, and
others. We explored different learning algorithms, such as Bayes-by-backprop for Bayesian neural
networks (BNNs), and incorporated techniques like cosine learning rate scheduling and image
augmentation. We also addressed vanishing gradient issues in BNNs using the variational message
passing algorithm (Winn et al., 2005) and showcased BNNs’ superior generalization through test
error analysis and visualization of learned data distributions.

2 NOTATION

A neural network, as explained in Goodfellow et al. (2016), emulates decision-making processes
based on a training dataset D by minimizing a specific loss. This loss is essentially the empirical
mean of the loss function J(y(x, W), y), calculated in the following manner:

. 1 .
argming _w, w,} Dl Z(x’y)eD J(y(x,W),y), )]

where y(x, W) = x1,x; = fi(ay),ay = W; - x;_1 + by forl =1,..., L, and xg = x.

In these equations, a;, x;, W, and f; denote the pre-activation, post-activation, weights, and
activation function of each layer [, respectively. The size of the dataset |D| is the count
of training examples. Often, the loss function J is the negative log-likelihood, J(y,y) =
—log p(y;¥), capturing the cross-entropy between the empirical distribution of training data and
the probabilistic model. In our notation, operators are applied from the left, meaning W; - x;_; =

(ij Wi, jl—lle—l) computes pre-activation elements at multi-index ¢; as the weighted sum of
Ji- ’ i

1
post-activation elements at multi-index j;_;. For ease of understanding, multi-indices can be treated
as standard integer indices, with synaptic weights represented as matrices and post-activation tensors
as vectors. The dimensionality of these indices depends on the layer’s architecture.

Let §; = Va,J(¥,y) denote the gradient of the loss with respect to the activation inputs
at layer [, commonly referred to as the sensitivity of activation inputs (Stork et al., 2000).
Backpropagation recursively computes these gradients for activation inputs and weights through
automatic differentiation: 6, = f] o VyJ(y,y), di—1 = f/_; o (W/§;), and Vw,J(y,y) =
&%, _,, for | ranging from L to 1. Here, V represents the gradient, o indicates element-wise
multiplication, e ' signifies matrix transpose, and f] represents the derivative of the activation
function.

A Bayesian neural network (Neal, 1995) mimics decision-making behavior in training data using an
ensemble of neural networks that share the same computational graph but have distinct synaptic
weights. In this paper, we frame the learning problem as the minimization of the following
variational principle over a set of variational posterior parameters 6:

Eqwiow) D ep? V06 W),y) +1ogg(W: w) /p(W). @)

Here, W = {W; ..., W} represents the weights, p(W) is the prior probability, and ¢(W; v ) is
the variational posterior probability. All other symbols are consistent with those of a non-Bayesian
neural network. The objective is to minimize the negative evidence lower bound. The stochastic
weights introduce a probability distribution over y(x). The ensemble decision is formulated as
Bayesian model averaging E w6,y (X|W), and model uncertainty can be assessed through the
entropy of the ensemble decision —Eq w9,y log p(y|x, W).

Minimizing the variational free energy in the aggregated loss — Z(x,y)e p log p(y|x) concurrently
minimizes the variational free energy in the negative log-likelihood of the training data
- Z(x,y)eD log p(x,y), because log p(x) is independent of W. Therefore, optimizing Eq. 2
with respect to the variational parameters Oy provides a sampling-free methodology (Tieleman
& Hinton, 2009; Friston, 2010; Lee & LeCun, 2017; Song et al., 2021) for learning complex
probability distributions over the data D. Here, the potential energy is defined as log p(x,y, W) =
J(y(x,W),y) — log p(W) + constant.
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As tensor “particles” traverse multiple layers of linear and nonlinear transformations within an
ensemble of neural networks during forward propagation, their probability distribution evolves
accordingly. Likewise, during backpropagation, as the loss gradient with respect to these tensors
traverses these transformation layers, it characterizes the sensitivity of the probability distributions.
This sensitivity, in turn, generates various probability kernels that guide the particles and modify the
probability distributions toward minimizing the loss. In this context, a duality (Gardiner et al., 1985)
emerges between the stochastic tensor flow within a Bayesian neural network and the deterministic
evolution of probability distributions within a probabilistic graphical model.

The case of particular interest is when the data-generating process from xg to x;—1,... .z and y is
approximately Gaussian-linear. As suggested by Jacot et al. (2018), neural networks tend to remain
approximately linear throughout training in overparameterized regimes. This linear approximation
simplifies the analysis of convergence and generalization, as it essentially involves inferences using
multivariate normal distributions. In such scenarios, the activation function can be approximated
using its first-order Taylor expansion. Additionally, the synaptic weights are reparameterized using
weight parameters Ovy, and a standard Gaussian random vector w;. This leads to a Gaussian
Markov random field, as described by Rue & Held (2005), characterized by the following Langevin
process (describing the stochastic tensor flow) and the Fokker-Planck process (detailing the tensor
distribution evolution):

Xi—1

x;=fi(x_1, W) =% +fL - (x01 —%_1) + f\lzvl : (Wz - Wl) ,
y = g(xr,vr) = g(%z,0) + &, - (xz —%Xr) + &, v,
p(Xl|Xl71;0W1) = N ()A(l + f‘)I(lfl : (X171 - )/\(l71>7f\/}\]lpwlf{7—\frl) ? (3)

5 . . T

p(ylxr) =N (g(%1,0) + &%, - (xr —%1).8,,8., ) - )
In the above equations, the transformation f;, mapping post-activation x;_; to post-activation x;,
is approximated using a first-order Taylor expansion centered around x;_; = X;—; and Wj.

Specifically, x; = f; ()Aq,l,VAVl) represents the mean transformation, and f',’cl_l and f\/zvl are the
gradients of f; with respect to x;_; and W, computed at this point. Similarly, the transformation
g that maps post-activation x;, and the multivariate standard Gaussian noise generator vy, to the
observation y is also approximated using a first-order Taylor expansion centered around x; = X,

and v, = 0.

Learning a Gaussian linear Bayesian neural network involves inferring the posterior distributions

for post-activations and weights through variational or MCMC methods. This process includes

a forward “filtering” pass, updating Bayesian beliefs «(x;; 6;) &ef p(x1|x0 = x) from the input

to higher-level post-activations and output, and a backward “smoothing” pass, refining the beliefs
def L . .

v(x1; 0y 1) = p(xi]X0,y), and ¢(W; Oy,) using information from the output and higher-level

post-activations, where 6, 9” L, and Ovy, are variational parameters. The Kalman filter/smoother, a

deterministic algorithm, computes the mean and variance of post-activations and weights as follows:

a(x;) = N(x, P),with P, = £, P £+, Pw, fiy,, (5)

Xi—1
v(x1) =N (X1, Pyr), withxp ), =X, + K(y =), Pojp = P — KLSL K,  (6)
X =%+ Gy (X111 —%i41) , Py = P — G (Pryayn — Piy1) G/
Wy, = Wi + Gw, (X — %) ,Pw,, = Pw, — Gw, (Py. — P) Gw,,

where S;, = gl Prg. + &, &, represents the observation covariance, K = Prgl S;' is

the Kalman gain from the observation, G; = Bf’,’JPljrll‘ ,, and Gw, = Pw, f'@l Pllf denote the

smoothing gains in backpropagation, and W” L Pw, s W, and Py, are the posterior and prior
parameters of the weight W.

3 MARKOV RANDOM FIELD SPECIFIED BY BAYESIAN NEURAL NETWORK

In this section, we consider tensor transformations within a Bayesian neural network as a
stochastic process. We then formulate the forward propagation of tensor distributions and the
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backpropagation of their sensitivities as a form of belief propagation. We establish a connection
between the stochastic perspective on tensor transformations and the deterministic perspective on
tensor distribution evolution. Lastly, we present an algorithm for converting a tensor layer into a
stochastic layer.

3.1 BACKPROPAGATION THROUGH STOCHASTIC LAYERS

We will explore the forward propagation of tensor distribution parameters in a Bayesian neural
network and the subsequent backward propagation of the loss gradient relative to these parameters
within the network’s computational graph. A theorem presented here establishes a profound
mathematical link between two pivotal concepts: backpropagation, essential in neural network
training, and belief propagation, commonly employed in probabilistic graphical models. This
theorem sheds light on the flow of information through a Bayesian neural network during both
forward and backward passes.

In its essential form, the filtering distribution a(x;;0;) = p(x;|xo = x) is parameterized
by 6;, while the smoothing distribution is y(x;) = p(x;|Xo,y). For the exponential family,
a(x;;0;) = exp(—0; - T(x;) — A(6;)), with canonical parameters 6;, feature statistics T(x;),

and mean parameters p; = Eq(x,)T(x;) and py ), = Eq(x,)T(x;). In a Gaussian linear model
approximation of a Bayesian neural network, post-activation mean and variance are x;, P}, 5(” L
and Py, with canonical parameters 7; = Pl_lxl, A=-5- Pl_1 for filtering, and 7y, Ay, for
smoothing.

Theorem 1. Equivalence between Backpropagation and Belief Propagation in a Bayesian Neural
Network.

(1) Gradient of Loss with Respect to Parameters: In its most general form, the gradient of loss
with respect to the post-activation filtering distribution parameters 0; and the variational weights
distribution parameters Oy, can be expressed as:

Vo J = —E,x,)Ve loga(xi;01), Vey,J=—E,x,_, x)Vew, logp(xi[xi—1;0w,).

(2) Error Gradient for Canonical Parameters: When filtering distribution is in the exponential
family, error gradient for the canonical parameters is the difference in the mean parameters between
smoothing and filtering distributions. Backpropagation mirrors backward belief propagation:

Vel.] = /.L”L — Ky, VelJ = Vgl[,l,g Vp,llil-i-l v/—bz+10l+1 Velﬂ J, nglJ = ngl M Vm@z Vgl J.

(3) Error Gradient for Post-Activation Mean and Variance: In a Gaussian linear Bayesian neural
network, the error gradient for post-activation mean and variance is related to the difference
between smoothing and filtering mean and variance in the corresponding Gaussian linear dynamics.
Gradient backpropagation parallels belief backward propagation induced by smoothing gain G| and
GWZ N

Vad =-P ' (X — %), VpJ =—5P" (P, — P+ Ky — %) Gy — %)) B, (D
Vi, J = P 'GPy - (Vs J), Vied = BTGPy - (Ve J) - PGP,
Vi, ] = Py Gw, P+ (Vs J), Vos, J = diag (Gw, P (VrJ) PGw,) Jow,- (8)

The error gradient for the canonical parameters of post-activation filter distributions in a Gaussian
linear Bayesian neural network is the difference in the first and second moments between
smoothing and filtering distributions in the corresponding Gaussian linear dynamics. Gradient
backpropagation again parallels belief backward propagation induced by smoothing gain:

Vod == (kp = %), Vad == (Pyr + Xk, — P — %% ).
Vapd = Gp -V, J. Vad =GVa,J G —%xV]) TG -GV

T
MNi+1% MNi+1 m+1‘]Xl .

In the above, (1) is established through a common technique involving the manipulation of

logarithms within gradients. It allows us to compute the gradient of loss with respect to the

parameters of the filtering distribution.

Vo, J dip(ylzi, mo)p(i|xo; 61) /dxlp(ymai?o)P(IﬂIo)
p(ylzo) p(ylzo)

Ve, log p(y|xo) = Ve, log p(x|zo; 01).
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The exponential family assumption in (2) generally holds as long as the joint probability density
of the random variables is strictly positive, as per the Hammersley-Clifford theorem (Hammersley
& Clifford, 1971). This assumption enables general forward-propagation of mean parameters and
backpropagation of canonical parameter sensitivities. The gradients of weight variational posterior
parameters can be computed using these mean parameters. In (3), sensitivity over mean and
variance is converted into canonical parameter sensitivity, backpropagated using the probability
kernel, and then reconverted into mean and variance sensitivity, as illustrated by expressions like
P 'GPy - (Vi J) and PGPy - (V. J) - Py1GieP7 ! Both forward and backward
propagation processes involve the exchange of “innovations” between target and current distribution
mean parameters, represented as cross-entropy loss gradients in terms of the probability kernels.
Equation 8 is presented in a differential form due to its dependence on weight parameterization. A
detailed derivation of the natural gradient for Gaussian linear Bayesian neural networks is provided
in Section D.

The proof is presented in Section A. In Section C, we derive the backpropagation formula for
computing the gradient of the loss with respect to the filter distribution parameters in both a hidden
Markov model and a Gaussian linear model. This derivation allows us to draw comparisons between
backpropagation and backward message passing. Consequently, Theorem 1 serves a dual role: it
enables variational inferences within the deep learning framework for probabilistic graphical models
and contributes to the advancement of probabilistic graphical model techniques for Bayesian deep
learning.

3.2 DUALITY BETWEEN BAYESIAN NEURAL NETWORK AND PROBABILISTIC GRAPHICAL
MODELS

A Bayesian neural network represents a probabilistic ensemble of neural networks operating within a
common computational graph. These networks guide tensor “particles” through this graph, adjusting
their paths based on gradient information to minimize their respective losses. As they learn and
adapt, the probability distribution describing their trajectories evolves. The subsequent theorem
establishes a connection between the probabilistic perspective of tensor flow and the deterministic
perspective of tensor distribution evolution, focusing specifically on the first and second moments
of the gradient.

Theorem 2. Relationship between the Langevin and the Fokker-Planck Dynamics of a Bayesian
Neural Network.

(1) For post-activations distributed as per an exponential family, the error gradient relative to post-
activation equals the potential energy gradient, resulting from differences in canonical parameters
between filtering and smoothing distributions:

p(xi]y, %o = x)
p(xi|xo = x)
This difference in canonical parameters defines the orthogonal projection from the Jacobian of the
sufficient statistics to the error gradient relative to post-activation. Here, o is the pseudo-inverse.

01 — Oy = (Ex, Vs, T(x1)) " (Bx, Vi, log p(y|x1, %0 = X)) .

Vi, log p(y|xi, %o = x) = Vy, log = (Vx, T(x1))" CIEXTAR

(2) In Gaussian-linear Bayesian neural networks, drift and diffusion processes, defined by the error
gradient and Hessian, guide post-activations toward the variational posterior of Gaussian linear
dynamics as follows:

Vi log p(y|xi, x0 = x) = P (xq — %1) — By (%1 — %),
VixT log p(y|xi,x0 =x) = P, ! — P”,L1’
Vﬁl Ing(Y|X() = X) = E'Y(xl)le, logp(}ll){l7 Xg = X),

-
Vp, log p(y|xo = x) TV e 108 P(Y 131, %0=X)+ B () (Vxy 10g Py [x1,%0=%) ) (Vi l0g p(y[31,%0=x))

(3) When the weight variance vanishes, making the state transition deterministic with p(X;41|x;) =
d(x141 — f(x1)), Bayesian back propagation degenerates into non-Bayesian back propagation:

Vi, log p(y|x1) = Vi, X141V, log p(y]xi41).
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The proof is provided in Section B. In (1), we compute Vy, log p(y|x;,xg = x) by introducing
the filter probability distribution a(x;; ;). In (2), both Vy,J and V lTJ describe the drift and
diffusion of x; toward its posterior distribution. In (3), we calculate Vy, log p(y|x;) by introducing
the Dirac delta distribution for x;, which transfers the gradient onto its parameters, or by setting the
prior variance P; of x; to 0.

XX

This theorem unites probabilistic tensor flow with deterministic tensor distribution evolution,
showing that Langevin dynamics in Bayesian neural networks, particularly weight updates, are
equivalent to the Fokker-Planck equation governing weight distribution evolution. This insight holds
practical value for Bayesian deep learning, offering potential for novel optimization algorithms for
improved generalization and convergence. It also deepens our understanding of how deep neural
networks explore weight spaces during training.

.
As an illustrative example, approximating batch normalization as (W + V) U aligns with

variational Bayesian learning using stochastic scale-bias distributions ¢(U) and ¢(V'), with a
uniform prior on w ensuring |w|| = 1 (Shekhovtsov & Flach, 2019). This approach hints at using
Bayesian layers to streamline neural network designs by reducing dependency on normalization
layers (Zagoruyko & Komodakis, 2017; Brock et al., 2021). Additionally, gated recurrent unit-based
networks can be conceptualized as hierarchical graphical models, incorporating binary features for
input selection (Garner & Tong, 2020), paving the way for novel Bayesian recurrent neural network
designs and interpretations. Furthermore, treating Bayesian neural networks as Gaussian Markov
random fields offers new algorithmic possibilities and insights in Bayesian optimization, architecture
design, and generalization (Snoeyink & Picheny, 2012; Arora et al., 2019a;b).

3.3 A DETERMINISTIC BNN BACKPROPAGATION ALGORITHM

Given the dual relationship between forward-backward propagation and belief propagation, we
propose the following algorithm for propagating element-wise means and variances of hidden
features, along with their sensitivities, while simultaneously computing the gradient of the loss with
respect to the weight parameters.

Algorithm 1: Training BNN with backpropagation

Input: Gaussian linear Bayesian neural network (Eqgs. 3, 4).

Output: mean parameters X; and P;, their sensitivities Vg, J and Vp,J, gradient over weight
distribution parameters Vg, J.

Forward propagation: Forl = 1,...,L, %, = f(%X;_1,0w,,w; = 0), P, = f:/cil P+ ffl - 1.

Backpropagation: Forl = L, ..., 1, X, — %, =G(Xi41) —Xi+1), Py —P1=G}(P1.—Pis1).
Gradient: Eq. 8.

~ ~ ~ —g(xr,, N T N N

XpL=%Xr+PL (gfL '%’LL@), Pp=P.-P} ((g;QL) ﬁ)’ ScL=g7 Pr+g; 1, and G;=
f;ZT (PPl). “” is matrix multiplication. P and e? are element-wise. f,
x, P, f,, f,. g.. &, are defined in Egs. 3 and 4. 1 is a 1-vector.
In a computational graph defined as xg = x, a; = W;-x;_1, and x; = fj(a;) forlayersl = 1,..., L,

along with a mean-field Gaussian variational posterior for synaptic weights W; ~ N (pw,, U%vl ),
implementing Algorithm 1 for Bayesian inference under these conditions is straightforward. The
process involves propagating the activation mean (X;_1) through the layer transformation (f;) once
to compute X;. Subsequently, activation variance (P;_1) is propagated through these layer functions
twice: first as fl(“%vl - P,_1) and then as f; (O'%VL . &12_1). The final variance (P;) is computed using
element-wise multiplications and a smooth max (log-sum-exp) operation within the max-pooling
process.
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This algorithm is highly memory-efficient, involving element-wise gradient computations (f,/cl, f(ﬁn,
g, - &, ). as well as matrix-vector multiplications with a smoothing gain (G)) to facilitate gradient
descent with second-order information. In addition to updating synaptic weights, this algorithm
simultaneously manages and updates weight variance on an element-wise basis. The power of
automatic differentiation comes into play, streamlining the entire process. All that’s required is

specifying P, a task that can also be automated to further enhance efficiency.

4 EXPERIMENTS

This section highlights belief propagation’s effectiveness in training Bayesian neural networks
for image classification, showing their competitive performance without normalization. We also
evaluate UCI regression datasets and use visualization to understand model behavior. Our code
demonstrates symbolic layers for probability distributions and gradients, revealing equivalence
between Bayesian neural networks and graphical models. This expands auto-differentiation in
TensorFlow, PyTorch, and JAX to support graphical models and variational inference techniques.

4.1 CLASSIFICATION

We demonstrate the effectiveness of the belief propagation algorithm in training various
neural network architectures for image classification, considering them as Bayesian neural
networks. Particularly, we show that incorporating natural gradient descent significantly improves
generalization, eliminating the need for normalization techniques to stabilize and expedite training.
Our experiments are designed for efficient one-day training cycles using Google Colab V100/A100.
We utilize datasets including CIFAR 10/100 (Krizhevsky, 2009) and Tiny ImageNet (Le &
Yang, 2015), along with architectural choices such as DenseNet-BC (Huang et al., 2017),
ResNet (He et al., 2016), WideResNet-28-10 (Zagoruyko & Komodakis, 2016), EfficientNet
BO (Tan & Le, 2019), and MLP Mixer-S (Tolstikhin et al., 2021). Our training procedure
adopts state-of-the-art practices, featuring a cosine annealing learning rate schedule (Loshchilov
& Hutter, 2016) and image augmentation methods (Yun et al., 2019; Zhang et al., 2018b;
Cubuk et al., 2020). We compare different configurations, including SGD with normalization
layers (vanilla NN), Bayes-by-backprop (Blundell et al., 2015) with normalization layers
(reparam.), Bayes-by-backprop with multiple neural networks per mini-batch without batch
normalization (reparam./NF+NG+ensemble), belief propagation according to Algorithm 1
without batch normalization (BP/NF), and belief propagation with natural gradient without
normalization (BP /NF+NG).

Table 1 presents the test errors. We observe significant performance improvements with Bayesian
learning, particularly in less-regularized architectures. Natural gradient descent also enhances
performance (BP/NF vs. BP/NF +NG). Additionally, Bayes-by-backprop, combined with an
ensemble of neural networks and natural gradient descent, achieves competitive results, highlighting
the variational aspect of normalization. Notably, we find that Bayesian learning without weight
parameter sampling (Algorithm 1) exhibits faster convergence compared to methods involving
weight sampling.

To assess the impact of weight randomness and sample randomness on Bayesian neural network
(BNN) convergence and generalization, we analyzed empirical gradient variance with varying batch
sizes and the evolution of training/validation loss over epochs. We conducted these analyses using
MNIST and CIFAR 10 datasets, training a BNN with densely connected layers and a VGG16
model following the approach of (Wen et al., 2018). Our comparisons included our algorithm (BP)
against reparameterization (R) (Blundell et al., 2015), local reparameterization (L) (Kingma et al.,
2015), flipout (F) (Wen et al., 2018), and an ideal scenario with noise solely from mini-batching
(vanilla). We observed that weight-induced noise in BNNs is substantial compared to mini-
batch noise, and Bayesian learning with Algorithm 1 consistently achieved faster convergence than
weight-sampling and non-Bayesian methods (Fig. la,c,b,d).

4.2 REGRESSION

We utilized UCI regression datasets to assess the performance of Bayesian neural network learning
algorithms, aligning our experimental setup with the framework outlined in Herndndez-Lobato
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Table 1: A Bayesian neural network trained with belief propagation and natural gradient descent
(BP/NF + NG), along with Bayes-by-backprop using an ensemble of neural networks and
natural gradient descent (reparam./NF + NG + ensemble), achieves competitive image
classification performance without normalization on state-of-the-art architectures.

vanilla NN reparam. reparam /NF BP/NF BP/NF+NG

+NG+ensemble
- DenseNet-BC 4.51 4.75 4.50 4.40 4.35
= ResNet 5.46 5.70 4.75 4.35 5.10
< WRN-28-10 3.50 3.65 3.50 3.40 3.30
% Eff.NetBO 4.40 5.15 4.35 4.10 3.90
MLP Mixer-S 8.20 9.35 8.55 6.70 4.85
o DenseNet-BC 22.27 23.05 21.05 21.90 20.50
= ResNet 27.22 29.55 28.35 27.10 25.90
Eé WRN-28-10 18.80 18.95 18.90 18.30 17.70
= Eff.NetBO 20.50 21.75 20.30 20.05 19.30
o MLP Mixer-S 30.60 32.90 32.25 28.35 26.00
= DenseNet-BC 30.10 30.50 30.15 29.95 29.25
% ResNet 31.50 33.00 32.00 31.50 30.70
= =0 WRN-28-10 28.70 29.15 28.75 28.55 27.30
= E Eff.NetBO 29.45 30.00 29.25 29.10 28.95
MLP Mixer-S 35.85 38.45 36.35 34.30 31.10

1003 1e02 1e-01 1e<00 les0l 1e+02
L L L L L L

Figure 1: Gradient Variance vs Batch Size for Dense and VGG16 Networks (a and c) and Learning
Algorithm Convergence (b and d). Bayesian Neural Formulation Enhances Convergence.

& Adams (2015). Our model (Algorithm 1) is compared against a deep ensemble model
(Lakshminarayanan et al., 2017) and the local parameterization algorithm (Kingma et al., 2015).
Table 2 presents a comparison of the three approaches based on root mean square error and log
probability.

Table 2: Log Probability and RMSE of Belief Propagation, Deep Ensemble, and Local
Reparameterization on UCI Data.

BP DE Reparam

logprob rmse logprob rmse logprob rmse
boston —-264+04 354+10 | —-25+£01 33+£10| -3.2+07 35+£1.1
concrete | —3.2+0.3 6.1+08 | —-34+01 7.7+£06 | —-3.9+0.2 6.8+0.5
energy —-224+02 27+04 | -22+01 27+£03 ]| -3.0£03 29+0.3
kin8nm 1.1£+£0.0 0.1£0.0 04+00 02£00] —23+0.5 0.1+0.0
naval 40+21 0.0£0.0 294+0.1 0.0+0.0 49401 0.0=£0.0
power -284+00 41402 ] -3.0+£00 43+02 | -3.2+0.1 4.24+0.2
protein —-29+00 444+01| -3.0£00 51+£0.1]| —-354+01 45=£0.0
wine —-1.04+0.1 06+00| -09+01 06+£00]| —-1.4+0.2 0.6+0.0
yacht —2.84+0.4 64+19 | —2.74+0.2 59+17 | —254+03 41+09

Different from previous works, we also visualize the observation-label distribution of a Bayesian
neural network through Monte Carlo simulations and 2D projections (Fig. 2). Starting with slight
perturbations to the training data, we employ Hamiltonian Monte Carlo (Neal et al., 2011) to target
uncalibrated probabilities (Eq. 2) and monitor convergence with the Gelman-Rubin diagnostic. This
produces simulated feature-label patterns representing typical model observations and loss.
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Figure 2: Joint Distributions from Neural Network Ensembles on Boston Housing Data. Projections:
Predicted vs. True Labels (a, ¢) and Principal Components of Largest Variance (b, d). (a, b) Bayesian
NN (Algorithm 1), (c, d) Adversarial NNs.

In Fig. 2 (a) and (c), we project this distribution onto predicted vs. true labels. Ideal models
concentrate probability on the diagonal, indicating accurate predictions, especially for unfamiliar
cases. Bayesian neural networks trained with Algorithm 1 tightly cluster observations around
the diagonal (Fig. 2 (a)), whereas independently trained networks diverge off-diagonal due to
limited data (Fig. 2 (c)). Ensembles produce predictions closer to the diagonal. In Fig. 2 (b) and
(d), we project observations onto the two principal components, outlining confidence regions and
marking predictions. Bayesian neural networks focus observations where predictions incur less loss
(Fig. 2 (b)), while non-Bayesian networks have scattered, less smooth expectations. These insights
contribute to understanding model behavior, robustness, and susceptibility to adversarial attacks.

5 RELATED WORKS

This paper presents a novel perspective on Bayesian neural networks (BNNs) by establishing
their equivalence to Markov random fields and linking backpropagation with belief propagation.
It distinguishes itself from prior work, which mainly focused on deriving learning algorithms
via. MCMC and variational inference, using BNNs in NLP and computer vision, and
formulating Bayesian learning biases. Bayesian deep learning encompasses both deterministic
and MCMC-based methods, including Hamiltonian Monte Carlo (Neal et al., 2011), Stochastic
Gradient Langevin Dynamics (Welling & Teh, 2011), and stochastic weight averaging (Maddox
et al.,, 2019). Deterministic techniques like Bayes by backpropagation (Blundell et al.,
2015), Laplace approximation (MacKay, 1992; Barber & Bishop, 1998), and natural gradient
approximations (Zhang et al., 2018a; Khan et al., 2018) coexist with deep learning-specific methods
such as probabilistic backpropagation (Herndndez-Lobato & Adams, 2015), deep ensembles
(Lakshminarayanan et al., 2017), dropout (Gal & Ghahramani, 2016), and variance-reduction
enhancements (Kingma et al., 2015). The revealed equivalence between BNNs and Markov random
fields enables the sharing of learning algorithms. BNNs are also versatile, capturing diverse deep
learning inductive biases, including adversarial learning (Guo et al., 2017; Ye & Zhu, 2018), semi-
supervised learning (Gordon & Herndndez-Lobato, 2020), meta-learning (Ravi & Beatson, 2018;
Yoon et al., 2018), transfer learning (Maddox et al., 2019), and continual learning (Pan et al., 2020;
Daxberger et al., 2021), with robustness against adversarial attacks (Uchendu et al., 2021; Pang et al.,
2021). Applications span natural language processing (Shi et al., 2020; Yu et al., 2022), computer
vision (Wang et al., 2017), graph learning, time series analysis, and reinforcement learning.

6 CONCLUSIONS

Our research illuminates the noteworthy parallels between probabilistic graphical models and
Bayesian neural networks, highlighting their synergistic roles in theoretical and practical realms.
These similarities foster a reciprocal enhancement of methodologies across both fields. Our
empirical validations across diverse scenarios underscore the effectiveness of our approach. This
work presents a novel perspective on Bayesian Neural Networks and probabilistic graphical models,
fostering advancements in model development and enriching our understanding of their interrelation.
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A PROOF OF THEOREM 1

(1) The gradient of loss with respect to the parameters of the forward/filter probability density can be
obtained through the chain rule and the application of the Markov property within the computational
graph

Ve, 10g/dxlp(xl|xo =x;0)) - p(xr =ylx;)

= /dlegl p(xi|x0 = x;0;) -p(xr = y|xl)// dxip(x;i|xo = x;0;) - p(xr, = y|x;) , chain rule
—_————

a(x;6:)

p(xL=y|x0=x)

= /dXzVBZOé(Xz;Oz) - y(x1) /(1) , because p(ﬁixi ;i’!le)x) _ p(XlZilijfi): y) _ Zéi:i & B(x,)

= /dlegl log a(x;; 0;) - v(x1) = E(x,) Ve, log a(xq; 6;).

Similarly, the gradient of the loss concerning weight parameters can be derived through the chain
rule and the utilization of the Markov property within the computational graph:

Vow, logp(xr, = y|xo = x)

=Vou, log/Xmqul p(xi[xi-1; 0w, )p(xi-1]%0 = X) - p(x1 = y|x1)
= /dxl_ldxl nglp(xl|xl_1; Ow,)p(xi-1|x0 = x) - p(x = y|xl)/p(xL = y|xo = x) , chain rule
/Xmqul Vow, log p(xi[xi-1; Ow,) - p(xi[xi-1)p(xi-1]%0 = %) - p(x1, = yXl)/p(XL = ylxo = x)

Z/dquXm Vow, log p(xi[xi—1; 0w,) - p(x1-1, %1, X1 [x0 = X)/P(XL =Yylxo =x)

P(Xzflaxl,XL = Y|Xo = X)
p(xz = ylxo = x)

:E"/(Xzfl,xl)VGWL logp(xl|xl—1; OWZ), because = p(xl—l’ XZ‘XO =XXL = y)

(2) When the forward/filter distribution belongs to the exponential family, the forward propagation
involves iterative updates of the forward mean parameters, denoted as pr11 = pher1(pe)-
Backpropagation, in turn, iteratively updates these mean parameters based on the label information
x7, = y. To compute the gradient of the loss with respect to the forward mean parameters, we
substitute the exponential form of the forward/filter probability distribution into —Vg, log p(y|x) =
—E,(x,)Ve, log a(x;; 0;).

— Vg, J, where J &f log p(y|x)
= — E (x,) Ve, log a(x;; 6;), part (1) of the theorem
=—E,x)Ve, (=0 - T(x;) — A(61))
:E'y(xl)T(Xl) + VglA(Gl)
=py|L — M, definition of g7, and the conjugate duality p; = Vg, A(6;)

The iterative relationships Vo, J = (Vo) - (Vi pi1) - (Vi 0111) - (Vo,,, J) and Vg, =
(ngl ul+1) (Vi 0i41) - (V.. J) follow from the chain rule. Note that Vg, J = pyj 11, —

i1, V041 = _VIQ—LL+1H(MZ+1) is the Hessian of negative entropy over mean parameters,
and Vg, u; = V%lA(Ol) is the Hessian of partition function over canonical parameters.
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(3) Substituting the multivariate normal filter distribution of latent features into —Vg, log p(y|x) =
—E, (x,) Ve, log a(x;; 8;), we obtain the gradient of loss with respect to the filter mean and variance:

log N (x1; %, P) = —.5logdet(2nPy) — .5 (x; — %;) | P (% — %)
VplogN = —5P " + 5P (%) — %)) (%, — %)) P
Vi, log N =_.5x2P " (x; — %))
= By Vi log N = — 5P + 5P (P”L + (% — %) (R — fq)T) P
E. )V log N = P (%1 — %) -
As a result, we can represent the smoothing mean and variance in terms of the filter mean and
variance, along with the gradient of the loss with respect to the filter mean and variance. This

formulation allows us to establish an equivalence between the belief propagation algorithm and
gradient backpropagation for Gaussian linear models.

XL = X + PEy(x,) Vg, log N
Pyp = P (P 4 2B ) Vi log N) Py — (R, — %)) (R — %))
=P +2PE,x)Vp logN' P, — (&l\L _ 5([) (?A(l\L _ fil)T
=P -hB <—2E7(xl)VPl log N + P, (E. () Vi, log N) (E., () Vi, 1ogN)T Pl) P

To identify the chain rule governing the backpropagation of the gradient of loss over forward
probability distribution parameters across layers, we initiate by expressing the perturbation in the
loss in terms of the perturbation in the cross-entropy between the forward probability distribution
and the backward probability distribution at layer [ and then propagate this identity backward to
layer [ — 1. By leveraging the symbolic relationships between the perturbations of loss, forward
parameters at layer [, and forward parameters at layer [ — 1, we can discern how the gradient of loss
over these forward parameters propagates backward. In essence, this involves navigating through
the following backpropagation process in a differential form.

dlogp(xr, = y|xo = x)

= Zv(xl)dlog a(x;), note a(x;) = Z a(x—1)p(xi|xi—1)

S, plxiba 1)daxi1)
:;W(Xl) a(xy)
= ZV(Xl)p(XlX;—(QS(XZ_I)dIOg a(x;-1), note V(Xl)p(Xl|XZ(23(Xl_l) =7(x1-1)
= Z y(xi-1)dlog a(x;—1).

In the third line above, we represent the perturbation of the forward/filter probability distribution
at layer ! in terms of the perturbation of the forward/filter probability distribution at layer [ — 1.
In the fifth line above, we utilize the relationship for forward-propagating the filter probability
distribution to backpropagate the smoothing probability distribution at layer [ to construct the
smoothing probability distribution at layer [ — 1.

In the case of Gaussian linear models, we begin by establishing two key relationships. First, we
express the perturbation in the log-likelihood of the forward distribution at layer ! in terms of
the perturbation in the forward distribution parameters at the same layer. Second, we express the
perturbation in the forward distribution parameters at layer [ in terms of those at layer [ — 1.
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dlog N'(x1: %1, P) = —.5dlog det(2rP) — .5d [(xl — %) P (% — xl)}
— —BTe(P Y dP) + .5 (xi — %) " PTHPPY (% — %)) + d%) P71 (x) — %))
—.0Tr ((F’l_l - P’l_l (Xl - ﬁl) (Xl — )A(Z)T Pl_l) dP[) + d)A(lTPl_l (Xl — )A(l)

where dP;, = d (f,’q_lﬂflfg_l + Ql) =, (dP_)f,

S / ~ _ e ~
Xm = del_1Xl71 == fxl_lXm,1

Subsequently, we trace the backpropagation of the perturbation in the forward distribution
parameters at layer [ to that at layer [ — 1 within the context of the cross-entropy perturbation. This
provides us with insights into how the sensitivity of distribution parameters propagates backward.

=>E.y(xl)dlog./\f(xl; Xy, Pl)
= 5T (P = B (Pye + (e = %) (Rp = %) ) BY) )+ dx] P (% — %)

Xi—1 Xi—1 Xi—1
—_———
E.(x,) VP, logN=Vp,J ap, s

= 5T {(aP ) |6, (V) B, |+ Te{(ax) " |6, (Vs,)] }

, T
= —5Tr (P;1 P (k- %) (- %) Pfl) £ (dP )L |+ (f’ dfq,l) Pl (x — %)
—_———

Eﬂ,(xl)v,«(, 10g./\[=v;cl J

=V 1J =£ (Vi J)

Xi—1
va_l‘] = fx;r_l (VPLJ) f)/cl_l
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B PROOF OF THEOREM 2

(1) To find the gradient of the log-likelihood of the label with respect to the activation output, we
leverage the Markov property in the joint probability distribution between input x, post-activation
x;, and label x7,.

p(xi|xo = x)p(xz = yl|x1)
p(xr = ylxo = x)
= logp(x = y|x;) = log p(xi|x0 = x,x1, =y) — log p(x;[x0 = x) + log p(x1, = y|x0 = x)
= Vi, logp(xr = y[x1) = Vx, logp(xi|xo = x,x1 = y) —Vx, log p(xi[x0 = x) + Vi, logp(x1 = y|x0 = x)

= p(xi[xo = x,X, =y)

*9ZTLT(XJ)*A(91\L) -0, T(x;)—A(6;) =0

= (Vx,T(x1)) " (68— 0y1)

In the above Vi, T'(x;) is the Jacobian matrix of sufficient statistics where following convention the
rows are index by the elements of x; and the columns are index by various statistics in the output of
T(x;). To express the gradient of loss over the canonical parameters of filter/forward post-activation
distribution, we note that V,,J = 6; — 6; 1, by the duality of mean parameters and canonical
parameters, making Monte Carlo estimation of 8; — 6|, on the one hand, and apply the chain rule
to find Vg, J on the other hand. Note that the dimensionality of the canonical/mean parameters and
the sufficient statistics are higher than the dimensionality of the random variable, and we need to
construct more statistics from the sensitivity of post-activation Vy, log p to make the system about
0, — 61 determined. In this sense (Ey, VxlT(xl))Jr Ey, Vx, log p is symbolic, because it doesn’t
specify how to construct additional statistics.

p(xily, x0 = x)
p(xi|xo = x)
(61— 0y1) = (Ex, Vi, T(x1)) " Ex, Vy, log p(y|x;, X0 = x), where " is pseudo-inverse

Vo.J = Vot Vo d = (Vo) - (61— 0yy1)
Ve,J = Vo, - (Ex, VXLT(XZ))+ Eyx, Vi, log p(y|x1,x0 = x)

Vi, log p(y|xi,xg = x) = Vy, log = (Vi T(x)) " (6 —6y1) -

(2) The following derivation shows that the gradient of loss over post-activation ensemble mean
can be stochastically estimated as the average of the gradient over post-activations from many
trajectories.

log p(x|x = x) = —.5logdet(27P) — .5 (x — %) P (x— %)
log p(xi|xo = x,x1, = y) = —.5logdet(2nPy) — .5 (x — >A<z|L)—r P”_Ll (x—%y1)
Vi, logp(xi|xo = x,x1, = y) — Vx, log p(x:x0 = x)
=Py (xi—%y) + B (x— %)

= B ) Vi log p(x1 = y|xi) = =Pt Genr=g1) + P (R — %) = =V, , .

The following derivation shows that the gradient of loss over post-activation ensemble variance can
be stochastically estimated as the average kinetic energy plus the diffusion of the post-activations
from many trajectories.

= Vy, logp(xr = y[x)

V2, logp(x, = y|x)) = P} + P!
E,x) (Vx logp(xr = y|x1)) (Vs log p(xz = y|x1)) "

.
=By x) {[Pﬂ (x = %) = Bt (= %) | [P (= %) = B (31— %) }

Ew(xL) [PZTLI (xl_*l\L)(xl_illL)TPlTLl] :P”’LlP”LPLTlePlTLl
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E. o [P (=50 (x=50) TP =P [P+ (3 —%0) (R —%1) | P

=0
—Eyx) [PZTLI (xl_f‘l\L>(x_’A‘l)TPlil}:_PzTIJI |:PZ|L+M€§M_/§‘I)T:| Pfl:_Plil
=B, () (Vx logp(xz, = ylx1)) (Vi log p(xz = y[x1)) " + V2, log p(x, = y|x1)
_ _ . N AT o _ _ _
= {Pl\Ll +p [PZ\L + (X —%1) (XL — %) } Pt —-2p, 1} + {*PuLl + P 1}
—pllp L& - _ATP—1_P—1
=P | Py + (R — %) (R — %) | B z
= —9VpJ.

(3) Taking x; ~ N (%;; P, — 0), the expectation of Vy, logp(xz = y|x;) is

E,(x) Vx, logp(xr = y[xi)
L

*Hz‘]) == H fg‘I

'=l+1

= Vi J=f, (V

Xi+1

J) =1t £ (V

Xi41 X141 X142

The variance of Vy, log p(xr = y|x;) is

Var (Vy, log p(x1, = y[x1))
:E,Y(xl)(vxl logp(xL:y\xl))(Vxl logp(xL:y|xl))T—(E,Y(xl)vxl logp(xL:y\xz))(Ev(xl)Vxl logp(xL:y\xl))—r
_ _ ~ ~ ~ AN\ T _ _ _ ~ ~ ~ AN T o
—{ P+ P [Py (e = %) (R —%0) | P = 2R P (g - ) (R — %) R
=P+ P PP 2P = (P = BT ) + P (P~ R) BT 0.

It can also be proved based on the property of Dirac’s delta function § to transfer the gradient on
itself to its parameters.
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C BACKPROPAGATING SMOOTHING DENSITY THROUGH TIME

In this section, we will derive the backpropagation formula for computing the gradient of the loss
concerning the filter distribution parameters within the context of a hidden Markov model and a
Kalman filter, where exact inference methods are applicable. Our objective is to provide further
clarity on the connection between message passing and backpropagation.

C.1 BACKPROPAGATING RNN SMOOTHING DENSITY THROUGH TIME

In the following, we derive the backpropagation algorithm to compute the gradient of loss with
respect to the filter probability densities of a Bayesian recurrent neural network modeled as a
Gaussian linear process.

We model the Bayesian recurrent neural network (Egs. 3, 4) as the following Gaussian linear
process:

e x; = Fix;_1 + wy, where w; ~ /\/((_)'7 Q) is the process noise, x; is the latent feature at time ¢
(centered so the mean of x; is 0), and F; represents the dynamics of the recurrent neural network.

e 7z, = Hixy + vy, where vy, ~ N (6, R,) is the observation noise, z; is the observation, and H;
represents the observation model.

A Kalman filter to forward propagate the information in the observations has a prediction step and
an update step:

e prediction: p(x¢|y1,...,yi-1) = N(Xt;fit\t—hpt\t—l), where X;,_1 = FyX; 1), is the
predicted (a priori) state, and Py, = FtPt,”t,lFtT + @ is the predicted (a priori) covariance.

* update: p(x¢|y1,...,y:) = N(x¢; X4, Pyy) where the updated (a posterior) state estimate
X¢¢ = Xyp—1 + Ki€; and the updated (a posterior) covariance Py = Py — KiHy Py
are computed from the innovation in the observation €; = z; — H;X;|;_1, innovation covariance
Sy = HtPt|t_1HtT + Ry, and the optimal Kalman gain K, = Pt|t_1HtTS;1.

A Kalman smoother updates smoothing densities backward in time: p(x¢|y1,...,yr) =
N (x¢; %7, Pyr), where the updated (a posterior) state estimate X, = Zp; + G¢0; and the
updated (a posterior) covariance matrix Pyr = Py + G(Pt+1|T - Pt+1|t)GtT are computed

from the innovation in later time steps 8; = (X;41|7 — X¢+1)¢), innovation covariance Py, =

Ft+1Pt‘tFt11 + Qt+1, and the optimal gain in smoothing G; = Pt‘tFtI_lP;ll‘t.

Theorem 3. The  gradient of loss  over  filter ~mean  and  variance

~V% 111, Piorje_1 108D(Y1, .-, yT) in a Bayesian recurrent neural network modeled as a
Gaussian linear process can be recursively computed using the following formulae.

v log p :Fjptl—tl_lpﬂt (Vs,, logp) + F, H St_‘tl (ze — Hy%yje—1) 9)

—2Vp, ,,_, logp :FJPHQ{IPW (Vp,, logp) Pt|tPt‘*t£1Ft (10)

Xt—1[t—1

+2F Pl Py (Vs logp) (20 — Hikye 1) Sy HLF,

t)t—1

_ _ . . T o
+F'HS;'HF, - FH S (z2¢ — HiXyjp—1) (2e — HXyq) S, 'H,F,.

Proof. To backpropagate sensitivity through time, we first write out the perturbation of filter
density parameters at time ¢, dFP;; and dX;; in terms of the perturbation of filter density
parameters at time ¢ — 1, dP;_i;—; and dX;_j;_1, according to the prediction and update
steps of Kalman filter. Next, we write out the perturbation of loss with respect to the
perturbation of filter density parameters at time ¢ according to Theorem 1 and transform it
into the perturbation of loss with respect to those at time ¢ — 1. Specifically, we write out
dloga(xt) = p(xt—1|y1,.--,¥t,Xt)d1loga(x:—1), and combine p(xi—1|y1,...,yt, X¢) with
~v(x¢) to backpropagate the smooth density ~v(x:)p(xi—1|y1,-.-,¥t,%X¢) = 7(x¢—1), where
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a(x¢) = p(x¢|y1, . - ., y¢) is the filter probability distribution, and y(x;) = p(x¢|y1,- .., yr) is the
smoothing probability distribution. The likelihood p(y;|y1,...+) joins the back propagation through
Oé(Xt_ 1 ) .

diog a(x;) l0g D = /dxw(xt)dlog a(x¢), by theorem 1

Z/dxt’Y(Xt)d (10g/dxt—1a(xt—1)p(xt7Yt|Xt—1) —logp(}’t}’1,...,t—1)>

—/dx ~(x )fdthlp(Xtayt‘thl)da(thl) [ dxi—1dxip(xe, yi|xe—1)do(xs—1)
= Y (Xt —
a(xe)p(yely1,..t-1) p(yely1,..i-1)
where o(z¢)=[ dxh1p(xhyt\x,s71)a(xhl)/p(ytly1 ..... t—1)

:/dxt—l,t [V(Xt)p(xt’ZYt|Xt—1)a(Xt—1) _ p(Xt,Yt|Xt—1)a(Xt—1)] dlog a(x;_1)
a(x)p(yily,..t—1) p(yelyi,..t-1)

b

:/dxt,w(xt,l)dloga(xt,l) — /dxt,la(xt,l)dloga(xt,l).

p(z¢,ytleg_)a(@e—1)

because
a(ze)p(yelyy

- = =P(@i—1lyn, o yeee) =p(Te-1 |1, rome)

,,,,,

First, we write out the perturbation of filter density parameters at time ¢, d P, and dX;y;, in terms of
the perturbation of filter density parameters at time ¢ — 1, dP;_1;—1 and dX;_yj¢—;.

dpy, (11

St

-1
=dPy—1 —d Pt|t—1HtT (HtPt|t—1HtT + Rt) Hi Py

Ky
=d (FtPt—1|t—1FtT +Q) —d (Ptlt—lHtTSt_lHtPt\t—l)
=F (dPt—1|t—l) F - F, (dPt—l\t—l) E' H:S;IHtPt\t—l - Pt|t—1HtTS;1HtFt (dPt—l|t—1) F'

dPyjt—1

dsSy

+ Pt|t,1HtTSt_1 H; F; (dPt71|t71) FtT HtT St_lHtPtltfl’

dPy¢ 1

d)/\(t‘t (12)

st

~ -1 N
=d FiX; 141 +Pt\t—1HtT (Htpt\t—lHtT +Ry) (2 — HiXype—1)

Xt|t—1 Ky

=F, (dX¢—1)t—1) — KeHy Fy (dXy_1j0—1) + Fy (dPi—1)4-1) FTH S (ze — HiXyjp—1)

dPyji_1
dSt

— Py H Sy H Fy (AP _yy—1) F, H S7 (20 — Hikepo1) -

APy

Next, we transform | dx;y(x;)dloga(x;) into the sum of [ dx; 17(x;—1)dloga(xi—1) =
Jdxi1 ([ dxey(xe)p(xe-1ly1s- - ¥e,%e)) dlog a(x—1) and — [ dx;—1a(x;-1)d1og a(x;—1).
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The backpropagation of sensitivity with respect to the filter density parameters at time ¢ — 1 follows
from how v(x:) = p(X¢|y1, ..., yr) is transformed into y(x;_1).

dlog N (x¢; %4, Pyt
— — Sdlogdet(2rPy) — 5d | (x0 = %ue) | P (%1 — i) |
— BTe(P dPyy) + .5 (%1 — %) " PPy Pyt (% — %) + d5) Pt (xe — %)
=—5Tr ((Ptl_t - Pt\_tl (e = %) (e — Xt\t)T Py ) dPtH) + dxt\t tt (Xt Xt|t)
=E,dlog\
= — 5T (P = Pt (Pur + Rz = %) (ke = %ue) ) Pit) dPys) + APt (Rr = %) -

Substituting Egs. 11 and 12 into E,dlog/N above, we backpropagate the perturbation
Y oysidlogp(yelyr,...,yr—1) in terms of dloga(x;) to the perturbation in terms of

dlog a(x¢—1) through [ dx¢—1 ([ dxy(x¢)p(Xe-1]y1,-- -, ¥e,%¢)) dlog a(x—1):

En,(xt)’Y(Xt—l\Xt,}’h o, yr)dlog N (x¢—1; fit—l\t—h Pt—l\t—l) (13)

:—.5Tr[ (Ptﬁl _ Pt|t (Pt|T + (xt‘T — Xt|t) (Xt|T — gt‘t)-'—) Ptﬁl) )

E’Y(xt>vpt\t log N

(Fe(dPi—1jp—1 )P —Fo(dPy—ve—1 ) F, H Sy " Hy Py —Pyo_1 H, Sy "H L (dPy_1)e—1) F,| +Pyp_1 H,' Sy HyFy (dPe_qe—1 ) F, H S, H Pyjy_y)

dP”t

+ (Ft(df(t—l\t—l)_KthFt(dﬁ(t—l\t—l)+Ft(dpt—1\t—1)FtTH;rS;1(zt_Htﬁt\t—l)_Pt\t—lHtTSletFt(dPt—l\t—l)FtTH:S;l(zt_Htﬁt\t—l))T T (xt\T xt\t)

dxt“ Eﬁ,(xt)V,}m IOgN

=— .5Tr{(dPt“1) (7T (vpm log./\/)thFtTHtT St_lHtPﬂt_l (vpm logN)thFtT (vptlt log/\/) Pt‘t_lHtTSt_l H.F,
—_———— —_————
K[
YFTHT st—lHtpm_l(vpm logN) Py H S HtFJ}
———— —_———
) T
+ (dxt*”t*l) [FtT (vf‘t\t IOgN) - FtTHtTKtT ( Xt lOgN)]

+ Tf{ (dPy_1)¢—1)

[_FtT (v*f,\t logN) (Z‘_H’/’A‘tltfl)TsletFt+FtTHtT St_lHtPﬂtfl (V*tlt logN) (zt—Ht*t\t—l)TS;lHtF‘] }
—_———

:7,5Tr{(dP,,,1|,,,1)[FtTPtlt IPtH(thltlog/\/’)P,“ i Fet2F P lP,‘t(V;(tltlogN)(ztthﬁ”t,l)TS'[lHtFt]}

JrTr{(dfc,,_l,t_l)T [FJP;H{IP,,V, (V*m logN)] }

Substituting Egs. 11 and 12 into —dlog p(y¢|y1,...,yi—1) = — [ dxe—10(x¢—1)dlog a(x¢—1),
we express the information in y; in terms of dlog c(x¢—1) in the following way.

dlog N | yu; Hidgjp—1, He Py H + Ry (14)

St
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. T ae .
= —.5d (log det (2’/TSt) — (Zt — th|t—1) St ! (Zt — th\t—l))
= 5Te(S; " HyFedPy_ o Fy H ) +.5(2e—HRqpo—1) | Sy HeFedPy_1)s 1 F, H S; (20— Hikejoo1 ) +da)_y o FyH, ¢Sy (ze—Hikyoo1)
:7.5Tr[(FJH:S;IHtthFtTH;S;l(ztthfc”t,l)(ztfoctH,l) sy HfFf)dPt 1)t 1]+dxt e B HT ST (e Hik )

Summing the above two perturbation terms in Eqgs. 13 and 14 and gather the multipliers of dP;_1);—1
and dxt 1e—1> We get the backpropagation formulae.

O

As a sanity check, we show that the gradient of loss with respect to filter density parameters
computed from backpropagation (Egs. 9,10) is consistent with the analytical form (Eq. 7).

Vi, 1y log N
=F Pt\tl 1Pt (Vay, log N) + FTHTSt\t (2t — Hidyp—1)
fFTP‘t 1 R‘ﬁ\ Ty — Tope +FTHTSt|t (zt HiZy)p— 1)
=F Pt‘t L@y = B — Ky (20 — HyBgpon)) + Fy HTSW (2t — HyZyjp—1)

=P 1‘,5 P 1t— lF P\t 1($t\T By 1) F Pt\t Kt(zt Hi&y)o— 1)+F HTStIt(Zt_Htit\tfl)
—_——

Gy_1 Tyl
F H St‘f

_p-1 x 4
*Pt—l\t—l (It—l\T xt—llt—l)

—2Vp,_,,_, logN
~ T 4
=F' Pt‘t Pie (Ve logN) Py, P, vl ' F+2F Pt‘t Pt (Vi JogN) (20 — Hiyy—1)  S; "HLFy

(a) (b)
_ _ ~ “ T A—
+F, H S, HyF, — F H S; " (20 — Hydgjp—1) (20 — Higpe—1)  S; "HLF,
(e)

_ —1 Tp—1
- (a’) t— 1\75 1Pt 1)t— lF t‘t_l(PtlT_Pt\tfl) t‘t 1FtPt 1[t— 1P, 1\75 1 —F, Pt|t71
—_— ———
Gi—1 G4

Pr_qir—Pr_1jt—1

7 P “ “ T
+P m 1Pt 1)t— 1F Pt|t 1(xt|T7xt|t—1)(xt\T*xt\t—1) Pt|t 1FtPt 1t—1 P, 1|, 1
~—_— —
Gi_1 Gl
(it—1|T7it—1\t—1)
— N ’ T — —
+FtTPt‘t171Kt(zt—Htw =Hiar-1) K, Pm1 Fo—2F Pt‘t K (2e— tlt{lFt

= . -
(b) + 2F; te—1 DT 7 — ope) (2 = Pt|t 1

[5P—1|t L =B 1(Pt 1z + (Eoayr = Eoap-1) (@r — &) )Pt_ut 1}

21



=F, P}

f\f 1

Under review as a conference paper at ICLR 2024

t

Tp-1 A A A N
=F,' P, 1M(Pt|T*Pt|t+(zt\T*$t\t) (&or — T4pt) )P Pl Fr

where (a) = F,' P, v " Py (Ve logN) Py, t|_t1—1Ft

Tg—-1 - - A N . . T
Pyr—Pyy1 — Py Hy Sy " HiPyy +<rzT —dy1 — Ky (20 — Hyliypy—1) ) (Bej7—@4js—1—Ke (2 —Hidojp—1))

Pyt —Ett

C.2 BACKPROPAGATING HMM SMOOTHING DENSITY THROUGH TIME

In the following, we will develop the backpropagation algorithm for calculating the gradient of
loss with respect to the forward/filter probabilities in a hidden Markov model. Our objective is
to leverage this derivation to provide additional insights into the equivalence between the belief
propagation algorithm (Bishop, 2006) and the gradient backpropagation algorithm.

We formulate the filter probabilities of a hidden Markov model as log a(xs; o) = x| log oty —

exp(1' log a;), where the (canonical) parameters are log cv; et (log p(xs = ily1,....t)),» X¢ is the
1-hot encoding of the categorical distribution, and 1 is a column vector with all elements being 1.
The gradient of the filter distribution over mean parameters is Vlog o, oga(x; o) = x¢ — ay.
The differential form is diog o, log a(x; ) = x, Jdlog oy — oy ldlog a;. So by theorem 1, the
gradient of the log-likelihood with respect to the canonical parameters is Viog o, logp(y1,....7) =
E,(z,)Viog a, 10g a(z4; ay) = v; — g, where 7, C (play = ily1,...7));-

Theorem 4. The gradient of loss over filter parameters in a hidden Markov model can be recursively
computed in the following way.

vlogoct 1,2 1?gp Y1, ZP xtfllxta yl;tfl)vlogat,ItIng (yl:T) +p(xt71|y1,“.,t) - a(xtfl)
(15)

Proof. The perturbation of the log likelihood with respect to the filter density in differential form is

diog a, 10gp(Y1,....7) = By (z,)dlog a(zs;log o) = (Vieg o, l0g p(y1,... 7)) (dlog ;) .
..... T) =

(Vlog a,_, log p(yL.,_,T)) (dlog aiy—1) and subsequently find the backpropagation form from
reading off the coefficient of dlog oy ;.

We use the relationship in the forward propagation to transform it into diog o, , l0gp(y1

dlogp(yl-T) = (1 — o) -dlogay

—Z —a(zy)) dloga (z), where Vigga, ,, = (Y(21) — a(xy))
—Zvlogm Jxy log p(y Z dlog a(z—1) (p(x1-1]mt, Y10-1) — P(T1-1]Y1:4))
Tt Tt—1

= Z dloga(mt,l) Zp(xtflkrtvyl;tfl)vlogatvzt _p(‘rt71|y1:t) Zw V]ogat@t
t

Tt—1 Tt

=0
dlog,(yely1,...t-1) = Zdlog a(@i-1) [p(@e-1ly1,...¢) — z-1)]

:>Vlogo¢t_1,mt71 Ing(y1,~ ) vlogaf 1oy q logp (3/1 T) + Vloga, Toy_q logp(yt|y1 ..... )

:Zp(xtfl‘mhyl;tfl)vlogat,zt logp(y1,.... 1) + p(@e-1ly1,..1) — (wt—1)

Zt
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O

As a sanity check, we demonstrate that substituting Vieg o, l0g p(y1,.4.,T) = 7t — oy into the
recursive relationship in Eq. 15 yields Vigg o,_, log p(y1,___,T) = ;-1 — o;—1. This confirms that
the gradient of loss with respect to filter probability parameters computed through backpropagation
aligns with its analytical form.

VIOgat,l,It71 1ng(y1, ,T)
=2 Viegaa,  P@e1len yia) + p(@elyn,...) = a(we)
Tt

= (v(@i)=aka?)) - pe1we, Yo 1) Eplettyr. ) — alwi-1)

=y(®¢-1) — (wi-1).
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D NATURAL GRADIENT IN A GAUSSIAN LINEAR BAYESIAN NN

The natural gradient, which reflects the difference between mean/canonical parameters in posterior
and prior distributions, is implicitly defined by Theorem 1. In the subsequent sections, we
explicitly derive this natural gradient concerning the cross-entropy loss and synaptic weights when
approximating a Bayesian neural network as a Gaussian linear graphical model. Our approach
involves approximating loss perturbations with respect to perturbations in the mean and covariance
of synaptic weights to the second order. By setting the derivative of the loss perturbation with
respect to these perturbations to zero and confirming the positive definiteness of the Hessian matrix,
we obtain the natural gradient, which optimally accounts for local curvature. Finally, we establish
a connection between natural gradients and gradients in the context of a Gaussian linear Bayesian
neural network.

By Theorem 1, the perturbation of loss with respect to the perturbations of weight mean
and covariance is —dlogp(y[x) = —Ey(wxy)d10gN(W;pw,Bw), where p(ylx) =
Ew A (witw,5w)P(Y|X, W) in a Gaussian linear Bayesian neural network, and w is the weights.
We approximate dlog N'(W; ptyw, X ) to the second order.

dlog N (W; phw, Bw)
~— 5T (ELME) + 5(W — pow) D dBw L (W — pi) + dpg, E0H (W — i)
— 5T (B, dEw 2 dSw ) — dptg, 2y ditw

Setting the gradient of E.(w|x,y)d10g N (W; ptw, Ly ) with respect to dpty and dXy, to 0, we get
the following natural gradients.

set

E,Vau,dlogN = S HE,W — pw) — Syt dpw =0

def. &
Sdpy = (Byw — p) = Vyu,, log p(y|x)
E, Vs, dlogN = =553 + 555 (Byw — ) (Byw — py) 851 — 5551dE, 25

T

=E,d¥y = (BE,wW — pw ) (BEyw — py) ' — et Vs, log p(y|x)

The Hessian of E,Y(w|x_,y)dlogj\/' (W; tw, X ) With respect to dpy, and dX., is positive definite
for non-degenerative weights covariance. So the natural gradient is optimal with the local curvature
taken into consideration.

E Vi, odu,dlogN = =31 E. Vs, s, dlogN = -3 ' @ 21, E, Vi, edas, dlog N = 0.
vy Vdu " ol v Vdp

Since the gradient of loss with respect to weight mean and variance is

- vuw 1ng(Y|X) = 72‘;1 (E’YW - Hw)a
— Vs, logp(y[x) = 25" [(Byw — p) (B w — pw) | — B ] B3,

(which can be read off from the coefficients of du/, and dX,, in the second order approximation of
dlog N (w; pw, 3y ) above,) natural gradient and gradient have the following relationship:

Vi logp(y[x) = By - Vo, logp(y|x), Vs, logp(y|x) = Zw - Vs, log p(y[x) - S

Therefore, the natural gradient with respect to weight mean and variance in the cross-entropy loss
captures the difference between these parameters in the posterior and prior distributions. Updating
weight distribution parameters using a fixed learning rate of one mirrors the fixed-point algorithm
seen in graphical models. Additionally, updating these parameters through stochastic gradient
descent with momentum and natural gradient can be seen as a method for approximating the
posterior weight distribution by aggregating information from multiple mini-batches.
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E EXPERIMENT DETAILS

E.1 NEURAL NETWORK ARCHITECTURES

We implement neural network architectures based on the original papers with reference to open-
access implementations. Below, we provide quotations from these papers along with our comments.

E.1.1 DENSENET-BC [L=100, K=12](HUANG ET AL., 2017)

On all datasets except ImageNet, the DenseNet used in our experiments has three dense blocks that
each has an equal number of layers. Before entering the first dense block, a convolution with 16 (or
twice the growth rate for DenseNet-BC [note: convolution with 2 x 16 = 32 features for DenseNet-
Bottleneck+Compression]) output channels is performed on the input images. For convolutional
layers with kernel size 3 x 3, each side of the inputs is zero-padded by one pixel to keep the feature-
map size fixed. We use 1 x 1 convolution followed by 2 x 2 average pooling as transition layers
between two contiguous dense blocks. At the end of the last dense block, a global average pooling
is performed and then a softmax classifier is attached. The feature-map sizes in the three dense
blocks are 32 x 32,16 x 16, and 8 x 8, respectively. We experiment with the basic DenseNet
structure with configurations {L = 40,k = 12},{L = 100,k = 12} [note: growth rate = 12.
among the 100 convolutional layers, 4 are between input, 3 dense blocks, and outputs, and the rest
100 — 4 = 96 blocks are distributed in 3 dense blocks. since each dense block is composed of a
number of convolution blocks with one 1 x 1 convolution layer and one 3 x 3 convolution layer, each
dense block has 96/3/2 = 16 convolution blocks] and {L = 100, k = 24}. For DenseNet- BC, the
networks with configurations {L = 100,k = 12}, {L = 250,k = 24} and {L = 190, k = 40} are
evaluated.

In our experiments on ImageNet, we use a DenseNet-BC structure with 4 dense blocks on 224 x 224
input images. The initial convolution layer comprises 2k convolutions of size 7 x 7 with stride 2
; the number of feature-maps in all other layers also follow from setting k. The exact network
configurations we used on ImageNet are shown in Table 1.

All the networks are trained using stochastic gradient descent (SGD). On CIFAR and SVHN we
train using batch size 64 for 300 and 40 epochs, respectively. The initial learning rate is set to 0.1 ,
and is divided by 10 at 50% and 75% of the total number of training epochs. On ImageNet, we train
models for 90 epochs with a batch size of 256. The learning rate is set to 0.1 initially, and is lowered
by 10 times at epoch 30 and 60.

Following [8], we use a weight decay of 10~* and a Nesterov momentum [35] of 0.9 without
dampening. We adopt the weight initialization introduced by [10]. ... we add a dropout layer
[33] after each convolu- tional layer (except the first one) and set the dropout rate to 0.2. The test
errors were only evaluated once for each task and model setting.

Densenet architecture for ImageNet can also be confirmed from tf . keras
. applications. DenseNet 121 . The code is here:  https://github.com/keras-
team/keras/blob/v2.12.0/keras/applications/densenet.py#L63

E.1.2 RESNET (HE ET AL., 2016)

The network inputs are 32 x 32 images, with the per-pixel mean subtracted. The first layer is 3 x 3
convolutions. Then we use a stack of 6n layers with 3 x 3 convolutions on the feature maps of
sizes {32, 16, 8} respectively, with 2n layers for each feature map size. The numbers of filters are
{16, 32,64} respectively. The subsampling is performed by convolutions with a stride of 2 . The
network ends with a global average pooling, a 10-way fully-connected layer, and softmax. There
are totally 6n + 2 stacked weighted layers. The following table summarizes the architecture:

output map size i232 1(61 6 8 x 8
# layers 1 2n 2n
+2n
# filters 16 32 64

25



Under review as a conference paper at ICLR 2024

When shortcut connections are used, they are connected to the pairs of 3 x 3 layers (totally 3n
shortcuts). On this dataset we use identity shortcuts in all cases (i.e., option A), so our residual
models have exactly the same depth, width, and number of parameters as the plain counterparts.

We use a weight decay of 0.0001 and momentum of 0.9 , and adopt the weight initialization in [13]
and BN [16] but with no dropout. These models are trained with a minibatch size of 128 on two
GPUs. We start with a learning rate of 0.1 , divide it by 10 at 32k and 48k iterations, and terminate
training at 64k iterations, which is determined on a 45k /5k train/val split. We follow the simple data
augmentation in [24] for training: 4 pixels are padded on each side, and a 32 x 32 crop is randomly
sampled from the padded image or its horizontal flip. For testing, we only evaluate the single view
of the original 32 x 32 image.

Our implementation for ImageNet follows the practice in [21, 41]. The image is resized with its
shorter side randomly sampled in [256, 480] for scale augmentation [41]. A 224 x 224 crop is
randomly sampled from an image or its horizontal flip, with the per-pixel mean subtracted [21]. The
standard color augmentation in [21] is used. We adopt batch normalization (BN) [16] right after each
convolution and before activation, following [16]. We initialize the weights as in [13] and train all
plain/residual nets from scratch. We use SGD with a mini-batch size of 256. The learning rate starts
from 0.1 and is divided by 10 when the error plateaus, and the models are trained for up to 60 x 10*
iterations. We use a weight decay of 0.0001 and a momentum of 0.9 . We do not use dropout [14],
following the practice in [16]. In testing, for comparison studies we adopt the standard 10-crop
testing [21]. For best results, we adopt the fullyconvolutional form as in [41, 13], and average the
scores at multiple scales (images are resized such that the shorter side is in {224, 256, 384, 480, 640}
). .... See Table 1 for detailed architectures.

E.1.3 EFFICIENTNET BO (TAN & LE, 2019)

The implementation follows keras reference implementation. We scaled input to (224, 224).

inputs = layer_input (shape = dim(cifarl0Strain$x) [-1])
efficientNetBO.cifarl0 = tfSkerasSapplications$SEfficientNetBO (
input_tensor = inputs %>%
layer_lambda (function (img) tfS$imageSresize (img, c(224L, 224L))),
include_top=TRUE,
weights=NULL,
classes=10L
)
efficientNetBO.cifarlO0Scompile (
loss=’categorical_crossentropy’,
optimizer= ’adam’,
metrics=1list ("accuracy’)
)
mc = callback_model_checkpoint (
"efficientNetBO_CIFAR1O.ckpt’,
monitor = ’'val_accuracy’,
save_best_only = TRUE,
mode = ’"auto’,
save_weights_only = TRUE
)

tfSkerasSutilsSplot_model (
efficientNetBO.cifarlO,
to_file="efficientNetBO_CIFAR10.png’,
show_shapes=TRUE,
show_layer_names=TRUE,
show_layer_activations=TRUE
)
IRdisplay::display_png(file = 'efficientNetBO_CIFAR10.png’)
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E.1.4 WIDERESNET-28-10 (ZAGORUYKO & KOMODAKIS, 2016)

Compared to the original architecture [11] in [13] the order of batch normalization, activation and
convolution in residual block was changed from conv-BN-ReLU to BN-ReLU-conv. As the latter
was shown to train faster and achieve better results we don’t consider the original version.

The general structure of our residual networks is illustrated in table 1: it consists of an initial
convolutional layer convl that is followed by 3 groups (each of size IV ) of residual blocks conv2,
conv3 and conv4, followed by average pooling and final classification layer. The size of convl
is fixed in all of our experiments, while the introduced widening factor k scales the width of the
residual blocks in the three groups conv24 (e.g., the original «basic» architecture is equivalent to
k=1).

group name | output size block tyge): =BG,
[Bx3
16]

[ 3x3, 7

16 x k

conv2 32 x 32 3 x 3,

| 16 x k |

xN

[ 3x3, ]

32 xk

conv3 16 x 16 3 %X 3,

| 32 xk |

xN

[ 3x3, ]
64 x k

conv4 8% 8 3 %X 3,

| 64 xk |

xN

avg-pool 1x1 8 x 8]

convl 32 x 32

As widening increases the number of parameters we would like to study ways of regularization.
Residual networks already have batch normalization that provides a regularization effect, however
it requires heavy data augmentation, which we would like to avoid, and it’s not always possible. We
add a dropout layer into each residual block between convolutions as shown in fig. 1(d) and after
ReLU to perturb batch normalization in the next residual block and prevent it from overfitting.
In very deep residual networks that should help deal with diminishing feature reuse problem
enforcing learning in different residual blocks. ... We trained networks with dropout inserted into
residual block between convolutions on all datasets. We used cross-validation to determine dropout
probability values, 0.3 on CIFAR and 0.4 on SVHN. Also, we didn’t have to increase number of
training epochs compared to baseline networks without dropout.

In all our experiments we use SGD with Nesterov momentum and cross-entropy loss. The initial
learning rate is set to 0.1 , weight decay to 0.0005 , dampening to 0 , momentum to 0.9 and minibatch
size to 128 . On CIFAR learning rate dropped by 0.2 at 60,120 and 160 epochs and we train for total
200 epochs. On SVHN initial learning rate is set to 0.01 and we drop it at 80 and 120 epochs
by 0.1, training for total 160 epochs. Our implementation is based on Torch [6]. We use [21] to
reduce memory footprints of all our networks. For ImageNet experiments we used fb. resnet. torch
implementation [10]. Our code and models are available at https://github.com/szagoruyko/wide-
residual-networks. some implementations at github by the authors and others

* https://github.com/szagoruyko/wide-residual-networks
* https://github.com/titu1994/Wide-Residual-Networks/

* https://github.com/paradoxysm/wideresnet
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E.1.5 MLP-MIXER (TOLSTIKHIN ET AL., 2021)

Tolstikhin, Ilya O., Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung et al. "MIp-mixer: An all-mlp architecture for vision.” Advances in neural
information processing systems 34 (2021): 24261-24272.
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E.2 MORE DETAILS ON VISUALIZING LEARNED JOINT OBSERVATION-LABEL DISTRIBUTION
OF BOSTON HOUSING DATA

We present a visualization of the joint observation-label distribution generated by a Bayesian neural
network through Monte Carlo simulations and 2D projections (Fig. 2). Our approach begins with
minor perturbations to feature-label pairs in the training dataset, followed by evolving a Hamiltonian
Monte Carlo chain with adaptive step-size. This chain targets the uncalibrated probability and uses
the Gelman-Rubin diagnostic to ensure convergence. The outcome is a simulated collection of
feature-label patterns that the model anticipates, offering insights into typical label observations and
potential losses.

In Fig. 2 (a) and (c), we project this distribution to compare predicted versus actual labels. Ideally,
a model should concentrate its probability mass along the diagonal, indicating the likelihood of an
observation, particularly when predictions deviate from training. In Fig. 2 (a), a Bayesian neural
network trained with our algorithm exhibits a tight observation-label correlation along the diagonal.
Conversely, Fig. 2 (c) shows diverging predictions from two independently trained neural networks,
especially in data-sparse regions, reflecting their unique generalizations.

In Fig. 2 (b) and (d), we visualize observations along the two principal components accounting for
the most variance. Here, blue dotted lines mark the 1-0, 2-0, and 3-0 confidence regions, with
solid black lines for predictions. The Bayesian neural network’s expected observations cluster in
areas correlating with lower loss (Fig. 2 (b)), while non-Bayesian networks exhibit a more dispersed
pattern.

To validate our approach, we simulate belief propagation in a probabilistic graphical model using
an ensemble of non-Bayesian neural networks in a shared computational graph. We compare the
filter and smoothing densities from standard neural networks against those in the Bayesian neural
network, and likewise for sensitivities. This comparison serves as a sanity check, demonstrating the
effectiveness of our method.

E.3 VISUALIZING CNN LEARNED DISTRIBUTIONS
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Iter. 50: FD = -1.6566, Acc = 0.9982

(=]

Figure 3: The probability distribution of observations x as a Bayesian neural network with 3 densely connected
layers learns to classify the mixture component assignment of an observation from a mixture of Gaussian
distribution. The BNN is trained with Algorithm 1, and the input is sampled from Hamiltonian Monte Carlo to
estimate the probability distribution of x induced by the BNN.
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Figure 4: Images generated from a trained Bayesian DenseNet with Hamiltonian Monte-Carlo.
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