UMI-on-Legs: Making Manipulation Policies Mobile
with a Manipulation-Centric Whole-body Controller

Anonymous Author(s)
Affiliation
Address
email

Contents

1 Things that did not work
1.1 Privileged policy distillation and observation history.
1.2 Precise grasping fortossing.
1.3 System Reliability for Fully-untethered Deployment.

1.4 Velocity integrationo e e e

2 Deployment
2.1 iPhoneplacement
22 RobotURDF e
23 LAtenCy . . . v i i e e e e e e
24 Safety L

3 Training
3.1 Manipulation Policy e
3.2 Whole-Body Dynamic Tossing
3.3 End-effector Reaching Leads to Robust Whole-body Pushing
3.4 Plug-and-play Cross-Embodiment Manipulation Policies
3.5 In-the-wild Cup Rearrangement Evalvation
36 RewardTerms o L e e

4 Evaluation
4.1 Real World Tossing o i i i i it e e e e

42 Simulation Ablations e e

5 Misc.

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.

W W W W N NN NN N

[N T a E E

24
25
26
27

28

29
30
31
32
33
34

35

36
37
38
39

40

41
42
43
44
45
46
47
48

49

50
51
52
53
54
55

56
57
58
59
60

61

62

1 Things that did not work

In this section, we discuss things we tried, but did not improve the performance or caused other issues. We
hope that through openly discussing our unsuccessful attempts, the community could gain a more complete
understanding of the project, learn from our mistakes, and improve upon our attempts. To complement
this section, we’ve also included robot failure videos on our supplementary website.

1.1 Privileged policy distillation and observation history.

We tried to include privileged information (kp, kd, friction, damping, ground truth poses, base velocities,
etc.) to train a privileged policy and distill it through supervised learning and online regularization.
However, it didn’t provide performance boost and introduce instability when we include observation
history longer than 1 step. This could be because that the Python ROS2 timer is imprecise, thus the
observation history can easily be out of distribution given the wrong history timestamps. This was less
of an issue on the Unitree A1 platform, which ships with a real-time kernel.

1.2 Precise grasping for tossing.

To train diffusion policies for grasping and tossing, we collected 500 episodes of human demonstration.
However in the grasping phase, the small shakes from the controller results in distributional drift in
visuo-motor manipulation policy. We hypothesize that robust, fully-autonomous grasping and tossing
could be achieved with more data.

1.3 System Reliability for Fully-untethered Deployment.

Although the system is capable of various tasks in the real world without any external cables, the reliability
is in general not high enough. We summarize some hardware and system level challenges we encountered
as follows. Given a small base-to-arm weight ratio, the joints of the dog are likely to overheat in 10 to 30
minutes according to the robot posture and then goes to an error mode. Therefore, we needed to frequently
cool down the motors and fine-tune the policy to a more energy-efficient posture. On the power front,
the battery supplies different voltages depending on how full it is. When fully charged, the voltage is too
high for the arm, and the setup requires a voltage adaptor. When closer to empty, the policy’s behavior
is more dampened.

1.4 Velocity integration

We used the iOS ARK:it to run VIO on an iPhone 15 Pro. However, the estimated camera pose sometimes
drift heavily under dynamic actions including tossing. We also measure the delay of the pose estimator.
Although the Ethernet communication time (between the iPhone and the onboard Jetson) is negligible,
we found the the latency from the movement to the pose update is still roughly 140ms. This latency
introduced a significant Sim2Real gap during deployment, which manifests as low frequency oscillations
which slowly diverges.

Using low-latency foot contacts, joint position/velocities, and IMU readings, we can estimate the base
velocity for each timestamp. Using base velocity estimates from 140ms into the past, we can integrate
every received iPhone pose forward in time by 140ms. However, the shaking behavior due to the latency is
not addressed, which can only be mitigated by higher action rate regularization fine-tuning. As the ARKit
pose estimation runs at 60Hz, we expect a better implementation could achieve shorter latency.

2 Deployment

In this section we elaborate important details in real-world deployment and Sim2Real transfer.

https://corlpaper.github.io/

63

64
65
66
67
68
69
70

4l

72
73
74
75
76

77

78
79

80
81
82
83
84
85

86
87
88
89

90
91
92
93
94
95

96

97
98
99

100
101
102

103
104

2.1 iPhone placement

‘We mounted the iPhone on the back of the robot with following considerations:1) Since the iPhone is
facing back, the robot arm will not be in the view during manipulation, so ARKit’s visual-inertial odometry
can better track the surrounding environment. 2) iphone is mounted at a fixed angle of 60° to the back
plane of the Go2, thus the camera is pointing upwards even when Go2 is slightly bending down. This
increases the number of visual features in the iPhone camera, thus provides more robust tracking compared
to our original design, which was a 90° mount. 3) This position is kinematically unreachable for the robot
arm, so the arm will unlikely damage the iPhone.

2.2 Robot URDF

For our highly dynamic tasks, we observed that the domain randomization and adaptive policies [1, 2] were
insufficient to bridge the gap between a heavily mis-specified model (provided by the manufacturer) and the
real system, a gap that is exacerbated when performing dynamic arm movements. We found that disassem-
bling the ARXS arm, reweighing each component, and recomputing mass, center of mass and inertia matri-
ces in the URDF* were crucial for both simulation stability as well as successfully real-world deployment.

2.3 Latency

While all observations and actions are perfectly synchronized in simulation, the communication and code
runtime of the real-world robot system introduce a significant amount of latency in different aspects.

The most important latency comes from the robot joint state observation and the joint command execution.
This includes the motor encoder readout, ROS2 communication, whole-body controller inference, action
sent back to motors and being executed on motors. Since we were unable to exactly measure all the latency
sources, we swept the end-to-end latency from Oms to 30ms with 5Sms interval in simulation and find
that 20ms works the best in our real-world system. We observed high frequency shaking if the latency
is mismatched in simulator and real-world robots.

Robot pose estimators (motion capture and iphone) also introduce latency. We observed an 8ms latency from
the motion capture system and 140ms latency from the iphone ARKit. We simulated a 10ms pose latency in
simulation to close the sim2real gap. We also implemented inertial-legged velocity estimation to integrate
the latest pose for iPhone, but the performance didn’t improve significantly. See 1.4 for detailed explanation.

We also observe latency in the Python ROS2 program. Due to the global interpreter lock, all the Python
ROS2 callback functions have to run alternately, so one callback function will block the others if it takes
too long. We optimize the run time of all callback functions and detach the callback functions that take
too long to other ROS2 nodes. This allows the joint observation update to run closer to 200Hz and policy
inference closer to 5S0Hz. A C++ implementation with more precise timer and lower latency can achieve
better performance given the same checkpoint and evaluation setup.

24 Safety

We observed that directly deploying the whole-body controller checkpoints in the simulation section led
to some safety issues and addressed them by fine-tuning the checkpoints with more conservative reward
schemes:

* Shaking: To reduce the shaking and oscillation behavior of the robot, we increased the action
rate regularization. The controller will get less reward if the predicted action is farther away from
the previous action. We also disabled the on board lidar that introduces shaking behavior.

* Overheat Shutdowns: The calf joint of the robot uses a linkage configuration rather than directly
applies the output torque. Therefore, the required output torque of the motor is higher than the

“We will open-source all code, data and checkpoints after publication.

105
106

107
108
109
110

1

1

112

113
114
115
116
17
118
119

120

121
122

123

124

125
126
127

128

129

131

132

133
134

other joints, leading to frequent overheating and emergency shutdown. We observed that increased
torque regularization during training allows the controller to run up to 30 minutes continuously

* Unsafe Configurations: In the simulator, the controller is likely to twist the legs to achieve
higher precision with less movements, but this makes it unsafe to deploy in the real world. We
added reward terms to regularize the body to a more balanced pose, so that the center of mass
can roughly stay in the center.

3 Training
3.1 Manipulation Policy

In this section, we report hyperparameters used for training our manipulation diffusion policy. Visual
observation and proprioception horizon means how many history image and robot states (with 0.1s
interval) are used as input to the policy. Output Steps means the action length of the diffusion policy
output. Execution Steps and Execution Frequency indicate how many steps of the diffusion policy output
is actually executed in the real-world robot. To enable more stable end-effector trajectory updates, we
add linear interpolation between the executed trajectory and the newly-updated trajectory for a duration
of “Trajectory Update Smoothing Time”.

3.2 'Whole-Body Dynamic Tossing

We increased the inference and execution steps for a smoother toss, since the trajectory is less likely to
update during the dynamic toss. We also increased the execution frequency to get farther toss. Please
refer to Table 1 for detailed parameters.

Hyperparameters Values
Training Set Trajectory Number 500
Diffusion Policy Visual Observation Horizon 2
Diffusion Policy Proprioception Horizon 4
Diftusion Policy Output Steps 64
Diffusion Policy Execution Steps 40
Diffusion Policy Execution Frequency 12Hz
Trajectory Update Smoothing Time 0.1s

Table 1: Hyper parameter set of the dynamic tossing task.

3.3 End-effector Reaching Leads to Robust Whole-body Pushing

Since the trajectory motion is much simpler, we collected fewer human demonstrations for the diffusion
policy. We increased the “Trajectory Update Smoothing Time” to prevent heavy shakes due to the
trajectory update. Please refer to Table 1 for detailed parameters.

34 Plug-and-play Cross-Embodiment Manipulation Policies

As the UMI cup rearrange task requires much higher precision but is quasi-static, we decreased the
execution frequency for better stability. As mentioned in the main text, we directly use the publicly released
checkpoint from Chi et al.. We did not collect any extra data for this task.

3.5 In-the-wild Cup Rearrangement Evaluation

We evaluated the whole-body controller on the cup rearrangement task in the wild. We tested it in some
challenging scenarios including unstable terrain (grass, dirt, collapsible table), direct sunlight which made

TPlease check out evaluation videos on https://corlpaper.github.io, which shows our controller running continuously
for 20-30 minutes.

https://github.com/real-stanford/universal_manipulation_interface
https://github.com/real-stanford/universal_manipulation_interface
https://github.com/real-stanford/universal_manipulation_interface
https://corlpaper.github.io/

135

137

138

139
140

141
142
143

144
145
146

147
148

149
150
151
152
153
154

155

156

157
158

Hyperparameters Values

Training Set Trajectory Number 25
Diffusion Policy Visual Observation Horizon 2
Diffusion Policy Proprioception Horizon 2
Diffusion Policy Output Steps 32
Diffusion Policy Execution Steps 10
Diffusion Policy Execution Frequency 10Hz
Trajectory Update Smoothing Time 0.3s

Table 2: Hyper parameter set of the whole-body pushing task.

Hyperparameters Values
Training Set Trajectory Number 1400
Diftusion Policy Visual Observation Horizon 1
Diffusion Policy Proprioception Horizon 2
Diffusion Policy Output Steps 16
Diffusion Policy Execution Steps 8
Diffusion Policy Execution Frequency 5Hz
Trajectory Update Smoothing Time 0.1s

Table 3: Hyper parameter set of the UMI cup rearrangement task.

the robot easily overheated, and unseen tables and cups to show the generalizability of the diffusion policy.
Please checkout the supplementary video for more details.

3.6 Reward Terms

During RL training of the whole body controller, we include the following reward terms:

¢ Joint Limit, Joint Acceleration, Joint Torque, Root Height, Collision, Action Rate: We use
the same definition as prior works [2, 4].

* Body-EE Alignment: We regularize joint 0 and joint 3 of the arm (the joints that mostly affect
the yaw angle of the gripper) to stay close to their initial pose. This allows the arm to be aligned
with the body.

* Even Mass Distribution: We regularize the standard deviation of the force of the four feet to
be lower. The motors are less likely to overheat if the body mass is distributed more evenly on
the four legs.

* Feet Under Hips: We regularize the feet’s planar position to be close to that of their respective
hips, for all four legs. This regularization improves the stability of the standing pose.

* Pose Reaching: We minimize the position error €0 and orientation error €qr to the target pose
using an unified reward function: exp(—(;‘: + ;“;)) We apply o curriculum to the reward func-
tions: as the error get smaller, we decrease o for a more peaky reward function, which encourages
the controller to further reduce reaching error. opes is set to [2,0.1,0.5,0.1,0.05,0.01,0.005]
when the position error is smaller than [100,1.0,0.8,0.5,0.4,0.2,0.1] respectively; oon is set to

[8.0,4.0,2.0,1.0,0.5] when the orientation error is smaller than [100.0,1.0,0.8,0.6,0.2] respectively.

4 Evaluation

4.1 Real World Tossing

To achieve a pre-grasped state during tossing evaluations, we handed the policy the tennis ball. We count
episodes where the robot falls during the toss as a failure. Finally, we measure the distance from the

159
160

161

162
163
164
165

167

168

169

170
1
172

173

174
175

176

177
178

179
180

Name Weight

Joint Limit -10
Joint Acceleration -2.5e-7
Joint Torque -le-4
Root Height -1
Collision -1
Action Rate -0.01
Body-EE Alignment -1
Even Mass Distribution -1
Feet Under Hips -1
Pose Reaching 4

Table 4: Reward terms.

location where the ball first lands to the center of the bin, and report a success if it lands within 40cm
of the bin’s center.

4.2 Simulation Ablations

In each episode, a random grasp and toss end-effector trajectory is sampled from our dataset (§ 3.2),
the robot is uniformly randomly initialized in the range of [-5.0cm,5.0cm] for x and y position, and
[-0.1rad,0.1rad] for z orientation, and its initial joint positions are sampled uniformly within 5% of that
joints® full range, centered around the default joint configuration. Position and orientation errors are
averaged over all timesteps, while survival is 1 only if the policy lasts for 17 seconds without a terminal
collision. Here, a terminal collision is defined as any robot part contact that is not the robot’s feet or gripper.

Similar to training, evaluation includes a pose latency of 10ms and the full range of domain randomization
reported in Table 5.

Hyperparameters Values
Init XY Position [-0.1m,0.1m]
Init Z Orientation [-0.05rad,0.05rad]
Joint Damping [0.01,0.5]
Joint Friction [0.0,0.05]
Geometry Friction [0.1,8.0]
Mass Randomization [-0.25,0.25]
Center of Mass Randomization [0.1m,0.1m]

Table 5: Domain Randomization Hyperparameters.

All approaches were trained for 4000 iterations, and the performance at checkpoint 4000 is reported.
Power usage report is electrical power usage based on real hardware’s voltages, manufacturers’ reported
torque constants, and the simulation’s motor torques.

5 Misc.

Cost of the system. We report the cost of our entire robot system based on the market price in Table 6,
which is roughly 1/4 of other quadruped manipulation systems in [5, 6]

References

[1] A. Kumar, Z. Fu, D. Pathak, and J. Malik. Rma: Rapid motor adaptation for legged robots. arXiv
preprint arXiv:2107.04034, 2021.

[2] Z.Fu, X. Cheng, and D. Pathak. Deep whole-body control: Learning a unified policy for manipulation
and locomotion. In Conference on Robot Learning, pages 138-149. PMLR, 2023.

181
182

184
185

186
187

188
189

Item Cost($)

Unitree Go2 Edu Plus 12,500.00
ARXS5 Robot Arm 10,000.00

GoPro Hero9 210.99
GoPro Media Mod 79.99
GoPro Max Lens Mod 68.69
iPhone 15 Pro 999.00
Elgato Capture Card 147.34
Total 24,006.01

Table 6: System Cost.

[3] C. Chi, Z. Xu, C. Pan, E. Cousineau, B. Burchfiel, S. Feng, R. Tedrake, and S. Song. Universal
manipulation interface: In-the-wild robot teaching without in-the-wild robots. In Proceedings of
Robotics: Science and Systems (RSS), 2024.

[4] N. Rudin, D. Hoeller, P. Reist, and M. Hutter. Learning to walk in minutes using massively parallel
deep reinforcement learning. In Conference on Robot Learning, pages 91-100. PMLR, 2022.

[5] M. Liu, Z. Chen, X. Cheng, Y. Ji, R. Yang, and X. Wang. Visual whole-body control for legged
loco-manipulation. arXiv preprint arXiv:2403.16967, 2024.

[6] T. Portela, G. B. Margolis, Y. Ji, and P. Agrawal. Learning force control for legged manipulation.
arXiv preprint arXiv:2405.01402, 2024.

	Things that did not work
	Privileged policy distillation and observation history.
	Precise grasping for tossing.
	System Reliability for Fully-untethered Deployment.
	Velocity integration

	Deployment
	iPhone placement
	Robot URDF
	Latency
	Safety

	Training
	Manipulation Policy
	Whole-Body Dynamic Tossing
	End-effector Reaching Leads to Robust Whole-body Pushing
	Plug-and-play Cross-Embodiment Manipulation Policies
	In-the-wild Cup Rearrangement Evaluation
	Reward Terms

	Evaluation
	Real World Tossing
	Simulation Ablations

	Misc.

