
UMI-on-Legs: Making Manipulation Policies Mobile
with a Manipulation-Centric Whole-body Controller

Anonymous Author(s)
Affiliation
Address
email

Contents1

1 Things that did not work 22

1.1 Privileged policy distillation and observation history. 23

1.2 Precise grasping for tossing. 24

1.3 System Reliability for Fully-untethered Deployment. 25

1.4 Velocity integration . 26

2 Deployment 27

2.1 iPhone placement . 38

2.2 Robot URDF . 39

2.3 Latency . 310

2.4 Safety . 311

3 Training 412

3.1 Manipulation Policy . 413

3.2 Whole-Body Dynamic Tossing . 414

3.3 End-effector Reaching Leads to Robust Whole-body Pushing 415

3.4 Plug-and-play Cross-Embodiment Manipulation Policies 416

3.5 In-the-wild Cup Rearrangement Evaluation . 417

3.6 Reward Terms . 518

4 Evaluation 519

4.1 Real World Tossing . 520

4.2 Simulation Ablations . 621

5 Misc. 622

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.

1 Things that did not work23

In this section, we discuss things we tried, but did not improve the performance or caused other issues. We24

hope that through openly discussing our unsuccessful attempts, the community could gain a more complete25

understanding of the project, learn from our mistakes, and improve upon our attempts. To complement26

this section, we’ve also included robot failure videos on our supplementary website.27

1.1 Privileged policy distillation and observation history.28

We tried to include privileged information (kp, kd, friction, damping, ground truth poses, base velocities,29

etc.) to train a privileged policy and distill it through supervised learning and online regularization.30

However, it didn’t provide performance boost and introduce instability when we include observation31

history longer than 1 step. This could be because that the Python ROS2 timer is imprecise, thus the32

observation history can easily be out of distribution given the wrong history timestamps. This was less33

of an issue on the Unitree A1 platform, which ships with a real-time kernel.34

1.2 Precise grasping for tossing.35

To train diffusion policies for grasping and tossing, we collected 500 episodes of human demonstration.36

However in the grasping phase, the small shakes from the controller results in distributional drift in37

visuo-motor manipulation policy. We hypothesize that robust, fully-autonomous grasping and tossing38

could be achieved with more data.39

1.3 System Reliability for Fully-untethered Deployment.40

Although the system is capable of various tasks in the real world without any external cables, the reliability41

is in general not high enough. We summarize some hardware and system level challenges we encountered42

as follows. Given a small base-to-arm weight ratio, the joints of the dog are likely to overheat in 10 to 3043

minutes according to the robot posture and then goes to an error mode. Therefore, we needed to frequently44

cool down the motors and fine-tune the policy to a more energy-efficient posture. On the power front,45

the battery supplies different voltages depending on how full it is. When fully charged, the voltage is too46

high for the arm, and the setup requires a voltage adaptor. When closer to empty, the policy’s behavior47

is more dampened.48

1.4 Velocity integration49

We used the iOS ARKit to run VIO on an iPhone 15 Pro. However, the estimated camera pose sometimes50

drift heavily under dynamic actions including tossing. We also measure the delay of the pose estimator.51

Although the Ethernet communication time (between the iPhone and the onboard Jetson) is negligible,52

we found the the latency from the movement to the pose update is still roughly 140ms. This latency53

introduced a significant Sim2Real gap during deployment, which manifests as low frequency oscillations54

which slowly diverges.55

Using low-latency foot contacts, joint position/velocities, and IMU readings, we can estimate the base56

velocity for each timestamp. Using base velocity estimates from 140ms into the past, we can integrate57

every received iPhone pose forward in time by 140ms. However, the shaking behavior due to the latency is58

not addressed, which can only be mitigated by higher action rate regularization fine-tuning. As the ARKit59

pose estimation runs at 60Hz, we expect a better implementation could achieve shorter latency.60

2 Deployment61

In this section we elaborate important details in real-world deployment and Sim2Real transfer.62

2

https://corlpaper.github.io/

2.1 iPhone placement63

We mounted the iPhone on the back of the robot with following considerations:1) Since the iPhone is64

facing back, the robot arm will not be in the view during manipulation, so ARKit’s visual-inertial odometry65

can better track the surrounding environment. 2) iphone is mounted at a fixed angle of 60◦ to the back66

plane of the Go2, thus the camera is pointing upwards even when Go2 is slightly bending down. This67

increases the number of visual features in the iPhone camera, thus provides more robust tracking compared68

to our original design, which was a 90◦ mount. 3) This position is kinematically unreachable for the robot69

arm, so the arm will unlikely damage the iPhone.70

2.2 Robot URDF71

For our highly dynamic tasks, we observed that the domain randomization and adaptive policies [1, 2] were72

insufficient to bridge the gap between a heavily mis-specified model (provided by the manufacturer) and the73

real system, a gap that is exacerbated when performing dynamic arm movements. We found that disassem-74

bling the ARX5 arm, reweighing each component, and recomputing mass, center of mass and inertia matri-75

ces in the URDF* were crucial for both simulation stability as well as successfully real-world deployment.76

2.3 Latency77

While all observations and actions are perfectly synchronized in simulation, the communication and code78

runtime of the real-world robot system introduce a significant amount of latency in different aspects.79

The most important latency comes from the robot joint state observation and the joint command execution.80

This includes the motor encoder readout, ROS2 communication, whole-body controller inference, action81

sent back to motors and being executed on motors. Since we were unable to exactly measure all the latency82

sources, we swept the end-to-end latency from 0ms to 30ms with 5ms interval in simulation and find83

that 20ms works the best in our real-world system. We observed high frequency shaking if the latency84

is mismatched in simulator and real-world robots.85

Robot pose estimators (motion capture and iphone) also introduce latency. We observed an 8ms latency from86

the motion capture system and 140ms latency from the iphone ARKit. We simulated a 10ms pose latency in87

simulation to close the sim2real gap. We also implemented inertial-legged velocity estimation to integrate88

the latest pose for iPhone, but the performance didn’t improve significantly. See 1.4 for detailed explanation.89

We also observe latency in the Python ROS2 program. Due to the global interpreter lock, all the Python90

ROS2 callback functions have to run alternately, so one callback function will block the others if it takes91

too long. We optimize the run time of all callback functions and detach the callback functions that take92

too long to other ROS2 nodes. This allows the joint observation update to run closer to 200Hz and policy93

inference closer to 50Hz. A C++ implementation with more precise timer and lower latency can achieve94

better performance given the same checkpoint and evaluation setup.95

2.4 Safety96

We observed that directly deploying the whole-body controller checkpoints in the simulation section led97

to some safety issues and addressed them by fine-tuning the checkpoints with more conservative reward98

schemes:99

• Shaking: To reduce the shaking and oscillation behavior of the robot, we increased the action100

rate regularization. The controller will get less reward if the predicted action is farther away from101

the previous action. We also disabled the on board lidar that introduces shaking behavior.102

• Overheat Shutdowns: The calf joint of the robot uses a linkage configuration rather than directly103

applies the output torque. Therefore, the required output torque of the motor is higher than the104

*We will open-source all code, data and checkpoints after publication.

3

other joints, leading to frequent overheating and emergency shutdown. We observed that increased105

torque regularization during training allows the controller to run up to 30 minutes continuously†106

• Unsafe Configurations: In the simulator, the controller is likely to twist the legs to achieve107

higher precision with less movements, but this makes it unsafe to deploy in the real world. We108

added reward terms to regularize the body to a more balanced pose, so that the center of mass109

can roughly stay in the center.110

3 Training111

3.1 Manipulation Policy112

In this section, we report hyperparameters used for training our manipulation diffusion policy. Visual113

observation and proprioception horizon means how many history image and robot states (with 0.1s114

interval) are used as input to the policy. Output Steps means the action length of the diffusion policy115

output. Execution Steps and Execution Frequency indicate how many steps of the diffusion policy output116

is actually executed in the real-world robot. To enable more stable end-effector trajectory updates, we117

add linear interpolation between the executed trajectory and the newly-updated trajectory for a duration118

of “Trajectory Update Smoothing Time”.119

3.2 Whole-Body Dynamic Tossing120

We increased the inference and execution steps for a smoother toss, since the trajectory is less likely to121

update during the dynamic toss. We also increased the execution frequency to get farther toss. Please122

refer to Table 1 for detailed parameters.

Hyperparameters Values
Training Set Trajectory Number 500
Diffusion Policy Visual Observation Horizon 2
Diffusion Policy Proprioception Horizon 4
Diffusion Policy Output Steps 64
Diffusion Policy Execution Steps 40
Diffusion Policy Execution Frequency 12Hz
Trajectory Update Smoothing Time 0.1s

Table 1: Hyper parameter set of the dynamic tossing task.

123

3.3 End-effector Reaching Leads to Robust Whole-body Pushing124

Since the trajectory motion is much simpler, we collected fewer human demonstrations for the diffusion125

policy. We increased the “Trajectory Update Smoothing Time” to prevent heavy shakes due to the126

trajectory update. Please refer to Table 1 for detailed parameters.127

3.4 Plug-and-play Cross-Embodiment Manipulation Policies128

As the UMI cup rearrange task requires much higher precision but is quasi-static, we decreased the129

execution frequency for better stability. As mentioned in the main text, we directly use the publicly released130

checkpoint from Chi et al.. We did not collect any extra data for this task.131

3.5 In-the-wild Cup Rearrangement Evaluation132

We evaluated the whole-body controller on the cup rearrangement task in the wild. We tested it in some133

challenging scenarios including unstable terrain (grass, dirt, collapsible table), direct sunlight which made134

†Please check out evaluation videos on https://corlpaper.github.io, which shows our controller running continuously
for 20-30 minutes.

4

https://github.com/real-stanford/universal_manipulation_interface
https://github.com/real-stanford/universal_manipulation_interface
https://github.com/real-stanford/universal_manipulation_interface
https://corlpaper.github.io/

Hyperparameters Values
Training Set Trajectory Number 25
Diffusion Policy Visual Observation Horizon 2
Diffusion Policy Proprioception Horizon 2
Diffusion Policy Output Steps 32
Diffusion Policy Execution Steps 10
Diffusion Policy Execution Frequency 10Hz
Trajectory Update Smoothing Time 0.3s

Table 2: Hyper parameter set of the whole-body pushing task.

Hyperparameters Values
Training Set Trajectory Number 1400
Diffusion Policy Visual Observation Horizon 1
Diffusion Policy Proprioception Horizon 2
Diffusion Policy Output Steps 16
Diffusion Policy Execution Steps 8
Diffusion Policy Execution Frequency 5Hz
Trajectory Update Smoothing Time 0.1s

Table 3: Hyper parameter set of the UMI cup rearrangement task.

the robot easily overheated, and unseen tables and cups to show the generalizability of the diffusion policy.135

Please checkout the supplementary video for more details.136

3.6 Reward Terms137

During RL training of the whole body controller, we include the following reward terms:138

• Joint Limit, Joint Acceleration, Joint Torque, Root Height, Collision, Action Rate: We use139

the same definition as prior works [2, 4].140

• Body-EE Alignment: We regularize joint 0 and joint 3 of the arm (the joints that mostly affect141

the yaw angle of the gripper) to stay close to their initial pose. This allows the arm to be aligned142

with the body.143

• Even Mass Distribution: We regularize the standard deviation of the force of the four feet to144

be lower. The motors are less likely to overheat if the body mass is distributed more evenly on145

the four legs.146

• Feet Under Hips: We regularize the feet’s planar position to be close to that of their respective147

hips, for all four legs. This regularization improves the stability of the standing pose.148

• Pose Reaching: We minimize the position error ϵpos and orientation error ϵorn to the target pose149

using an unified reward function: exp(−(
ϵpos

σpos
+ ϵorn

σorn
)). We apply σ curriculum to the reward func-150

tions: as the error get smaller, we decrease σ for a more peaky reward function, which encourages151

the controller to further reduce reaching error. σpos is set to [2,0.1,0.5,0.1,0.05,0.01,0.005]152

when the position error is smaller than [100,1.0,0.8,0.5,0.4,0.2,0.1] respectively; σorn is set to153

[8.0,4.0,2.0,1.0,0.5] when the orientation error is smaller than [100.0,1.0,0.8,0.6,0.2] respectively.154

4 Evaluation155

4.1 Real World Tossing156

To achieve a pre-grasped state during tossing evaluations, we handed the policy the tennis ball. We count157

episodes where the robot falls during the toss as a failure. Finally, we measure the distance from the158

5

Name Weight
Joint Limit -10
Joint Acceleration -2.5e-7
Joint Torque -1e-4
Root Height -1
Collision -1
Action Rate -0.01
Body-EE Alignment -1
Even Mass Distribution -1
Feet Under Hips -1
Pose Reaching 4

Table 4: Reward terms.

location where the ball first lands to the center of the bin, and report a success if it lands within 40cm159

of the bin’s center.160

4.2 Simulation Ablations161

In each episode, a random grasp and toss end-effector trajectory is sampled from our dataset (§ 3.2),162

the robot is uniformly randomly initialized in the range of [-5.0cm,5.0cm] for x and y position, and163

[-0.1rad,0.1rad] for z orientation, and its initial joint positions are sampled uniformly within 5% of that164

joints’ full range, centered around the default joint configuration. Position and orientation errors are165

averaged over all timesteps, while survival is 1 only if the policy lasts for 17 seconds without a terminal166

collision. Here, a terminal collision is defined as any robot part contact that is not the robot’s feet or gripper.167

Similar to training, evaluation includes a pose latency of 10ms and the full range of domain randomization168

reported in Table 5.

Hyperparameters Values
Init XY Position [-0.1m,0.1m]
Init Z Orientation [-0.05rad,0.05rad]
Joint Damping [0.01,0.5]
Joint Friction [0.0,0.05]
Geometry Friction [0.1,8.0]
Mass Randomization [-0.25,0.25]
Center of Mass Randomization [-0.1m,0.1m]

Table 5: Domain Randomization Hyperparameters.

169

All approaches were trained for 4000 iterations, and the performance at checkpoint 4000 is reported.170

Power usage report is electrical power usage based on real hardware’s voltages, manufacturers’ reported171

torque constants, and the simulation’s motor torques.172

5 Misc.173

Cost of the system. We report the cost of our entire robot system based on the market price in Table 6,174

which is roughly 1/4 of other quadruped manipulation systems in [5, 6]175

References176

[1] A. Kumar, Z. Fu, D. Pathak, and J. Malik. Rma: Rapid motor adaptation for legged robots. arXiv177

preprint arXiv:2107.04034, 2021.178

[2] Z. Fu, X. Cheng, and D. Pathak. Deep whole-body control: Learning a unified policy for manipulation179

and locomotion. In Conference on Robot Learning, pages 138–149. PMLR, 2023.180

6

Item Cost($)

Unitree Go2 Edu Plus 12,500.00
ARX5 Robot Arm 10,000.00
GoPro Hero9 210.99
GoPro Media Mod 79.99
GoPro Max Lens Mod 68.69
iPhone 15 Pro 999.00
Elgato Capture Card 147.34

Total 24,006.01

Table 6: System Cost.

[3] C. Chi, Z. Xu, C. Pan, E. Cousineau, B. Burchfiel, S. Feng, R. Tedrake, and S. Song. Universal181

manipulation interface: In-the-wild robot teaching without in-the-wild robots. In Proceedings of182

Robotics: Science and Systems (RSS), 2024.183

[4] N. Rudin, D. Hoeller, P. Reist, and M. Hutter. Learning to walk in minutes using massively parallel184

deep reinforcement learning. In Conference on Robot Learning, pages 91–100. PMLR, 2022.185

[5] M. Liu, Z. Chen, X. Cheng, Y. Ji, R. Yang, and X. Wang. Visual whole-body control for legged186

loco-manipulation. arXiv preprint arXiv:2403.16967, 2024.187

[6] T. Portela, G. B. Margolis, Y. Ji, and P. Agrawal. Learning force control for legged manipulation.188

arXiv preprint arXiv:2405.01402, 2024.189

7

	Things that did not work
	Privileged policy distillation and observation history.
	Precise grasping for tossing.
	System Reliability for Fully-untethered Deployment.
	Velocity integration

	Deployment
	iPhone placement
	Robot URDF
	Latency
	Safety

	Training
	Manipulation Policy
	Whole-Body Dynamic Tossing
	End-effector Reaching Leads to Robust Whole-body Pushing
	Plug-and-play Cross-Embodiment Manipulation Policies
	In-the-wild Cup Rearrangement Evaluation
	Reward Terms

	Evaluation
	Real World Tossing
	Simulation Ablations

	Misc.

