
A EXPERIMENT DETAILS

A.1 2D PLOTS

In Figures 1 and 2, we plot the estimated variational objective, J , as a function of two dimensions of
the policy mean, µ. To create these plots, we first perform policy optimization (direct amortization
in Figure 1 and iterative amortization in Figure 2), estimating the policy mean and variance. This
is performed using on-policy trajectories from evaluation episodes (for a direct agent in Figure 1
and an iterative agent in Figure 2). While holding all other dimensions of the policy constant, we
then estimate the variational objective while varying two dimensions of the mean (1 & 3 in Figure
1 and 2 & 6 in Figure 2). Iterative amortization is additionally performed while preventing any
updates to the constant dimensions. Even in this restricted setting, iterative amortization is capable
of optimizing the policy. Additional 2D plots comparing direct vs. iterative amortization on other
environments are shown in Figure B.3, where we see similar trends.

A.2 VALUE BIAS ESTIMATION

We estimate the bias in the Q-value estimator using a similar procedure as Fujimoto et al. (2018),
comparing the estimate of the Q-networks (Q̂π) with a Monte Carlo estimate of the future objective
in the actual environment, Qπ , using a set of state-action pairs. To enable comparison across setups,
we collect 100 state-action pairs using a uniform random policy, then evaluate the estimator’s bias,
Es,a

[
Q̂π −Qπ

]
, throughout training. To obtain the Monte Carlo estimate ofQπ , we use 100 action

samples, which are propagated through all future time steps. The result is discounted using the same
discounting factor as used during training, γ = 0.99, as well as the same Lagrange multiplier, α.
Figure 3 shows the mean and ± standard deviation across the 100 state-action pairs.

A.3 AMORTIZATION GAP ESTIMATION

Calculating the amortization gap in the RL setting is challenging, as properly evaluating the varia-
tional objective, J , involves unrolling the environment. During training, the objective is estimated
using a set of Q-networks and/or a learned model. However, finding the optimal policy distribution,
π̂, under these learned value estimates may not accurately reflect the amortization gap, as the value
estimator likely contains positive bias (Figure 3). Because the value estimator is typically locally
accurate near the current policy, we estimate the amortization gap by performing gradient ascent on
J w.r.t. the policy distribution parameters, λ, initializing from the amortized estimate (from πφ).
This is a form semi-amortized variational inference (Hjelm et al., 2016; Krishnan et al., 2018; Kim
et al., 2018). We use the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 5× 10−3 for
100 gradient steps, which we found consistently converged. This results in the estimated optimized
π̂. We estimate the gap using 100 on-policy states, calculating J (θ, π̂)− J (θ, π), i.e. the improve-
ment in the objective after gradient-based optimization. Figure 6 shows the resulting mean and ±
standard deviation. We also run iterative amortized policy optimization for an additional 5 iterations
during this evaluation, empirically yielding an additional decrease in the estimated amortization gap.

A.4 HYPERPARAMETERS

Our setup follows that of soft actor-critic (SAC) (Haarnoja et al., 2018a;b), using a uniform action
prior, i.e. entropy regularization, and two Q-networks (Fujimoto et al., 2018). Off-policy training is
performed using a replay buffer (Lin, 1992; Mnih et al., 2013). Training hyperparameters are given
in Table 6.

Temperature Following Haarnoja et al. (2018b), we adjust the temperature, α, to maintain a spec-
ified entropy constraint, εα = |A|, where |A| is the size of the action space, i.e. the dimensionality.

Policy We use the same network architecture (number of layers, units/layer, non-linearity) for both
direct and iterative amortized policy optimizers (Table 2). Each policy network results in Gaussian
distribution parameters, and we apply a tanh transform to ensure a ∈ [−1, 1] (Haarnoja et al.,
2018a). In the case of a Gaussian, the distribution parameters are λ = [µ,σ]. The inputs and

1

Table 1: Policy Inputs & Outputs.

Inputs Outputs

Direct s λ
Iterative s, λ,∇λJ δ, ω

Table 2: Policy Networks.

Hyperparameter Value

Number of Layers 2
Number of Units / Layer 256
Non-linearity ReLU

25

�
<latexit sha1_base64="HlSpur9H0Rx2BbfN6EKhfq3sCbs=">AAACgXicdVHLSgMxFE2nPmp9tbp0EywF3ZSZKii4KbpxWaEv6Awlk0nb0GQSkoxYhv6GW/0t/8ZMO4s+9ELgcO65uYdzQ8moNq77U3CKe/sHh6Wj8vHJ6dl5pXrR0yJRmHSxYEINQqQJozHpGmoYGUhFEA8Z6Yezl6zffydKUxF3zFySgKNJTMcUI2Mp3w956jMrj9BiVKm5DXdZcBd4OaiBvNqjamHkRwInnMQGM6T10HOlCVKkDMWMLMp+oolEeIYmZGhhjDjRQbo0vYB1y0RwLJR9sYFLdn0iRVzrOQ+tkiMz1du9jPyrN0zM+DFIaSwTQ2K8WjROGDQCZgnAiCqCDZtbgLCi1ivEU6QQNjanjZ86XpBm5rJvNtaHfFGuw3UmsyEN/9jUITYRdsOU/0NTvDsgNUlsqiKyAdqTeNsH2AW9ZsO7azTf7mut5/w4JXAFrsEN8MADaIFX0AZdgIEEn+ALfDtF59ZxneZK6hTymUuwUc7TL+fPxtw=</latexit>

a
<latexit sha1_base64="1ARK94gDpesgNyQQm3LsxdH0V/M=">AAACf3icdVHLTgIxFO2ML8QX6NJNIyG6IjNoou6IblxiwivChHRKBxr6mLQdI5nwF271v/wbO8CCAb1Jk5NzH+f03jBmVBvP+3Hcnd29/YPCYfHo+OT0rFQ+72iZKEzaWDKpeiHShFFB2oYaRnqxIoiHjHTD6XOW774TpakULTOLScDRWNCIYmQs9TbgyEzCKEXzYani1bxFwG3gr0AFrKI5LDvDwUjihBNhMENa930vNkGKlKGYkXlxkGgSIzxFY9K3UCBOdJAuLM9h1TIjGEllnzBwwa53pIhrPeOhrcws6s1cRv6V6ycmeghSKuLEEIGXQlHCoJEw+z8cUUWwYTMLEFbUeoV4ghTCxm4pN6nlB2lmLhuTkw/5vFiF60xmIzb8I1+H2FhahQn/h6Z4uyHWJLFblSO7QHsSf/MA26BTr/m3tfrrXaXxtDpOAVyCK3ADfHAPGuAFNEEbYCDAJ/gC367jXrs111uWus6q5wLkwn38BRVnxg8=</latexit>

Direct
<latexit sha1_base64="NHTlNGKuf9jvAAkt9p+DKT273ZM=">AAAChnicdVHLTgIxFC3jC/EB6NJNIzFxRWZ8BJdEXbjERMAEJqRTLtDYTiftHQOZ8CVu9aP8GzvIQkRv0uTk3NfpuVEihUXf/yx4G5tb2zvF3dLe/sFhuVI96lidGg5trqU2zxGzIEUMbRQo4TkxwFQkoRu93OX57isYK3T8hLMEQsXGsRgJztBRg0q5jzBFo7J7YYDjfFCp+XV/EXQdBEtQI8toDaqFQX+oeaogRi6Ztb3ATzDMmEHBJcxL/dRCwvgLG0PPwZgpsGG2UD6nZ44Z0pE27sVIF+zPjowpa2cqcpWK4cT+zuXkX7leiqObMBNxkiLE/HvRKJUUNc1toMPFd+XMAcaNcFopnzDDODqzViY9BWGWi8vHrKyP1Lx0Rn8yuYwE1XS1jsmxdhsm6h9a8PWGxELqXNVDZ6A7SfD7AOugc1EPLusXj1e15u3yOEVyQk7JOQlIgzTJA2mRNuEkJW/knXx4Ra/uXXuN71KvsOw5JivhNb8A8zLIng==</latexit>

�
<latexit sha1_base64="lxiql3JCVAJFF+6oZSBqr8bbMtc=">AAACeXicdVHLTgIxFC3jC/EFunRTJSTEBZkBE10S3bjEhFcCE9IphWlop03bMZIJv+BWf81vcWMHWDCgN2lycu7jnN4bSEa1cd3vnLO3f3B4lD8unJyenV8US5ddLWKFSQcLJlQ/QJowGpGOoYaRvlQE8YCRXjB7TvO9N6I0FVHbzCXxOZpGdEIxMik1lCEdFctuzV0G3AXeGpTBOlqjUm40HAsccxIZzJDWA8+Vxk+QMhQzsigMY00kwjM0JQMLI8SJ9pOl2QWsWGYMJ0LZFxm4ZDc7EsS1nvPAVnJkQr2dS8m/coPYTB79hEYyNiTCK6FJzKARMP05HFNFsGFzCxBW1HqFOEQKYWP3k5nU9vwkNZeOycgHfFGowE0mtSENf8/WITYVViHk/9AU7zZITWK7VTG2C7Qn8bYPsAu69ZrXqNVf78vNp/Vx8uAa3IIq8MADaIIX0AIdgEEIPsAn+Mr9ODdO1blblTq5dc8VyITT+AUJg8RI</latexit>

✓
<latexit sha1_base64="y9Nz2T+fmSMi/3DG5f53pxwGB6k=">AAACe3icdVHLSgMxFE3HV61vXboJFkFEyowPdCm6cVnBPqAdSia9baPJZEjuiGXoP7jVP/NjBDO1iz70QuBw7uOc3BslUlj0/a+Ct7S8srpWXC9tbG5t7+zu7detTg2HGtdSm2bELEgRQw0FSmgmBpiKJDSil/s833gFY4WOn3CYQKhYPxY9wRk6qt7GASDr7Jb9ij8OugiCCSiTSVQ7e4VOu6t5qiBGLpm1rcBPMMyYQcEljErt1ELC+AvrQ8vBmCmwYTa2O6LHjunSnjbuxUjH7HRHxpS1QxW5SsVwYOdzOflXrpVi7ybMRJykCDH/FeqlkqKm+d9pVxjgKIcOMG6E80r5gBnG0W1oZtJTEGa5uXzMjHykRqVjOs3kNhJUb7N1TPa1Uxiof2jBFxsSC6nbqu66BbqTBPMHWAT180pwUTl/vCzf3k2OUySH5IickIBck1vyQKqkRjh5Ju/kg3wWvr2yd+qd/ZZ6hUnPAZkJ7+oHEUPFMQ==</latexit>

<latexit sha1_base64="7KLaqyOkCCloZ6VQCHyJu7lRLrY=">AAACeXicdVHLTgIxFO2ML8QX6NJNlZAQF2QGTHRJdOMSE14JTEinFGhop03bMZIJv+BWf81vcWMHZsFDb9Lk5NzHOb03lIxq43nfjru3f3B4lDvOn5yenV8UipcdLWKFSRsLJlQvRJowGpG2oYaRnlQE8ZCRbjh7TvPdN6I0FVHLzCUJOJpEdEwxMik1kJoOCyWv6i0D7gI/AyWQRXNYdIaDkcAxJ5HBDGnd9z1pggQpQzEji/wg1kQiPEMT0rcwQpzoIFmaXcCyZUZwLJR9kYFLdr0jQVzrOQ9tJUdmqrdzKflXrh+b8WOQ0EjGhkR4JTSOGTQCpj+HI6oINmxuAcKKWq8QT5FC2Nj9bExq+UGSmkvHbMiHfJEvw3UmtSENf9+sQ2wirMKU/0NTvNsgNYntVsXILtCexN8+wC7o1Kp+vVp7vS81nrLj5MA1uAUV4IMH0AAvoAnaAIMp+ACf4Mv5cW/cinu3KnWdrOcKbIRb/wUgVMRT</latexit>

r�J
<latexit sha1_base64="5JfT0SmUyNEjLkgtHj+pAbvQ0cE=">AAACkHicdVHLSgMxFE3Hd31VXYmbYBFclRkVdOdrI64UrAqdYbiTpm0wL5KMWIbBr3Gr3+PfmKldWKsXAodzXyfnZpoz68LwsxbMzM7NLywu1ZdXVtfWGxub91blhtA2UVyZxwws5UzStmOO00dtKIiM04fs6bLKPzxTY5mSd26oaSKgL1mPEXCeShvbsYSMQ1rEesBKHAtwAwK8uC7TRjNshaPA0yAagyYax026UUvjriK5oNIRDtZ2olC7pADjGOG0rMe5pRrIE/Rpx0MJgtqkGP2hxHue6eKeMv5Jh0fsz44ChLVDkfnKSqP9navIv3Kd3PVOkoJJnTsqyfeiXs6xU7gyBHeZocTxoQdADPNaMRmAAeK8bROT7qKkqMRVYybWZ6Ks7+GfTCVDO/EyWQe8r/yGgfiHZmS6QVuae1dV1xvoTxL9PsA0uD9oRYetg9uj5tnF+DiLaAfton0UoWN0hq7QDWojgl7RG3pHH8FmcBKcBuffpUFt3LOFJiK4/gIdPMyV</latexit>

(a) Direct Amortization
23

�
<latexit sha1_base64="HlSpur9H0Rx2BbfN6EKhfq3sCbs=">AAACgXicdVHLSgMxFE2nPmp9tbp0EywF3ZSZKii4KbpxWaEv6Awlk0nb0GQSkoxYhv6GW/0t/8ZMO4s+9ELgcO65uYdzQ8moNq77U3CKe/sHh6Wj8vHJ6dl5pXrR0yJRmHSxYEINQqQJozHpGmoYGUhFEA8Z6Yezl6zffydKUxF3zFySgKNJTMcUI2Mp3w956jMrj9BiVKm5DXdZcBd4OaiBvNqjamHkRwInnMQGM6T10HOlCVKkDMWMLMp+oolEeIYmZGhhjDjRQbo0vYB1y0RwLJR9sYFLdn0iRVzrOQ+tkiMz1du9jPyrN0zM+DFIaSwTQ2K8WjROGDQCZgnAiCqCDZtbgLCi1ivEU6QQNjanjZ86XpBm5rJvNtaHfFGuw3UmsyEN/9jUITYRdsOU/0NTvDsgNUlsqiKyAdqTeNsH2AW9ZsO7azTf7mut5/w4JXAFrsEN8MADaIFX0AZdgIEEn+ALfDtF59ZxneZK6hTymUuwUc7TL+fPxtw=</latexit>

a
<latexit sha1_base64="1ARK94gDpesgNyQQm3LsxdH0V/M=">AAACf3icdVHLTgIxFO2ML8QX6NJNIyG6IjNoou6IblxiwivChHRKBxr6mLQdI5nwF271v/wbO8CCAb1Jk5NzH+f03jBmVBvP+3Hcnd29/YPCYfHo+OT0rFQ+72iZKEzaWDKpeiHShFFB2oYaRnqxIoiHjHTD6XOW774TpakULTOLScDRWNCIYmQs9TbgyEzCKEXzYani1bxFwG3gr0AFrKI5LDvDwUjihBNhMENa930vNkGKlKGYkXlxkGgSIzxFY9K3UCBOdJAuLM9h1TIjGEllnzBwwa53pIhrPeOhrcws6s1cRv6V6ycmeghSKuLEEIGXQlHCoJEw+z8cUUWwYTMLEFbUeoV4ghTCxm4pN6nlB2lmLhuTkw/5vFiF60xmIzb8I1+H2FhahQn/h6Z4uyHWJLFblSO7QHsSf/MA26BTr/m3tfrrXaXxtDpOAVyCK3ADfHAPGuAFNEEbYCDAJ/gC367jXrs111uWus6q5wLkwn38BRVnxg8=</latexit>

Iterative
<latexit sha1_base64="su8BrL+95YX6wSbmN0WLJ+hC4sU=">AAACiXicdVHLSgMxFE3Hd+uj6tJNsAiuyowKiivRje4U+hDaoWTS2zY0mQzJHWkZ5lfc6i/5N2ZqF7bVCxcO574O50aJFBZ9/6vkra1vbG5t75Qru3v7B9XDo5bVqeHQ5Fpq8xoxC1LE0ESBEl4TA0xFEtrR+KGot9/AWKHjBk4TCBUbxmIgOENH9apHXYQJGpU9IRjHvUHeq9b8uj8LugqCOaiReTz3Dku9bl/zVEGMXDJrO4GfYJgxg4JLyMvd1ELC+JgNoeNgzBTYMJuJz+mZY/p0oI3LGOmM/T2RMWXtVEWuUzEc2eVaQf5V66Q4uAkzEScpQsx/Dg1SSVHTwgnaFwY4yqkDjBvhtFI+YoZx58TipkYQZoW4Ys3C+Ujl5TP6mylkJKgmi31MDrW7MFL/0IKvDiQWUueq7jsD3UuC5QesgtZFPbisX7xc1e7u58/ZJifklJyTgFyTO/JInkmTcDIh7+SDfHoVL/BuvNufVq80nzkmC+E9fAM0u8oO</latexit>

�
<latexit sha1_base64="lxiql3JCVAJFF+6oZSBqr8bbMtc=">AAACeXicdVHLTgIxFC3jC/EFunRTJSTEBZkBE10S3bjEhFcCE9IphWlop03bMZIJv+BWf81vcWMHWDCgN2lycu7jnN4bSEa1cd3vnLO3f3B4lD8unJyenV8US5ddLWKFSQcLJlQ/QJowGpGOoYaRvlQE8YCRXjB7TvO9N6I0FVHbzCXxOZpGdEIxMik1lCEdFctuzV0G3AXeGpTBOlqjUm40HAsccxIZzJDWA8+Vxk+QMhQzsigMY00kwjM0JQMLI8SJ9pOl2QWsWGYMJ0LZFxm4ZDc7EsS1nvPAVnJkQr2dS8m/coPYTB79hEYyNiTCK6FJzKARMP05HFNFsGFzCxBW1HqFOEQKYWP3k5nU9vwkNZeOycgHfFGowE0mtSENf8/WITYVViHk/9AU7zZITWK7VTG2C7Qn8bYPsAu69ZrXqNVf78vNp/Vx8uAa3IIq8MADaIIX0AIdgEEIPsAn+Mr9ODdO1blblTq5dc8VyITT+AUJg8RI</latexit>

✓
<latexit sha1_base64="y9Nz2T+fmSMi/3DG5f53pxwGB6k=">AAACe3icdVHLSgMxFE3HV61vXboJFkFEyowPdCm6cVnBPqAdSia9baPJZEjuiGXoP7jVP/NjBDO1iz70QuBw7uOc3BslUlj0/a+Ct7S8srpWXC9tbG5t7+zu7detTg2HGtdSm2bELEgRQw0FSmgmBpiKJDSil/s833gFY4WOn3CYQKhYPxY9wRk6qt7GASDr7Jb9ij8OugiCCSiTSVQ7e4VOu6t5qiBGLpm1rcBPMMyYQcEljErt1ELC+AvrQ8vBmCmwYTa2O6LHjunSnjbuxUjH7HRHxpS1QxW5SsVwYOdzOflXrpVi7ybMRJykCDH/FeqlkqKm+d9pVxjgKIcOMG6E80r5gBnG0W1oZtJTEGa5uXzMjHykRqVjOs3kNhJUb7N1TPa1Uxiof2jBFxsSC6nbqu66BbqTBPMHWAT180pwUTl/vCzf3k2OUySH5IickIBck1vyQKqkRjh5Ju/kg3wWvr2yd+qd/ZZ6hUnPAZkJ7+oHEUPFMQ==</latexit>

<latexit sha1_base64="7KLaqyOkCCloZ6VQCHyJu7lRLrY=">AAACeXicdVHLTgIxFO2ML8QX6NJNlZAQF2QGTHRJdOMSE14JTEinFGhop03bMZIJv+BWf81vcWMHZsFDb9Lk5NzHOb03lIxq43nfjru3f3B4lDvOn5yenV8UipcdLWKFSRsLJlQvRJowGpG2oYaRnlQE8ZCRbjh7TvPdN6I0FVHLzCUJOJpEdEwxMik1kJoOCyWv6i0D7gI/AyWQRXNYdIaDkcAxJ5HBDGnd9z1pggQpQzEji/wg1kQiPEMT0rcwQpzoIFmaXcCyZUZwLJR9kYFLdr0jQVzrOQ9tJUdmqrdzKflXrh+b8WOQ0EjGhkR4JTSOGTQCpj+HI6oINmxuAcKKWq8QT5FC2Nj9bExq+UGSmkvHbMiHfJEvw3UmtSENf9+sQ2wirMKU/0NTvNsgNYntVsXILtCexN8+wC7o1Kp+vVp7vS81nrLj5MA1uAUV4IMH0AAvoAnaAIMp+ACf4Mv5cW/cinu3KnWdrOcKbIRb/wUgVMRT</latexit>

�
<latexit sha1_base64="HlSpur9H0Rx2BbfN6EKhfq3sCbs=">AAACgXicdVHLSgMxFE2nPmp9tbp0EywF3ZSZKii4KbpxWaEv6Awlk0nb0GQSkoxYhv6GW/0t/8ZMO4s+9ELgcO65uYdzQ8moNq77U3CKe/sHh6Wj8vHJ6dl5pXrR0yJRmHSxYEINQqQJozHpGmoYGUhFEA8Z6Yezl6zffydKUxF3zFySgKNJTMcUI2Mp3w956jMrj9BiVKm5DXdZcBd4OaiBvNqjamHkRwInnMQGM6T10HOlCVKkDMWMLMp+oolEeIYmZGhhjDjRQbo0vYB1y0RwLJR9sYFLdn0iRVzrOQ+tkiMz1du9jPyrN0zM+DFIaSwTQ2K8WjROGDQCZgnAiCqCDZtbgLCi1ivEU6QQNjanjZ86XpBm5rJvNtaHfFGuw3UmsyEN/9jUITYRdsOU/0NTvDsgNUlsqiKyAdqTeNsH2AW9ZsO7azTf7mut5/w4JXAFrsEN8MADaIFX0AZdgIEEn+ALfDtF59ZxneZK6hTymUuwUc7TL+fPxtw=</latexit>

r�J
<latexit sha1_base64="hof66M9L7XmhwaoSHnfKGcds21w=">AAACk3icdVFNS8NAEN3G7/pVFU96WCyCp5KooOBF1IMIgoJVoQlhstm2i/sRdjdiCbn4a7zqv/HfuKk9WKsDC48382beziQZZ8b6/mfNm5qemZ2bX6gvLi2vrDbW1u+NyjWhbaK40o8JGMqZpG3LLKePmaYgEk4fkqfzKv/wTLVhSt7ZQUYjAT3JuoyAdVTc2A4lJBziIuROlEKJQwG2T4AXV2XcaPotfxh4EgQj0ESjuInXanGYKpILKi3hYEwn8DMbFaAtI5yW9TA3NAPyBD3acVCCoCYqht8o8a5jUtxV2j1p8ZD9qShAGDMQiausPJrfuYr8K9fJbfc4KpjMcksl+R7UzTm2Clc7wSnTlFg+cACIZs4rJn3QQKzb3FinuyAqKnNVm7HxiSjru/gnU9nIrHgZrwPeU25CX/xDMzIpyAzN3VZV6hboThL8PsAkuN9vBQet/dvD5unZ6DjzaAvtoD0UoCN0ii7RDWojgl7RG3pHH96md+KdeRffpV5tpNlAY+FdfwEBCc3T</latexit>

r�J
<latexit sha1_base64="5JfT0SmUyNEjLkgtHj+pAbvQ0cE=">AAACkHicdVHLSgMxFE3Hd31VXYmbYBFclRkVdOdrI64UrAqdYbiTpm0wL5KMWIbBr3Gr3+PfmKldWKsXAodzXyfnZpoz68LwsxbMzM7NLywu1ZdXVtfWGxub91blhtA2UVyZxwws5UzStmOO00dtKIiM04fs6bLKPzxTY5mSd26oaSKgL1mPEXCeShvbsYSMQ1rEesBKHAtwAwK8uC7TRjNshaPA0yAagyYax026UUvjriK5oNIRDtZ2olC7pADjGOG0rMe5pRrIE/Rpx0MJgtqkGP2hxHue6eKeMv5Jh0fsz44ChLVDkfnKSqP9navIv3Kd3PVOkoJJnTsqyfeiXs6xU7gyBHeZocTxoQdADPNaMRmAAeK8bROT7qKkqMRVYybWZ6Ks7+GfTCVDO/EyWQe8r/yGgfiHZmS6QVuae1dV1xvoTxL9PsA0uD9oRYetg9uj5tnF+DiLaAfton0UoWN0hq7QDWojgl7RG3pHH8FmcBKcBuffpUFt3LOFJiK4/gIdPMyV</latexit>

(b) Iterative Amortization

Figure A.1: Amortized Optimizers. Diagrams of (a) direct and (b) iterative amortized policy op-
timization. As in Figure 1, larger circles represent probability distributions, and smaller red circles
represent terms in the objective. Red dotted arrows represent gradients. In addition to the state, st,
iterative amortization uses the current policy distribution estimate, λ, and the policy optimization
gradient, ∇λJ , to iteratively optimize J . Like direct amortization, the optimizer network parame-
ters, φ, are updated using∇φJ . This generally requires some form of stochastic gradient estimation
to differentiate through at ∼ π(at|st,O;λ).

outputs of each optimizer form are given in Table 1. Again, δ and ω are respectively the update
and gate of the iterative amortized optimizer (Eq. 11), each of which are defined for both µ and σ.
Following Marino et al. (2018b), we apply layer normalization (Ba et al., 2016) individually to each
of the inputs to iterative amortized optimizers. We initialize iterative amortization with µ = 0 and
σ = 1, however, these could be initialized from a learned action prior (Marino et al., 2018a).

Table 3: Q-value Network Architecture A.

Hyperparameter Value

Number of Layers 2
Number of Units / Layer 256
Non-linearity ReLU
Layer Normalization False
Connectivity Sequential

Table 4: Q-value Network Architecture B.

Hyperparameter Value

Number of Layers 3
Number of Units / Layer 512
Non-linearity ELU
Layer Normalization True
Connectivity Highway

Q-value We investigated two Q-value network architectures. Architecture A (Table 3) is the same
as that from Haarnoja et al. (2018a). Architecture B (Table 4) is a wider, deeper network with
highway connectivity (Srivastava et al., 2015), layer normalization (Ba et al., 2016), and ELU non-
linearities (Clevert et al., 2015). We initially compared each Q-value network architecture using
each policy optimizer on each environment, as shown in Figure A.2. The results in Figure 5 were
obtained using the better performing architecture in each case, given in Table 5. As in Fujimoto
et al. (2018), we use an ensemble of 2 separate Q-networks in each experiment.

Value Pessimism (β) As discussed in Section 3.2.2, the increased flexibility of iterative amortiza-
tion allows it to potentially exploit inaccurate value estimates. We increased the pessimism hyperpa-

2

Table 5: Q-value Network Architecture by Environment.

Hopper-v2 HalfCheetah-v2 Walker2d-v2 Ant-v2

Direct A B A B
Iterative A A B B

0 1 2 3
Million Steps

0

1000

2000

3000

C
u

m
u

la
ti

ve
R

ew
ar

d

(a) Hopper-v2

0 1 2 3
Million Steps

0

5000

10000

15000

C
u

m
u

la
ti

ve
R

ew
ar

d

direct (SAC) + A

direct (SAC) + B

iterative + A

iterative + B

(b) HalfCheetah-v2

0 1 2 3
Million Steps

0

2000

4000

6000

C
u

m
u

la
ti

ve
R

ew
ar

d

(c) Walker2d-v2

0 1 2 3
Million Steps

0

4000

8000

C
u

m
u

la
ti

ve
R

ew
ar

d

(d) Ant-v2

Figure A.2: Value Architecture Comparison. Plots show performance for 1 seed for each value
architecture (A or B) for each policy optimization technique (direct or iterative). Note: results for
iterative + B on Hopper-v2 were obtained with an overly pessimistic value estimate (β = 2.5
rather than β = 1.5) and are consequently worse.

rameter, β, to further penalize variance in the value estimate. Experiments with direct amortization
use the default β = 1 in all environments, as we did not find that increasing β helped in this setup.
For iterative amortization, we use β = 1.5 on Hopper-v2 and β = 2.5 on all other environments.
This is only applied during training; while collecting data in the environment, we use β = 1 to not
overly penalize exploration.

Table 6: Training Hyperparameters.

Hyperparameter Value

Discount Factor (γ) 0.99
Q-network Update Rate (τ) 5 · 10−3

Network Optimizer Adam
Learning Rate 3 · 10−4

Batch Size 256
Initial Random Steps 5 · 103

Replay Buffer Size 106

A.5 MODEL-BASED VALUE ESTIMATION

For model-based experiments, we use a single, deterministic model together with the ensemble of 2
Q-value networks (discussed above).

Model We use separate networks to estimate the state transition dynamics, penv(st+1|st,at), and
reward function, r(st,at). The network architecture is given in Table 7. Each network outputs
the mean of a Gaussian distribution; the standard deviation is a separate, learnable parameter. The
reward network directly outputs the mean estimate, whereas the state transition network outputs a
residual estimate, ∆st , yielding an updated mean estimate through:

µst+1
= st + ∆st .

Model Training The state transition and reward networks are both trained using maximum log-
likelihood training, using data examples from the replay buffer. Training is performed at the same
frequency as policy and Q-network training, using the same batch size (256) and network optimizer.
However, we perform 103 updates at the beginning of training, using the initial random steps, in
order to start with a reasonable model estimate.

3

Table 7: Model Network Architectures.

Hyperparameter Value

Number of Layers 2
Number of Units / Layer 256
Non-linearity Leaky ReLU
Layer Normalization True

Table 8: Model-Based Hyperparameters.

Hyperparameter Value

Rollout Horizon, h 2
Retrace λ 0.9
Pre-train Model Updates 103

Model-Based Value Targets True

Value Estimation To estimate Q-values, we combine short model rollouts with the model-free
estimates from theQ-networks. Specifically, we unroll the model and policy, obtaining state, reward,
and policy estimates at current and future time steps. We then apply the Q-value networks to these
future state-action estimates. Future rewards and value estimates are combined using the Retrace
estimator (Munos et al., 2016). Denoting the estimate from the Q-network as Q̂ψ(s,a) and the
reward estimate as r̂(s,a), we calculate the Q-value estimate at the current time step as

Q̂π(st,at) = Q̂ψ(st,at) + E

[
t+h∑
t′=t

γt
′−tλt

′−t
(
r̂(st′ ,at′) + γV̂ψ(st′+1)− Q̂ψ(st′ ,at′)

)]
, (1)

where λ is an exponential weighting factor, h is the rollout horizon, and the expectation is evaluated
under the model and policy. In the variational RL setting, the state-value, Vπ(s), is

Vπ(s) = Eπ
[
Qπ(s,a)− α log

π(a|s,O)

pθ(a|s)

]
. (2)

In Eq. 1, we approximate Vπ using the Q-network to approximate Qπ in Eq. 2, yielding V̂ψ(s).
Finally, to ensure consistency between the model and the Q-value networks, we use the model-
based estimate from Eq. 1 to provide target values for the Q-networks, as in Janner et al. (2019).

Future Policy Estimates Evaluating the expectation in Eq. 1 requires estimates of π at future
time steps. This is straightforward with direct amortization, which employs a feedforward policy,
however, with iterative amortization, this entails recursively applying an iterative optimization pro-
cedure. Alternatively, we could use the prior, pθ(a|s), at future time steps, but this does not apply in
the max-entropy setting, where the prior is uniform. For computational efficiency, we instead learn a
separate direct (amortized) policy for model-based rollouts. That is, with iterative amortization, we
create a separate direct network using the same hyperparameters from Table 2. This network distills
iterative amortization into a direct amortized optimizer, through the KL divergence, DKL(πit.||πdir.).
Rollout policy networks are common in model-based RL (Silver et al., 2016; Piché et al., 2019).

B ADDITIONAL RESULTS

B.1 IMPROVEMENT PER STEP

In Figure B.1, we plot the average improvement in the variational objective per step throughout
training, with each curve showing a different random seed. That is, each plot shows the aver-
age change in the variational objective after running 5 iterations of iterative amortized policy opti-
mization. With the exception of HalfCheetah-v2, the improvement remains relatively constant
throughout training and consistent across seeds.

B.2 COMPARISON WITH ITERATIVE OPTIMIZERS

Iterative amortized policy optimization obtains the accuracy benefits of iterative optimization while
retaining the efficiency benefits of amortization. In Section 4, we compared the accuracy of iterative
and direct amortization, seeing that iterative amortization yields reduced amortization gaps (Figure
6) and improved performance (Figure 5). In this section, we compare iterative amortization with
two popular iterative optimizers: Adam (Kingma & Ba, 2014), a gradient-based optimizer, and
cross-entropy method (CEM) (Rubinstein & Kroese, 2013), a gradient-free optimizer.

4

st+1|st,at
<latexit sha1_base64="tkdjquygFt20Ag7/+4aA35TlD1w=">AAACpXicdVHdSsMwFM7q35x/Uy+9CQ5RUEY7Bb0UvfFGmLBNYSslzdItmDQlORVH7Vv4NN7qS/g2pnPI5vRA4Dvf+c13wkRwA677WXIWFpeWV8qrlbX1jc2t6vZOx6hUU9amSij9EBLDBI9ZGzgI9pBoRmQo2H34eF3E75+YNlzFLRglzJdkEPOIUwKWCqr1niQwDKPM5EEGx16OX/AUBfjkxyXWDao1t+6ODc8DbwJqaGLNYLsU9PqKppLFQAUxpuu5CfgZ0cCpYHmllxqWEPpIBqxrYUwkM342/liODyzTx5HS9sWAx+x0RUakMSMZ2sxiSfM7VpB/xbopRBd+xuMkBRbT70FRKjAoXKiE+1wzCmJkAaGa210xHRJNKFgtZzq1PD8rlivazIwPZV45wNNMsUYC8nk2j4iBshOG8h+a0/mCxLDUqqr6VkB7Eu/3AeZBp1H3TuuNu7Pa5dXkOGW0h/bREfLQObpEN6iJ2oiiV/SG3tGHc+jcOi2n853qlCY1u2jGnOALKLDVDw==</latexit>

r(st,at)
<latexit sha1_base64="+REENMtM/GPJbjM16Lk6DYG31j8=">AAAClnicdVHLSgMxFE3Hd31V3QguDJZCBSkzKuhKRBFdVrC20A5DJs20oclkSO6IZejSr3GrH+PfmKkVrNULgXPPfebcMBHcgOt+FJy5+YXFpeWV4ura+sZmaWv70ahUU9agSijdColhgsesARwEayWaERkK1gwH13m8+cS04Sp+gGHCfEl6MY84JWCpoLSvcbUjCfTDKDOjAPAR/naJdQ+DUtmtuWPDs8CbgDKaWD3YKgSdrqKpZDFQQYxpe24CfkY0cCrYqNhJDUsIHZAea1sYE8mMn41/MsIVy3RxpLR9MeAx+7MiI9KYoQxtZr6l+R3Lyb9i7RSicz/jcZICi+nXoCgVGBTOZcFdrhkFMbSAUM3trpj2iSYUrHhTnR48P8uXy9tMjQ/lqFjBP5l8jQTk83QeET1lJ/TlPzSnswWJYalVVXWtgPYk3u8DzILH45p3Uju+Py1fXk2Os4z20AGqIg+doUt0h+qogSh6Qa/oDb07u86Fc+PcfqU6hUnNDpoyp/4JKLnOQA==</latexit>

Value
<latexit sha1_base64="xsaPA9+SbC1W4HDVCky8P36R+KA=">AAACg3icdVHJSgNBEO2Me9z16KUxCIIQZmJAL0LQi0cFs0Ayhp5OJWnsnh66ayRhyH941b/yb+yJOWTRgoLHq+3xKkqksOj73wVvbX1jc2t7p7i7t39weHR80rA6NRzqXEttWhGzIEUMdRQooZUYYCqS0IzeHvJ68x2MFTp+wXECoWKDWPQFZ+io1w7CCI3KGkymMOkelfyyPw26CoIZKJFZPHWPC91OT/NUQYxcMmvbgZ9gmDGDgkuYFDuphYTxNzaAtoMxU2DDbCp7Qi8c06N9bVzGSKfs/ETGlLVjFblOxXBol2s5+VetnWL/NsxEnKQIMf891E8lRU1zD2hPGOAoxw4wboTTSvmQGcbRObWw6SUIs1xcvmbhfKQmxQs6z+QyElSjxT4mB9pdGKp/aMFXBxILqXNV95yB7iXB8gNWQaNSDq7LledqqXY/e842OSPn5JIE5IbUyCN5InXCiSEf5JN8eRvelVfxqr+tXmE2c0oWwrv7AXyIyAU=</latexit>

Policy
<latexit sha1_base64="5aQC3cMmzOEqyO92bRBoz09Xz+4=">AAAChnicdVHJTgJBEG3GDXEB9eilIzHxRGZcgkeiF4+YAJrAhPQ0BXTsnp501xjIhC/xqh/l39iDHFi0kkpeXm0vr6JECou+/13wtrZ3dveK+6WDw6PjcuXktGN1aji0uZbavEbMghQxtFGghNfEAFORhJfo7TGvv7yDsULHLZwmECo2isVQcIaO6lfKPYQJGpU1tRR8OutXqn7NnwfdBMECVMkimv2TQr830DxVECOXzNpu4CcYZsyg4BJmpV5qIWH8jY2g62DMFNgwmyuf0UvHDOhQG5cx0jm7PJExZe1URa5TMRzb9VpO/lXrpji8DzMRJylCzH8PDVNJUdPcBjoQBjjKqQOMG+G0Uj5mhnF0Zq1sagVhlovL16ycj9SsdEmXmVxGgmqy2sfkSLsLY/UPLfjmQGIhda7qgTPQvSRYf8Am6FzXgpva9fNttfGweE6RnJMLckUCUicN8kSapE04SckH+SRfXtGreXde/bfVKyxmzshKeI0fHxrIsw==</latexit>

Model
<latexit sha1_base64="CzgMrFKkGOsa2Onmbgn1zXOc4xo=">AAACg3icdVHLSgMxFE3HV61vXboJFkEQykwt6EYQ3bgRKthWaMeSSW/bYDIZkjtiGeY/3Opf+TdmahfW6oULh3Nfh3uiRAqLvv9Z8paWV1bXyuuVjc2t7Z3dvf221anh0OJaavMYMQtSxNBCgRIeEwNMRRI60fNNUe+8gLFCxw84SSBUbBSLoeAMHfXUQ3hFo7I7PQCZ93erfs2fBl0EwQxUySya/b1SvzfQPFUQI5fM2m7gJxhmzKDgEvJKL7WQMP7MRtB1MGYKbJhNZef02DEDOtTGZYx0yv6cyJiydqIi16kYju3vWkH+VeumOLwIMxEnKULMvw8NU0lR0+IHdCAMcJQTBxg3wmmlfMwM4+g+NbfpIQizQlyxZu58pPLKMf3JFDISVK/zfUyOtLswVv/Qgi8OJBZS91VnSV5xlgS/DVgE7XotOKvV7xvVq+uZOWVySI7ICQnIObkit6RJWoQTQ97IO/nwVrxTr+41vlu90mzmgMyFd/kFY4rH+Q==</latexit>

Figure A.3: Model-Based Value Estimation. Diagram of model-based value estimation (shown
with direct amortization). For clarity, the diagram is shown without the policy prior network,
pθ(at|st). The model consists of a deterministic reward estimate, r(st,at), (green diamond) and
a state estimate, st+1|st,at, (orange diamond). The model is unrolled over a horizon, H , and the
Q-value is estimated using the Retrace estimator (Munos et al., 2016), given in Eq. 1.

0 1 2 3
Million Steps

0

5

10

∆
J

/
S

te
p

(a) Hopper-v2

0 1 2 3
Million Steps

0

50

100

∆
J

/
S

te
p

(b) HalfCheetah-v2

0 1 2 3
Million Steps

5

10

∆
J

/
S

te
p

(c) Walker2d-v2

0 1 2 3
Million Steps

0

10

20

∆
J

/
S

te
p

Seed 1

Seed 2

Seed 3

Seed 4

(d) Ant-v2

Figure B.1: Per-Step Improvement. Each plot shows the per-step improvement in the estimated
variational RL objective, J , throughout training resulting from iterative amortized policy optimiza-
tion. Each curve denotes a different random seed.

0 100 200
Opt. Iteration

270

272

274

J It. Amort.

Adam

CEM

(a) Hopper-v2

0 100 200
Opt. Iteration

460

480

500

J

(b) HalfCheetah-v2

0 100 200
Opt. Iteration

440

441

442

443

J

(c) Walker2d-v2

0 100 200
Opt. Iteration

555

560

565

J

(d) Ant-v2

Figure B.2: Comparison with Iterative Optimizers. Average estimated objective over policy opti-
mization iterations, comparing with Adam (Kingma & Ba, 2014) and CEM (Rubinstein & Kroese,
2013). These iterative optimizers require over an order of magnitude more iterations to reach com-
parable performance with iterative amortization, making them impractical in many applications.

To compare the accuracy and efficiency of the optimizers, we collect 100 states for each seed in each
environment from the model-free experiments in Section 4.2.2. For each optimizer, we optimize the
variational objective, J , starting from the same initialization. Tuning the step size, we found that
0.01 yielded the steepest improvement without diverging for both Adam and CEM. Gradients are
evaluated with 10 action samples. For CEM, we sample 100 actions and fit a Gaussian mean and
variance to the top 10 samples. This is comparable with QT-Opt (Kalashnikov et al., 2018), which
draws 64 samples and retains the top 6 samples.

5

−1.0 −0.5 0.0 0.5 1.0
tanh(µ3)

−1.0

−0.5

0.0

0.5

1.0

ta
n

h
(µ

5)

Direct Policy Network

Iterative Policy Network

Optimal Estimate

820
830

840

850

860

870

J

(a) HalfCheetah-v2

−1.0 −0.5 0.0 0.5 1.0
tanh(µ4)

−1.0

−0.5

0.0

0.5

1.0

ta
n

h
(µ

6)

Direct Policy Network

Iterative Policy Network

Optimal Estimate

368
369

370

371

372

373

374

J

(b) Walker2d-v2

−1.0 −0.5 0.0 0.5 1.0
tanh(µ6)

−1.0

−0.5

0.0

0.5

1.0

ta
n

h
(µ

7)

Direct Policy Network

Iterative Policy Network

Optimal Estimate

500
520

540

560

580

600

J

(c) Ant-v2

Figure B.3: 2D Optimization Plots. Each plot shows the optimization objective over two dimen-
sions of the policy mean, µ. This optimization surface contains the value function trained using a
direct amortized policy. The black diamond, denoting the estimate of this direct policy, is generally
near-optimal, but does not match the optimal estimate (red star). Iterative amortized optimizers are
capable of generalizing to these surfaces in each case, reaching optimal policy estimates.

The results, averaged across states and random seeds, are shown in Figure B.2. CEM (gradient-
free) is less efficient than Adam (gradient-based), which is unsurprising, especially considering that
Adam effectively approximates higher-order curvature through momentum terms. However, Adam
and CEM both require over an order of magnitude more iterations to reach comparable performance
with iterative amortization. While iterative amortized policy optimization does not always obtain
asymptotically optimal estimates, we note that these networks were trained with only 5 iterations,
yet continue to improve and remain stable far beyond this limit. Finally, comparing wall clock time
for each optimizer, iterative amortization is only roughly 1.25× slower than CEM and 1.15× slower
than Adam, making iterative amortization still substantially more efficient.

B.3 ADDITIONAL 2D OPTIMIZATION PLOTS

In Figure 1, we provided an example of the suboptimal optimization resulting from direct amortiza-
tion on the Hopper-v2 environment. We also demonstrated that iterative amortization is capable
of automatically generalizing to this optimization surface, outperforming the direct optimizer. To
show that this is a general phenomenon, in Figure B.3, we present examples of corresponding 2D
plots for each of the other environments considered in this paper. As before, we see that direct amor-
tization is near-optimal, but, with the exception of HalfCheetah-v2, does not match the optimal
estimate. In contrast, iterative amortization is able to find the optimal estimate, again, generalizing
the unseen optimization surfaces.

B.4 ADDITIONAL OPTIMIZATION & THE AMORTIZATION GAP

In Section 4, we compared the performance of direct and iterative amortization, as well as their
estimated amortization gaps. In this section, we provide additional results analyzing the relationship
between policy optimization and the performance in the actual environment. As we have emphasized
previously (see Section 3.2.2), this relationship is complex, as optimizing an inaccurate Q-value
estimate does not improve task performance.

The amortization gap quantifies the suboptimality in the objective, J , of the policy estimate. As
described in Section A.3, we estimate the optimized policy by performing additional gradient-based
optimization on the policy distribution parameters (mean and variance). However, when we deploy
this optimized policy for evaluation in the actual environment, as shown for direct amortization in
Figure B.4, we do not observe a noticeable difference in performance. Thus, while amortization
may find suboptimal policy estimates, we observe that the actual difference in the objective is either
too small or inaccurate to affect performance at test time.

Likewise, in Section 4.2.2, we observed that using additional amortized iterations during evaluation
further decreased the amortization gap for iterative amortization. However, when we deploy this

6

0 1 2 3
Million Steps

0

2000

4000

C
u

m
u

la
ti

ve
R

ew
ar

d

(a) Hopper-v2

0 1 2 3
Million Steps

0

5000

10000

15000

C
u

m
u

la
ti

ve
R

ew
ar

d

(b) HalfCheetah-v2

0 1 2 3
Million Steps

0

2000

4000

C
u

m
u

la
ti

ve
R

ew
ar

d

(c) Walker2d-v2

0 1 2 3
Million Steps

0

2500

5000

7500

C
u

m
u

la
ti

ve
R

ew
ar

d

direct

direct + gradient

(d) Ant-v2

Figure B.4: Test-Time Gradient-Based Optimization. Each plot compares the performance of
direct amortization vs. direct amortization with 50 additional gradient-based policy optimization
iterations. Note that this additional optimization is only performed at test time.

0 1 2 3
Million Steps

0

2000

4000

C
u

m
u

la
ti

ve
R

ew
ar

d

(a) Hopper-v2

0 1 2 3
Million Steps

0

5000

10000

15000

C
u

m
u

la
ti

ve
R

ew
ar

d

(b) HalfCheetah-v2

0 1 2 3
Million Steps

0

2000

4000

6000

C
u

m
u

la
ti

ve
R

ew
ar

d

(c) Walker2d-v2

0 1 2 3
Million Steps

0

2500

5000

7500

C
u

m
u

la
ti

ve
R

ew
ar

d

iterative, 5 iter.

iterative, 10 iter.

(d) Ant-v2

Figure B.5: Additional Amortized Test-Time Iterations. Each plot compares the performance of
iterative amortization (trained with 5 iterations) vs. the same agent with an additional 5 iterations at
evaluation. Performance remains similar or slightly worse.

0 1 2 3
Million Steps

0

5000

10000

15000

C
u

m
u

la
ti

ve
R

ew
ar

d

(a)

0 1 2 3
Million Steps

10−2

10−1

100

A
m

or
ti

za
ti

on
G

ap

1 iter.

2 iter.

5 iter.

(b)

Figure B.6: Iterations During Training. (a) Performance and (b) estimated amortization gap for
varying numbers of policy optimization iterations per step during training on HalfCheetah-v2.
Increasing the iterations improves performance and decreases the estimated amortization gap.

more fully optimized policy in the environment, as shown in Figure B.5, we do not generally observe
a corresponding performance improvement. In fact, on HalfCheetah-v2 and Walker2d-v2,
we observe a slight decrease in performance. This further highlights the fact that additional policy
optimization may exploit inaccurate Q-value estimates.

However, importantly, in Figures B.4 and B.5, the additional policy optimization is only performed
for evaluation. That is, the data collected with the more fully optimized policy is not used for training
and therefore cannot be used to correct the inaccurate value estimates. Thus, while more accurate
policy optimization, as quantified by the amortization gap, may not substantially affect evaluation
performance, it does play a significant role in improving training.

This was shown in Section 4.2.4, where we observed that training with additional iterative amortized
policy optimization iterations, i.e., a more flexible policy optimizer, generally results in improved
performance. By using a more accurate (or exploitative) policy for data collection, the agent is
able to better evaluate its Q-value estimates, which accrues over the course of training. This trend
is shown for HalfCheetah-v2 in Figure B.6, where we observed the largest difference in per-
formance across numbers of iterations. We generally observe that increasing the number of itera-
tions during training improves performance and decreases the amortization gap. Interestingly, when
performance dips for the agents trained with 2 iterations, there is a corresponding increase in the
amortization gap.

7

0 1 2 3
Million Steps

0.2

0.4

P
oi

cy
M

ea
n

L
2

D
is

ta
n

ce

(a) Hopper-v2

0 1 2 3
Million Steps

0.1

0.2

0.3

P
oi

cy
M

ea
n

L
2

D
is

ta
n

ce

(b) HalfCheetah-v2

0 1 2 3
Million Steps

0.2

0.4

P
oi

cy
M

ea
n

L
2

D
is

ta
n

ce

(c) Walker2d-v2

0 1 2 3
Million Steps

0.1

0.2

0.3

P
oi

cy
M

ea
n

L
2

D
is

ta
n

ce

(d) Ant-v2

Figure B.7: Distance Between Policy Means. Each plot shows the L2 distance between the esti-
mated policy means from two separate policy optimization runs at a given state. Results are averaged
over 100 on-policy states at each point in training and over experiment seeds.

B.5 MULTIPLE POLICY ESTIMATES

As discussed in Section 3.2.1, iterative amortization has the added benefit of potentially obtaining
multiple policy distribution estimates, due to stochasticity in the optimization procedure (as well
as initialization). In contrast, unless latent variables or normalizing flows are incorporated into the
policy, direct amortization is limited to a single policy estimate. To estimate the degree to which
iterative amortization obtains multiple policy estimates during training, we perform two separate
runs of policy optimization per state and evaluate the L2 distance between the means of these pol-
icy estimates (after applying the tanh). Note that in MuJoCo action spaces, which are bounded
to [−1, 1], the maximum distance is 2

√
|A|, where |A| is the size of the action space. We average

the policy mean distance over 100 states and all experiment seeds, with the results shown in Fig-
ure B.7. In all environments, we see that the average distance initially increases during training,
remaining relatively constant for Hopper-v2 and HalfCheetah-v2 and decreasing slightly for
Walker2d-v2 and Ant-v2. Note that the distance for direct amortization would be exactly 0
throughout. This indicates that iterative amortization does indeed obtain multiple policy estimates,
maintaining some portion of multi-estimate policies throughout training.

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International Conference on Machine Learning, pp. 1587–1596, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning, pp. 1856–1865, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018b.

Devon Hjelm, Ruslan R Salakhutdinov, Kyunghyun Cho, Nebojsa Jojic, Vince Calhoun, and Juny-
oung Chung. Iterative refinement of the approximate posterior for directed belief networks. In
Advances in Neural Information Processing Systems (NIPS), pp. 4691–4699, 2016.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. In Advances in Neural Information Processing Systems, pp. 12519–
12530, 2019.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Qt-opt: Scalable deep
reinforcement learning for vision-based robotic manipulation. arXiv preprint arXiv:1806.10293,
2018.

8

Yoon Kim, Sam Wiseman, Andrew C Miller, David Sontag, and Alexander M Rush. Semi-amortized
variational autoencoders. In Proceedings of the International Conference on Machine Learning
(ICML), 2018.

Durk P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Rahul G Krishnan, Dawen Liang, and Matthew Hoffman. On the challenges of learning with infer-
ence networks on sparse, high-dimensional data. In Proceedings of the International Conference
on Artificial Intelligence and Statistics (AISTATS), pp. 143–151, 2018.

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.
Machine learning, 8(3-4):293–321, 1992.

Joseph Marino, Milan Cvitkovic, and Yisong Yue. A general method for amortizing variational
filtering. In Advances in Neural Information Processing Systems, 2018a.

Joseph Marino, Yisong Yue, and Stephan Mandt. Iterative amortized inference. In International
Conference on Machine Learning, pp. 3403–3412, 2018b.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. In NIPS Deep Learn-
ing Workshop, 2013.

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient off-policy
reinforcement learning. In Advances in Neural Information Processing Systems, pp. 1054–1062,
2016.

Alexandre Piché, Valentin Thomas, Cyril Ibrahim, Yoshua Bengio, and Chris Pal. Probabilistic
planning with sequential monte carlo methods. In International Conference on Learning Repre-
sentations, 2019. URL https://openreview.net/forum?id=ByetGn0cYX.

Reuven Y Rubinstein and Dirk P Kroese. The cross-entropy method: a unified approach to combina-
torial optimization, Monte-Carlo simulation and machine learning. Springer Science & Business
Media, 2013.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Rupesh K Srivastava, Klaus Greff, and Jürgen Schmidhuber. Training very deep networks. In
Advances in neural information processing systems (NIPS), pp. 2377–2385, 2015.

9

https://openreview.net/forum?id=ByetGn0cYX

	Experiment Details
	2D Plots
	Value Bias Estimation
	Amortization Gap Estimation
	Hyperparameters
	Model-Based Value Estimation

	Additional Results
	Improvement per Step
	Comparison with Iterative Optimizers
	Additional 2D Optimization Plots
	Additional Optimization & the Amortization Gap
	Multiple Policy Estimates

