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A RELATED WORKS

In the following, we survey some previous works that are tightly related to ours. In particular, we
first describe works dealing with the online learning problem in MDPs, and, then, we discuss some
works studying the constrained version of the classical online learning problem.

Online Learning in MDPs. There is a considerable literature on online learning problems (Cesa-
Bianchi & Lugosi, 2006) in MDPs (see (Auer et al., 2008; Even-Dar et al., 2009; Neu et al., 2010)
for some initial results on the topic). In such settings, two types of feedback are usually investigated:
in the full-information feedback model, the entire loss function is observed after the learner’s choice,
while in the bandit feedback model, the learner only observes the loss due to the chosen action. Azar
et al. (2017) study the problem of optimal exploration in episodic MDPs with unknown transitions
and stochastic losses when the feedback is bandit. The authors present an algorithm whose regret
upper bound is Õ(

√
T ), thus matching the lower bound for this class of MDPs and improving the

previous result by Auer et al. (2008). Rosenberg & Mansour (2019b) study the online learning
problem in episodic MDPs with adversarial losses and unknown transitions when the feedback is full
information. The authors present an online algorithm exploiting entropic regularization and providing
a regret upper bound of Õ(

√
T ). The same setting is investigated by Rosenberg & Mansour (2019a)

when the feedback is bandit. In such a case, the authors provide a regret upper bound of the order of
Õ(T 3/4), which is improved by Jin et al. (2020) by providing an algorithm that achieves in the same
setting a regret upper bound of Õ(

√
T ).

Online Learning in CMDPs with Long-term Constraints. All the previous works on the topic
study settings in which constraints are selected stochastically. In particular, Zheng & Ratliff (2020)
deal with episodic CMDPs with stochastic losses and constraints, where the transition probabilities
are known and the feedback is bandit. The regret upper bound of their algorithm is of the order of
Õ(T 3/4), while the cumulative constraint violation is guaranteed to be below a threshold with a
given probability. Wei et al. (2018) deal with adversarial losses and stochastic constraints, assuming
the transition probabilities are known and the feedback is full information. The authors present
an algorithm that guarantees an upper bound of the order of Õ(

√
T ) on both regret and constraint

violation. Bai et al. (2020) provide the first algorithm that achieves sublinear regret when the
transition probabilities are unknown, assuming that the rewards are deterministic and the constraints
are stochastic with a particular structure. Efroni et al. (2020) propose two approaches to deal with
the exploration-exploitation dilemma in episodic CMDPs. These approaches guarantee sublinear
regret and constraint violation when transition probabilities, rewards, and constraints are unknown
and stochastic, while the feedback is bandit. Qiu et al. (2020) provide a primal-dual approach based
on optimism in the face of uncertainty. This work shows the effectiveness of such an approach when
dealing with episodic CMDPs with adversarial losses and stochastic constraints, achieving both
sublinear regret and constraint violation with full-information feedback. Wei et al. (2023) and Ding
& Lavaei (2023) consider the case in which rewards and constraints are non-stationary, assuming that
their variation is bounded. Thus, their results are not applicable to general adversarial settings.

Online Learning with Long-term Constraints. A central result is provided by Mannor et al.
(2009), who show that it is impossible to suffer from sublinear regret and sublinear constraint
violation when an adversary chooses losses and constraints. Liakopoulos et al. (2019) try to overcome
such an impossibility result by defining a new notion of regret. They study a class of online learning
problems with long-term budget constraints that can be chosen by an adversary. The learner’s regret
metric is modified by introducing the notion of a K-benchmark, i.e., a comparator that meets the
problem’s allotted budget over any window of length K. Castiglioni et al. (2022a;b) deal with the
problem of online learning with stochastic and adversarial losses, providing the first best-of-both-
worlds algorithm for online learning problems with long-term constraints.
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B EVENTS

Here we state the events that we use in the rest of the Appendix.

The following event states that the true occupancy measure space is always contained in the confidence
set:

Event E∆(δ): ∆(M) ⊆ ∩i∆(Pi).

In particular, under E∆(δ), we have that q◦, q∗ ∈ ∩i∆(Pi). E∆(δ) holds with probability at least
1− δ (See Lemma 5).

The following event states that the cumulative error after T episodes due to the difference between
qP,πt and qP

q̂t ,πt is small enough:

Event E q̂(δ):
∑T

t=1 ||qt − q̂t||1 ≤ Eqδ , where Eqδ := 4L|X|
√
2T ln

(
1
δ

)
+

6L|X|
√
2T |A| ln

(
T |X||A|

δ

)
≤ Õ(

√
T ).

In the next sections we will often condition on the intersection of the previous events:

Event E∆,q̂(δ): E q̂(δ) ∩ E∆(δ)

E∆,q̂(δ) holds with probability at least 1− 2δ (See Lemma 2).

The next event states that, in case the rewards are stochastic, the reward accumulated is not too far
from the mean reward accumulated.

Event Er
q∗(δ):

∣∣∣∑T
t=1 (rt − r)

⊤
q∗
∣∣∣ ≤ Erδ , where Erδ = L√

2

√
T ln

(
2
δ

)
≤ Õ

(√
T
)

Er
q∗(δ) holds with probability at least 1− δ (See Lemma 3).

For the stochastic constraint setting, we define the quantity EGt1,t2,δ := 2L
√
2(t2 − t1 + 1) ln

(
T 2

δ

)
and then two events bounding the cumulative difference between the dual utility with the average
constraints and that with the sampled constraints.

Event EG
q◦(δ): for all [t1..t2] ⊆ [1..T ],

∣∣∣∑t2
t=t1

λ⊤
t (G

⊤
t −G

⊤
)q◦
∣∣∣ ≤ λt1,t2EGt1,t2,δ

Event EG
q∗(δ): for all [t1..t2] ⊆ [1..T ],

∣∣∣∑t2
t=t1

λ⊤
t (G

⊤
t −G

⊤
)q∗
∣∣∣ ≤ λt1,t2EGt1,t2,δ

EG
q◦(δ), E

G
q∗(δ) each hold with probability at least 1− δ (See Lemma 4). We denote EGδ := EG1,T,δ

13



Under review as a conference paper at ICLR 2024

C ADDITIONAL DETAILS AND OMITTED PROOF OF SECTION 4

C.1 ALGORITHM

Algorithm 4 Upper Confidence Online Gradient Descent Policy Search (UC-O-GDPS)
Require: state space X , action space A, episode number T , and confidence parameter δ

1: Initialize epoch index i = 1 and confidence set P1 as the set of all transition functions. For all
k ∈ [0..L− 1] and all (x, a, x′) ∈ Xk ×A× Xk+1, initialize counters N0(x, a) = N1(x, a) =
M0 (x

′ | x, a) = M1 (x
′ | x, a) = 0 and occupancy measure

q̂1 (x, a, x
′) =

1

|Xk∥A| |Xk+1|

Initialize policy π1 = πq̂1

2: for t ∈ [T ] do
3: Execute policy πt for L steps and obtain trajectory xk, ak for k ∈ [0..L− 1] and loss ℓt
4: for k ∈ [0..L− 1] do
5: Update counters:

Ni (xk, ak)← Ni (xk, ak) + 1,

Mi (xk+1 | xk, ak)←Mi (xk+1 | xk, ak) + 1

6: end for
7: if ∃k,Ni (xk, ak) ≥ max {1, 2Ni−1 (xk, ak)} then
8: Increase epoch index i← i+ 1
9: Initialize new counters: for all (x, a, x′),

Ni(x, a) = Ni−1(x, a)

Mi (x
′ | x, a) = Mi−1 (x

′ | x, a)
10: Update confidence set Pi based on Equation (6)
11: end if
12: Update occupancy measure:
13: ηt =

1
ℓtC

√
T

with ℓt = max{||ℓt||∞}tt=1

q̂t+1 = Π∆(Pi) (q̂t − ηtℓt)

14: Update policy πt+1 = πq̂t+1

15: end for

Confidence Set. The description of how Confidence Set on the Transition Probability functions are
built and used, follows precisely the description of Rosenberg & Mansour (2019b). We report the
functioning for completeness.
UC-O-GDPS keeps counters of visits of each state-action pair (x, a) and each state-action-state triple
(x, a, x′), in order to estimate the empirical transition function as:

P i (x
′ | x, a) = Mi (x

′ | x, a)
max {1, Ni(x, a)}

where Ni(x, a) and Mi (x
′ | x, a) are the initial values of the counters, that is, the total number of

visits of pair (x, a) and triple (x, a, x′) respectively, before epoch i. Epochs are used to reduce the
computational complexity; in particular, a new epoch starts whenever there exists a state-action whose
counter is doubled compared to its initial value at the beginning of the epoch. Next, the confidence
set for epoch i is defined as:

Pi =
{
P̂ :

∥∥∥P̂ (·|x, a)− P i (·|x, a)
∥∥∥
1
≤ ϵi (x, a) ∀ (x, a) ∈ X ×A

}
(7)

with ϵi (x, a) defined as:

ϵi (x, a) =

√√√√2|Xk(x)+1| ln
(

T |X||A|
δ

)
max {1, Ni(x, a)}
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using k(x) for the index of the layer that x belongs to and for some confidence parameter δ ∈ (0, 1).
We state the following Lemma by Rosenberg & Mansour (2019b), which provides the results related
to the confidence set ϵi(x, a).
Lemma 5. Rosenberg & Mansour (2019b) For any δ ∈ [0, 1]:

∥∥P (·|x, a)− P i (·|x, a)
∥∥
1
≤

√√√√2|Xk(x)+1| ln
(

T |X||A|
δ

)
max {1, Ni(x, a)}

holds with probability at least 1− δ simultaneously for all (x, a) ∈ X ×A and all epochs.

Lemma 5 implies that, with high probability, the occupancy measure space ∆(M) is included in the
estimated one ∆(Pi) ∀i.

Occupancy Measure Update. The update of the occupancy measure is performed on the space
∆(Pi), which is built on the estimated transition function set Pi. More formally:

q̂t+1 = Π∆(Pi) (q̂t − ηtℓt)

with ηt =
1

ℓtC
√
T

with ℓt = max{||ℓt||∞}tt=1, and C constant. The employment of Online Gradient
Descent has been necessary to achieve the interval regret results, while the adaptive learning rate was
chosen to improve the performance in terms of Regret bounds.

C.2 INTERVAL REGRET

In the following subsections, we prove the theorem related to the interval regret of Algorithm 4. First,
we will present the main theorem, then, all the necessary lemmas.

Theorem 3. With probability at least 1− 2δ, when ηt =
(
ℓtC
√
T
)−1

, UC-O-GDPS satisfies for

any q ∈ ∩i∆(Pi):

RP
t1,t2(q) ≤ ℓt1,t2E

q
δ + ℓt2LC

√
T + ℓt1,t2

|X||A|
2

(t2 − t1 + 1)

C
√
T

,

where ℓt1,t2 := max{||ℓt||∞}t2t=t1 , ℓt := ℓ1,t and δ ∈ [0, 1].

Proof. Assume Event E∆,q̂(δ) holds. By definition 2:

Rt1,t2(q) =

t2∑
t=t1

ℓ⊤t (qt − q)

=

t2∑
t=t1

ℓ⊤t (qt − q̂t)︸ ︷︷ ︸
1

+

t2∑
t=t1

ℓ⊤t (q̂t − q)︸ ︷︷ ︸
2

≤ ℓt1,t2E
q
δ + ℓt2LC

√
T + ℓt1,t2

|X||A|
2

(t2 − t1 + 1)

C
√
T

where the Inequality holds by Lemmas 9 and 10. We focus on bounding the first term 1 and the
second term 2 .

C.2.1 BOUND ON THE FIRST TERM

In order to bound the first term of the Interval Regret, we state some useful Lemmas by Rosenberg &
Mansour (2019b).
Lemma 6. Rosenberg & Mansour (2019b) Let {πt}Tt=1 be policies and let {Pt}Tt=1 be transition
functions. Then,
T∑

t=1

||qPt,πt−qP,πt ||1 ≤
T∑

t=1

∑
x∈X

∑
a∈A

|qPt,πt(x, a)−qP,πt(x, a)|+
T∑

t=1

∑
x∈X

∑
a∈A

qP,πt(x, a)||Pt(·|x, a)−P (·|x, a)||1

(8)
where Pt = P q̂t .
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The following Lemma, shows how to bound the first term in Equation (8) with the second one.

Lemma 7. Rosenberg & Mansour (2019b) Let {πt}Tt=1 be policies and let {Pt}Tt=1 be transition
functions. Then, for every k ∈ [1..L− 1] and every t = 1, ..., T it holds that:

∑
xk∈Xk

∑
ak∈A

|qPt,πt(xk, ak)−qP,πt(xk, ak)| ≤
k−1∑
s=0

∑
xs∈Xs

∑
as∈A

qP,πt(xs, as)||Pt(·|xs, as)−P (·|xs, as)||1

where Pt = P q̂t .

and finally, Equation (8) is upper bounded given:

Lemma 8. Rosenberg & Mansour (2019b) Let {πt}Tt=1 be policies and let {Pt}Tt=1 be transition
functions such that qPt,πt ∈ ∆(Pi) for every t. Then, with probability at least 1− 2δ Event E∆(δ)
holds and:

T∑
t=1

L−1∑
k=0

k−1∑
s=0

∑
xs∈Xs

∑
as∈A

qP,πt(xs, as)||Pt(·|xs, as)−P (·|xs, as)||1 ≤ 2L|X|

√
2T ln

(
1

δ

)
+3L|X|

√
2T |A| ln

(
T |X||A|

δ

)

where Pt = P q̂t .

From the previous Lemmas, it easy to show that:

Lemma 2. If the confidence set P is updated as in Equation (6), with probability at least 1 − 2δ∑T
t=1 ||qt − q̂t||1 ≤ Eqδ , where Eqδ ≤ Õ(

√
T ).

Proof. Following Rosenberg & Mansour (2019b), by Lemmas 6, 7 and 8 we obtain that with

probability at least 1− 2δ Event E∆(δ) holds and:
∑T

t=1 ||qPt,πt − qP,πt ||1 ≤ 4L|X|
√
2T ln

(
1
δ

)
+

6L|X|
√
2T |A| ln

(
T |X||A|

δ

)

Now, we are ready to bound 1 .

Lemma 9. Under Event E∆,q̂(δ) it holds:

t2∑
t=t1

ℓ⊤t (qt − q̂t) ≤ ℓt1,t2E
q
δ

with ℓt1,t2 := max{||ℓt||∞}t2t=t1

Proof.

t2∑
t=t1

ℓ⊤t (qt − q̂t) ≤
t2∑

t=t1

||ℓt||∞||qt − q̂t||1

≤ ℓt1,t2

t2∑
t=t1

||qt − q̂t||1

≤ ℓt1,t2

T∑
t=1

||qt − q̂t||1

≤ ℓt1,t2E
q
δ (9)

with ℓt1,t2 := max{||ℓt||∞}t2t=t1 and where Inequality (9) holds under the event E q̂(δ).
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C.2.2 BOUND ON THE SECOND TERM

Lemma 10. For any q ∈ ∩i∆(Pi), the Projected OGD update:

q̂t+1 = Π∆(Pi) (q̂t − ηtℓt)

with ηt =
1

ℓtC
√
T

and ℓt = max{||ℓt||∞}tt=1 ensures:

t2∑
t=t1

ℓ⊤t (q̂t − q) ≤ U1
ℓt2
2
C
√
T + U2

ℓt1,t2
2

(t2 − t1 + 1)

C
√
T

where U1 = 2L, U2 = |X||A|, ℓt1,t2 = max{||ℓt||∞}t2t=t1 .

Proof. By the standard analysis of Projected Online Gradient Descent [Lemma 2.12 Orabona (2019)]
we have:

ℓ⊤t (q̂t − q) ≤ 1

2ηt
||q̂t − q||22 −

1

2ηt
||q̂t+1 − q||22 +

ηt
2
||ℓt||22.

Observe that for any two occupancy measures q1, q2 it holds:

||q1 − q2||22 ≤ ||q1||22 + ||q2||22
≤ ||q1||1 + ||q2||1
≤ 2L

where the second Inequality follows from q(x, a) ∈ [0, 1] ∀x, a. Then, summing over the interval
[t1.. t2] we get:

t2∑
t=t1

ℓ⊤t (q̂t − q) ≤ 1

2ηt1
||q̂t1 − q||22−

1

2ηt2
||q̂t2+1 − q||22︸ ︷︷ ︸

≤0

+
1

2

t2−1∑
t=t1

(
1

ηt+1
− 1

ηt

)
||q̂t+1 − q||22 +

1

2

t2∑
t=t1

ηt||ℓt||22

≤ L

ηt1
+ L

t2−1∑
t=t1

(
1

ηt+1
− 1

ηt

)
+

1

2C
√
T

t2∑
t=t1

1

ℓt

∑
x,a

ℓt(x, a)
2 (10)

≤ L

ηt1
+ L

t2−1∑
t=t1

(
1

ηt+1
− 1

ηt

)
︸ ︷︷ ︸

= 1
ηt2

− 1
ηt1

+
1

2C
√
T

t2∑
t=t1

||ℓt||∞
max{||ℓτ ||∞}tτ=1︸ ︷︷ ︸

≤1

||ℓt||∞
∑
x,a

1

≤Lℓt2C
√
T +

|X||A|
2

ℓt1,t2
(t2 − t1 + 1)

C
√
T

(11)

where Inequality (10) follows from the definition of ηt, and from ηt > ηt+1, while Inequality (11)
comes from the telescopic sum over [t1..t2] and from the definition of ηt2 .

D OMITTED PROOF OF SECTION 5

D.1 INTERVAL REGRETS

In this section, we show the Interval Regrets, attained by both primal and dual player, in our specific
framework.
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D.1.1 INTERVAL REGRET OF THE DUAL

In this subsection, we show the Interval Regret obtained by dual player. Recall that the dual variables
are updated with Projected Online Gradient Descent as shown in (5) or equivalently:

λt+1,i = min
{
max

{
0, λt,i + η[G⊤

t ]iq̂t
}
, T 1/4

}
(12)

with η =

[
K
√
T ln

(
T 2

δ

)]−1

.

Let

RD
t1,t2(λ) :=

t2∑
t=t1

(λ− λt)
⊤
G⊤

t q̂t

denote the regret accumulated by OGD from episode t1 to episode t2 with respect to the constant
multiplier λ. By standard analysis of OGD Orabona (2019) we have that:

RD
t1,t2(λ) ≤

||λt1 − λ||22
2η

+
η

2

t2∑
t=t1

||G⊤
t q̂t||22

We can upper-bound the quantity ||G⊤
t q̂t||22 as:

||G⊤
t q̂t||22 =

m∑
i=1

(∑
x,a

gt,i(x, a)q̂t(x, a)

)2

≤
m∑
i=1

(∑
x,a

q̂t(x, a)

)2

≤ mL2

obtaining:

RD
t1,t2(λ) ≤ D1

||λt1 − λ||22
η

+D2η(t2 − t1 + 1)

with D1 = 1
2 , D2 = mL2

2 .

We bound the distance between lagrange multipliers for consecutive episodes.

Lemma 11. If the dual player employs Projected Online Gradient Descent as in Update (12), it
holds:

||λt+1||1 − ||λt||1 ≤ mηL

Proof. Since the dual minimizer is performing projected gradient descent with learning rate η, and
the gradient of the Lagrangian at time t with respect to λ is equal to q̂⊤t G

⊤
t , element-wise it holds

that:

λt+1,i = min
{
max

{
0, λt,i + η[G⊤

t ]iq̂t
}
, T

1
4

}
≤ max

{
0, λt,i + η[G⊤

t ]iq̂t
}

≤ max
{
0, λt,i + η||[G⊤

t ]i||∞||q̂t||1
}

≤ max {0, λt,i + ηL}
= λt,i + ηL

Thus,

||λt+1||1 − ||λt||1 =

m∑
i=1

λt+1,i −
m∑
i=1

λt,i ≤
m∑
i=1

λt,i +

m∑
i=1

ηL−
m∑
i=1

λt,i = mηL

D.1.2 INTERVAL REGRET OF THE PRIMAL

We restate Lemma 10:
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Lemma 10. For any q ∈ ∩i∆(Pi), the Projected OGD update:

q̂t+1 = Π∆(Pi) (q̂t − ηtℓt)

with ηt =
1

ℓtC
√
T

and ℓt = max{||ℓt||∞}tt=1 ensures:

t2∑
t=t1

ℓ⊤t (q̂t − q) ≤ U1
ℓt2
2
C
√
T + U2

ℓt1,t2
2

(t2 − t1 + 1)

C
√
T

where U1 = 2L, U2 = |X||A|, ℓt1,t2 = max{||ℓt||∞}t2t=t1 .

Let

λt1,t2 := max{||λt||1}t2t=t1 .

Then it holds ℓt1,t2 ≤ 1 + λt1,t2 and we can restate the interval regret of the primal in terms of the
1-norm of the Lagrange multipliers as:

t2∑
t=t1

rLt
⊤
(q − q̂t) ≤ U1

(1 + λ1,t2)

2
C
√
T + U2

(1 + λt1,t2)

2

(t2 − t1 + 1)

C
√
T

. (13)

D.2 BOUND ON THE LAGRANGE MULTIPLIERS

We prove Theorem 4, which we restate for convenience.

Theorem 4. If Condition 2 holds and PDGD-OPS is used, then, when ζ := 20mL2

ρ2 , it holds

||λt||1 ≤ ζ ∀t ∈ [T + 1]

with probability at least 1− 2δ in the stochastic constraint setting and with probability at least 1− δ
in the adversarial constraint setting.

Proof. Suppose event E∆(δ) holds. If the constraints are stochastic, suppose event EG
q◦(δ) holds too.

Let M > 1 be a constant. We prove the statement by absurd. Suppose by absurd that there exists
t2 ∈ [T ] such that:

∀t ≤ t2 ||λt||1 ≤
2LM

ρ2
∧ ||λt2+1||1 >

2LM

ρ2

and let t1 < t2 be such that:

||λt1−1||1 ≤
2L

ρ
∧ ∀t : t1 ≤ t ≤ t2 ||λt||1 ≥

2L

ρ
.

By construction it holds that 1 < 2L
ρ ≤ ||λt||1 ≤ 2LM

ρ2 for all t1 ≤ t ≤ t2. Also notice that by
Lemma 11, for η ≤ 1

mL it holds that:

||λt1 ||1 ≤ ||λt1−1||1 +mηL ≤ 2L

ρ
+mηL ≤ 4L

ρ
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Focus on the quantity
∑t2

t=t1
−λ⊤

t G
⊤
t q

◦: in the stochastic constraint setting we have, under the event
EG

q◦(δ):

t2∑
t=t1

−λ⊤
t G

⊤
t q

◦ ≥
t2∑

t=t1

−λ⊤
t G

⊤
q◦ − λt1,t2EGt1,t2

≥
t2∑

t=t1

m∑
i=1

−λt,i

[
G

⊤
q◦
]
i
− λt1,t2EGt1,t2

≥ ρ

t2∑
t=t1

m∑
i=1

λt,i − λt1,t2EGt1,t2

= ρ

t2∑
t=t1

||λt||1 − λt1,t2EGt1,t2

≥ ρ
2L

ρ
(t2 − t1 + 1)− λt1,t2EGt1,t2

= 2L(t2 − t1 + 1)− λt1,t2EGt1,t2
While in the adversarial setting it holds:

t2∑
t=t1

−λ⊤
t G

⊤
t q

◦ ≥
t2∑

t=t1

m∑
i=1

−λt,i

[
G⊤

t q
◦]

i

≥ ρ

t2∑
t=t1

m∑
i=1

λt,i

= ρ

t2∑
t=t1

||λt||1

≥ ρ
2L

ρ
(t2 − t1 + 1)

= 2L(t2 − t1 + 1)

In particular, we have that:

t2∑
t=t1

−λ⊤
t G

⊤
t q

◦ ≥ 2L(t2 − t1 + 1)− λt1,t2EGt1,t2

is true in both settings under the required events.

We can lower bound the cumulative value of the Lagrangian function, namely rLt
⊤
q̂t, from t1 to t2

by that achievable by the primal minimizer by always playing the feasible occupancy measure q◦:

t2∑
t=t1

rLt
⊤
q̂t =

t2∑
t=t1

rLt
⊤
q◦ −

t2∑
t=t1

rLt
⊤
(q◦ − q̂t)

=

t2∑
t=t1

r⊤t q
◦

︸ ︷︷ ︸
≥0

+

t2∑
t=t1

−λ⊤
t G

⊤
t q

◦ −
t2∑

t=t1

rLt
⊤
(q◦ − q̂t)

≥ 2L(t2 − t1 + 1)− λt1,t2EGt1,t2,δ −
t2∑

t=t1

rLt
⊤
(q◦ − q̂t)
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Applying Lemma 10 and observing that by construction 1 ≤ λt1,t2 ≤ 2LM
ρ2 , we can bound 1+λt1,t2 ≤

4LM
ρ2 and obtain:

t2∑
t=t1

rLt
⊤
q̂t ≥ 2L(t2 − t1 + 1)− 2LM

ρ2
EGt1,t2,δ − U1

2LM

ρ2
C
√
T − U2

2LM

ρ2
(t2 − t1 + 1)

C
√
T

since under E∆(δ) we have that q◦ ∈ ∩i∆(Pi).

We can upper-bound the same quantity with the value achievable by the dual by always playing a
vector of zeroes.

t2∑
t=t1

rLt
⊤
q̂t =

t2∑
t=t1

r⊤t q̂t −
t2∑

t=t1

λ⊤
t G

⊤
t q̂t

≤
t2∑

t=t1

r⊤t q̂t −
t2∑

t=t1

0⊤G⊤
t q̂t +RD

t1,t2(0)

≤
t2∑

t=t1

L+D1
||λt1 ||22

η
+D2η(t2 − t1 + 1)

≤
t2∑

t=t1

L+D1
||λt1 ||21

η
+D2η(t2 − t1 + 1)

≤ L(t2 − t1 + 1) +D3
L2

ρ2η
+D2η(t2 − t1 + 1)

With D3 = 4D1.

Combining the bounds on the cumulative value of the Lagrangian, we have:

2L(t2 − t1 + 1)− 2LM

ρ2
EGt1,t2,δ−U1

2LM

ρ2
C
√
T − U2

2LM

ρ2
(t2 − t1 + 1)

C
√
T

≤

L(t2 − t1 + 1) +D3
L2

ρ2η
+D2η(t2 − t1 + 1)

Observing that EGt1,t2,δ = 2L
√
2(t2 − t1 + 1) ln

(
T 2

δ

)
≤ U3l1

√
t2 − t1 + 1 with l1 =

√
ln
(
T 2

δ

)
and U3 = 2L

√
2 and rearranging the terms we obtain:

L(t2 − t1 + 1) ≤ U3
2LM

ρ2
l1
√
t2 − t1 + 1 +

+ U1
2LM

ρ2
C
√
T +

+ U2
2LM

ρ2
(t2 − t1 + 1)

C
√
T

+

+D2η(t2 − t1 + 1) +

+D3
1

η

L2

ρ2

We will make use of the following lemma:

Lemma 12. For η ≤ 1
mL and M

ρ > 4 it holds:

(t2 − t1 + 1) >
M

ρ2mη
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Proof. By Lemma 11 we have:
t2∑

t=t1

(||λt+1||1 − ||λt||1) ≤
t2∑

t=t1

mηL

which, since the sum in the LHS is telescopic, implies:
||λt2+1||1 − ||λt1 ||1 ≤ (t2 − t1 + 1)mηL.

Also note that:
2LM

ρ2
− 4L

ρ
≤ ||λt2+1||1 − ||λt1 ||1.

Rearranging the terms, we obtain, for M
ρ > 4:

M

ρ2mη
<

2L(Mρ − 2)

ρmηL
≤ (t2 − t1 + 1)

Applying Lemma 12 we show that the above leads to a contradiction for some choices of C, M and
η, namely, we show that:

L(t2 − t1 + 1) > U3
2LM

ρ2
l1
√
t2 − t1 + 1 + (1)

+ U1
2LM

ρ2
C
√
T + (2)

+ U2
2LM

ρ2
(t2 − t1 + 1)

C
√
T

+ (3)

+D2η(t2 − t1 + 1) + (4)

+D3
1

η

L2

ρ2
(5)

In the followings, we prove that each of the terms on the RHS is upper bounded by 1
5L(t2 − t1 + 1):

1. By trivial computations and applying Lemma 12:
1

5
L(t2 − t1 + 1) > U3

2LM

ρ2
l1
√
T ≥ U3

2LM

ρ2
l1
√
t2 − t1 + 1

(t2 − t1 + 1) > U3
10M

ρ2
l1
√
T

(t2 − t1 + 1) >
M

ρ2mη
≥ U3

10M

ρ2
l1
√
T

1

mη
≥ 10U3l1

√
T

which is ensured by:

η ≤ 1

10mU3l1
√
T

2. Then applying again Lemma 12:
1

5
L(t2 − t1 + 1) > U1

2LM

ρ2
C
√
T

(t2 − t1 + 1) >
M

ρ2mη
≥ 10U1

M

ρ2
C
√
T

which is true for:

η ≤ 1

10mU1C
√
T
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3. We solve the third term with respect to C.

1

5
L(t2 − t1 + 1) ≥ U2

2LM

ρ2
(t2 − t1 + 1)

C
√
T

which is ensured by:

C ≥ 10U2
M

ρ2
1√
T

4.
1

5
L(t2 − t1 + 1) > D2η(t2 − t1 + 1)

1

5
L > D2η

Which is ensured by

η <
L

5D2

5. Applying Lemma 12, we solve the Inequality with respect to M:

1

5
L(t2 − t1 + 1) > D3

1

η

L2

ρ2

(t2 − t1 + 1) >
M

ρ2mη
≥ 5D3

1

η

L

ρ2

M

m
≥ 5D3L

from which:
M ≥ 5mD3L

We recall all the constants: D2 = mL2

2 , D3 = 2, U1 = 2L, U2 = |X||A|, U3 = 2L
√
2. We choose

M = 10mL and recall Condition 2:

ρ ≥ T− 1
8L
√
20m ⇒ 20mL2

ρ2
≤ T

1
4 ≤
√
T

We now focus on the condition on C:

C ≥ 10U2
10mL

ρ2
1√
T

= 5
U2

L

20mL2

ρ2
1√
T

is thus always ensured by C = 5U2

L . The conditions on η are satisfied if:

η ≤ min

{
L

5D2
,

1

10mU1C
√
T
,

1

10mU3l1
√
T

}
.

Observe that:

min

{
L

5D2
,

1

10mU1C
√
T
,

1

10mU3l1
√
T

}
= min

{
1

2.5mL
,

1

10mU1

(
5U2

L

)√
T
,

1

20
√
2mLl1

√
T

}
which, if we plug in the value of l1, leads to the choice:

η =
1

50mmax
{

U1U2

L , L
}√

T ln
(
T 2

δ

)
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The remaining conditions M
ρ > 4, η ≤ 1

mL are trivially satisfied. Summing the conditions (1− 5)

proves the contradiction.

If we plug the values of U1 and U2 corresponding to UC-O-GDPS, we have max
{

U1U2

L , L
}
=

max {2|X||A|, L} = 2|X||A| and thus obtain:

η =
1

100m|X||A|
√
T ln

(
T 2

δ

)

D.3 ANALYSIS WITH STOCHASTIC CONSTRAINTS

D.3.1 LOWER BOUND ON THE DUAL CUMULATIVE UTILITY

We start proving a useful Lemma in which we lower bound the dual cumulative utility. This Lemma
holds both for the stochastic constraints and the adversarial constraint setting.

Lemma 13. Under the event E q̂(δ), the cumulative dual utility
∑T

t=1 λ
⊤
t G

⊤
t qt is lower bounded as:

T∑
t=1

λ⊤
t G

⊤
t qt ≥ −λ1,TEqδ −RD

T (0)

where λt1,t2 := max{∥λt∥1}t2t=t1 .

Proof. We exploit the fact that the dual is no-regret with respect to the 0 vector:

T∑
t=1

λ⊤
t G

⊤
t qt =

T∑
t=1

λ⊤
t G

⊤
t (qt − q̂t) +

T∑
t=1

λ⊤
t G

⊤
t q̂t

≥
T∑

t=1

λ⊤
t G

⊤
t (qt − q̂t) +

T∑
t=1

0⊤G⊤
t q̂t −RD

T (0)

≥
T∑

t=1

−∥λt∥1︸ ︷︷ ︸
≤λ1,T

∥∥G⊤
t

∥∥
∞︸ ︷︷ ︸

≤1

∥qt − q̂t∥1 −RD
T (0)

≥ −λ1,T

T∑
t=1

∥qt − q̂t∥1 −RD
T (0)

≥ −λ1,TEqδ −RD
T (0)

where the last Inequality holds under E q̂(δ).

D.3.2 ANALYSIS WHEN CONDITION 2 HOLDS

We start by introducing the notation v̂t,i := [G⊤
t ]iq̂t, that is the violation of the i-th constraint

incurred by q̂t. We further denote V̂t,i :=
∑t

τ=1 v̂τ,i. Observe that, when Condition 2 holds, thanks
to Theorem 4 we have ||λt||1 ≤ T

1
4 for all t and thus λt,i ≤ T

1
4 . This means that λt,i never gets past

the upper extreme and the update of the dual is effectively equivalent to that of OGD working on the
set Rm

≥0:

λt,i = max{λt,i + ηv̂t,i, 0}

Lemma 14. If Condition 2 holds, then for each episode t ∈ [T ] and each constraint i it holds:

λt,i ≥ ηV̂t−1,i
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Proof. We prove the result by induction. Suppose that the statement holds for episode t. Then

λt+1,i = max{λt,i + ηv̂t,i, 0}
≥ λt,i + ηv̂t,i

≥ ηV̂t−1,i + ηv̂t,i

= ηV̂t,i

Observe that for t = 1 the statement holds as the sum on the RHS evaluates to 0.

Lemma 15. If Condition 2 holds, under the events E∆(δ), E q̂(δ) and EG
q◦(δ) for the stochastic

constraint setting and under the events E∆(δ) and E q̂(δ) for the adversarial constraints one, it
holds:

VT ≤ V̂T,i∗ + Eqδ

Proof. Let i∗ denote the most violated constraint, e.g. i∗ = argmaxi
∑T

t=1[G
⊤
t qt]i. Then we have:

VT =

T∑
t=1

[G⊤
t qt]i∗

=

T∑
t=1

[G⊤
t q̂t]i∗ +

T∑
t=1

[G⊤
t (qt − q̂t)]i∗

= V̂T,i∗ +

T∑
t=1

[G⊤
t ]i∗(qt − q̂t)

≤ V̂T,i∗ +

T∑
t=1

||[G⊤
t ]i∗ ||∞||qt − q̂t||1

≤ V̂T,i∗ + Eqδ

Where the last step holds under E q̂(δ) since ||[G⊤
t ]i∗ ||∞ ≤ 1.

We are now ready to prove the regret and violation bounds for the stochastic constraint setting.

Theorem 5. In the stochastic constraint setting, when Condition 2 holds, the cumulative regret
and constraint violation incurred by PDGD-OPS are upper bounded as follows. If the rewards are
adversarial, then with probability at least 1− 4δ Algorithm 2 provides RT ≤ ζEGδ + ζEqδ +RD

T (0) +

RP
T (q

∗) and VT ≤ 1
η ζ + Eqδ . If the rewards are stochastic, then with probability at least 1 − 5δ

Algorithm 2 provides RT ≤ Erδ + ζEGδ + ζEqδ +RD
T (0)+RP

T (q
∗), and VT ≤ 1

η ζ + E
q
δ . In both cases:

RT ≤ Õ
(
ζ
√
T
)
, VT ≤ Õ

(
ζ
√
T
)
.

Proof. Assume events EG
q◦(δ), E

G
q∗(δ), E

∆(δ) and E q̂(δ) hold.

Recall that λ1,T ≤ ζ under the events E∆(δ) and EG
q◦(δ) since Condition 2 holds (see proof of

Theorem 4).
By Lemma 15 we have:

VT ≤ V̂T,i∗ + Eqδ

≤ 1

η
λT+1,i∗ + Eqδ

≤ 1

η
||λT+1||1 + Eqδ

≤ 1

η
ζ + Eqδ
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Where the third Inequality holds for Lemma 14. By the definition of regret of the primal:

T∑
t=1

r⊤t qt ≥
T∑

t=1

r⊤t q
∗ −

T∑
t=1

λ⊤
t G

⊤
t q

∗ +

T∑
t=1

λ⊤
t G

⊤
t qt −RP

T (q
∗)

≥
T∑

t=1

r⊤t q
∗ −

T∑
t=1

λ⊤
t G

⊤
t q

∗ − λ1,TEqδ −RD
T (0)−RP

T (q
∗) (14)

≥
T∑

t=1

r⊤t q
∗ −

T∑
t=1

λ⊤
t G

⊤
q∗ − λ1,TEGδ − λ1,TEqδ −RD

T (0)−RP
T (q

∗) (15)

≥
T∑

t=1

r⊤t q
∗ −

T∑
t=1

∑
i

λt,i (G)iq
∗︸ ︷︷ ︸

≤0

−λ1,TEGδ − λ1,TEqδ −RD
T (0)−RP

T (q
∗) (16)

≥
T∑

t=1

r⊤t q
∗ − ζEGδ − ζEqδ −RD

T (0)−RP
T (q

∗)

where Inequality (14) holds for Lemma 13, and Inequality (15) holds under Event EG
q∗(δ). We now

focus on the case in which the rewards are adversarial. We have:

T∑
t=1

r⊤t q
∗ = T · r⊤q∗ = T · OPTr,G

and thus we obtain the stated bound:

T∑
t=1

r⊤t qt ≥ T · OPTr,G − ζEGδ − ζEqδ −RD
T (0)−RP

T (q
∗)

By union bound on EG
q◦(δ), E

G
q∗(δ) and E∆,q̂(δ), the result holds with probability at least 1− 4δ.

For the stochastic rewards case, we require also event Er
q∗(δ) to hold. Thus,

T∑
t=1

r⊤t q
∗ ≥

T∑
t=1

r⊤q∗ − Erδ = T · OPTr,G − E
r
δ

and thus we obtain the stated bound:

T∑
t=1

r⊤t qt ≥ T · OPTr,G − E
r
δ − ζEGδ − ζEqδ −RD

T (0)−RP
T (q

∗)

By union bound on EG
q◦(δ), E

G
q∗(δ), E

∆,q̂(δ) and Er
q∗(δ), the result holds with probability at least

1− 5δ.

Observe that under E∆,q̂(δ) it holds:

RP
T (q

∗) ≤ Õ
(
(1 + λ1,T )

√
T
)
= Õ

(
ζ
√
T
)

and

RD
T (0) ≤

mL2

2

1

100m|X||A|
√

ln
(
T 2

δ

)√T ≤ O (√T)
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D.3.3 ANALYSIS WHEN CONDITION 2 DOES NOT HOLD

Lemma 16. If Condition 2 does not hold, then

V̂T,i ≤ (2 + 2L)
1

η
T

1
4 ∀T, i

holds under the event E∆(δ) in the adversarial constraint setting and under the events E∆(δ),
EG

q◦(δ), in the stochastic constraint setting.

Proof. Assume events E∆(δ), EG
q◦(δ) hold and suppose by absurd that V̂T,i = (2 + 2L+ ϵ) 1ηT

1
4 ,

with ϵ > 0, for some T and i.

We can lower bound the quantity
∑T

t=1 r
L
t
⊤
q̂t:

T∑
t=1

rLt
⊤
q̂t =

T∑
t=1

r⊤t q
◦

︸ ︷︷ ︸
≥0

−
T∑

t=1

λ⊤
t G

⊤
t q

◦ −
T∑

t=1

rLt
⊤
(q◦ − q̂t)

≥ −
T∑

t=1

λ⊤
t G

⊤
q◦︸ ︷︷ ︸

≥0

−λ1,TEGδ −
T∑

t=1

rLt
⊤
(q◦ − q̂t)

≥ −mT
1
4 EGδ −

T∑
t=1

rLt
⊤
(q◦ − q̂t) (17)

Where Inequality (17) holds since ||λt||1 ≤ mV
1
4 by construction of the dual space. Observe

that, if we are in the Adversarial setting, then from the (stronger) definition of ρ and q◦ it holds
−
∑T

t=1 λ
⊤
t G

⊤
t q

◦ ≥ 0 and we obtain the tighter bound
T∑

t=1

rLt
⊤
q̂t ≥ −

T∑
t=1

rLt
⊤
(q◦ − q̂t)

The dual is no regret with respect to the vector λ̃, whose elements are 0 for j ̸= i and T
1
4 in position

j = i:
T∑

t=1

rLt
⊤
q̂t =

T∑
t=1

r⊤t q̂t −
T∑

t=1

λ⊤
t G

⊤
t q̂t

≤
T∑

t=1

r⊤t q̂t −
T∑

t=1

λ̃⊤G⊤
t q̂t +RD

T (λ̃)

=

T∑
t=1

r⊤t q̂t − T
1
4

T∑
t=1

[G⊤
t q̂t]i +RD

T (λ̃)

≤ LT − T
1
4 V̂T,i +RD

T (λ̃)

Combining the bounds we have:

−mT
1
4 EGδ −

T∑
t=1

rLt
⊤
(q◦ − q̂t) ≤ LT − T

1
4 V̂T,i +RD

T (λ̃)

T
1
4 V̂T,i ≤ LT +mT

1
4 EGδ +

T∑
t=1

rLt
⊤
(q◦ − q̂t) +RD

T (λ̃)

√
T

η
(2 + 2L+ ϵ) ≤ LT +mT

1
4 EGδ +

T∑
t=1

rLt
⊤
(q◦ − q̂t) +RD

T (λ̃) (18)
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Observe that:

RD
T (λ̃) ≤

1

2

||λ̃||22
η

+
mL2

2
ηT =

√
T

2η
+

mL2

2

1

100m|X||A|
√
T ln

(
T 2

δ

)T ≤ L

√
T

η

Since |X| ≥ L.

For the primal it holds by Lemma 10:
T∑

t=1

rLt
⊤
(q◦ − q̂t) =

T∑
t=1

ℓt
⊤(q̂t − q◦)

≤ λ1,TU1C
√
T + λ1,TU2

√
T

C

≤ mT
1
4

√
T

(
U1C +

U2

C

)
= m

(
U1

U2

5
+ 5

)√
T T

1
4

= m

(
2L
|X||A|

5
+ 5

)√
T T

1
4

≤ 6mL|X||A|
√
T T

1
4

≤ L

η
T

1
4 ≤ L

√
T

η

And for the Azuma-Hoeffding term it holds:

mT
1
4 EGδ = mT

1
4 2L

√
2T ln

(
T 2

δ

)
≤ 1

η
T

1
4 =

√
T

η

Observe that LT ≤
√
T
η holds trivially.

Dividing both the terms in Equation (18) by
√
T
η , we obtain

2 + 2L+ ϵ ≤ 2 + 2L

which is absurd.

We are now ready to prove the Regret and Violation bounds when Assumption 2 does not hold:
Theorem 6. In the stochastic constraint setting, when Condition 2 does not hold, the cumulative
regret and constraint violations incurred by PDGD-OPS are upper bounded as follows. If the
rewards are adversarial, then with probability at least 1− 4δ Algorithm 2 provides RT ≤ mT

1
4 EGδ +

mT
1
4 Eqδ +RD

T (0) +RP
T (q

∗) and VT ≤ (2 + 2L) 1ηT
1
4 + Eqδ . If the rewards are stochastic, then with

probability at least 1− 5δ Algorithm 2 provides RT ≤ Erδ +mT
1
4 EGδ +mT

1
4 Eqδ +RD

T (0)+RP
T (q

∗)

and VT ≤ (2 + 2L) 1ηT
1
4 + Eqδ . In both cases, it holds:

RT ≤ Õ
(
T

3
4

)
, VT ≤ Õ

(
T

3
4

)
.

Proof. Assume events E∆(δ), E q̂(δ), EG
q∗(δ), E

G
q◦(δ) hold. We avoid the computations and restart

from (16), since the previous part of the proofs are identical:
T∑

t=1

r⊤t qt ≥
T∑

t=1

r⊤t q
∗ −

T∑
t=1

∑
i

λt,i (G)iq
∗︸ ︷︷ ︸

≤0

−λ1,TEGδ − λ1,TEqδ −RD
T (0)−RP

T (q
∗)

≥
T∑

t=1

r⊤t q
∗ −mT

1
4 EGδ −mT

1
4 Eqδ −RD

T (0)−RP
T (q

∗)
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By the same reasoning as in the proof of Theorem 5, we obtain that if the rewards are adversarial then

T∑
t=1

r⊤t qt ≥ T · OPTr,G −mT
1
4 EGδ −mT

1
4 Eqδ −RD

T (0)−RP
T (q

∗)

with probability at least 1− 4δ by union bound on E∆,q̂(δ), EG
q∗(δ) and EG

q◦(δ), while if the rewards
are stochastic, under the event Er

q∗(δ) we have that:

T∑
t=1

r⊤t qt ≥ T · OPTr,G − E
r
δ −mT

1
4 EGδ −mT

1
4 Eqδ −RD

T (0)−RP
T (q

∗)

with probability at least 1− 5δ by union bound on E∆,q̂(δ), EG
q∗(δ), E

G
q◦(δ) and Er

q∗(δ).

Observe that:
RP

T (q
∗) ≤ Õ

(
T

3
4

)
and

RD
T (0) =

mL2

2
ηT ≤ Õ

(√
T
)

.

In order to bound the violation, we apply Lemma 16:

VT ≤ V̂T,i∗ + Eqδ ≤ (2 + 2L)
1

η
T

1
4 + Eqδ

D.4 ANALYSIS WITH ADVERSARIAL CONSTRAINTS

D.4.1 ANALYSIS WHEN CONDITION 2 HOLDS

Theorem 7. In the adversarial constraint setting, when Condition 2 holds, the cumulative regret
and constraint violations incurred by PDGD-OPS are upper bounded as follows. If the rewards are
adversarial, then with probability at least 1 − 2δ Algorithm 2 provides RT ≤ 1

1+ρT · OPTr,G +

ζEqδ + RD
T (0) + RP

T (q̃) and VT ≤ 1
η ζ + Eqδ . If the rewards are stochastic, then with probability

at least 1 − 3δ Algorithm 2 provides RT ≤ 1
1+ρT · OPTr,G + Erδ + ζEqδ + RD

T (0) + RP
T (q̃) and

VT ≤ 1
η ζ + E

q
δ . In both cases, it holds:

T∑
t=1

r⊤t qt ≥ Ω

(
ρ

1 + ρ
T · OPTr,G

)
, VT ≤ Õ

(
ζ
√
T
)
.

Proof. Assume events E∆(δ) and E q̂(δ) hold.

Recall that λ1,T ≤ ζ under the event E∆(δ) since Condition 2 holds (see the proof of Theorem 4).
Following the same steps of the proof of Theorem 5, we obtain:

VT ≤
1

η
ζ + Eqδ

Let q̃ = ρ
1+ρq

∗ + 1
1+ρq

◦, observe that it holds for all t and for all i:

[G⊤
t q̃]i =

ρ

1 + ρ
[G⊤

t q
∗]i︸ ︷︷ ︸

≤1

+
1

1 + ρ
[G⊤

t q
◦]i︸ ︷︷ ︸

≤−ρ

≤ 0

r⊤t q̃ =
ρ

1 + ρ
r⊤t q

∗ +
1

1 + ρ
r⊤t q

◦ ≥ ρ

1 + ρ
r⊤t q

∗
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By the definition of regret of the primal:

T∑
t=1

r⊤t qt ≥
T∑

t=1

r⊤t q̃ −
T∑

t=1

λ⊤
t G

⊤
t q̃ +

T∑
t=1

λ⊤
t G

⊤
t qt −RP

T (q̃)

≥ ρ

1 + ρ

T∑
t=1

r⊤t q
∗ −

T∑
t=1

∑
i

λt,i [G
⊤
t q̃]i︸ ︷︷ ︸
≤0

+

T∑
t=1

λ⊤
t G

⊤
t qt −RP

T (q̃)

≥ ρ

1 + ρ

T∑
t=1

r⊤t q
∗ − λ1,TEqδ −RD

T (0)−RP
T (q̃)

≥ ρ

1 + ρ

T∑
t=1

r⊤t q
∗ − ζEqδ −RD

T (0)−RP
T (q̃)

where the third Inequality holds for Lemma 13.
By the same reasoning as in the proof of Theorem 5, we obtain that if the rewards are adversarial it
holds:

T∑
t=1

r⊤t qt ≥
ρ

1 + ρ
T · OPTr,G − ζEqδ −RD

T (0)−RP
T (q̃)

= T · OPTr,G −
1

1 + ρ
T · OPTr,G − ζEqδ −RD

T (0)−RP
T (q̃)

with probability at least 1− 2δ, since we are conditioning on E∆,q̂(δ).
If the rewards are stochastic, requiring also event Er

q∗(δ) to hold we obtain:

ρ

1 + ρ

T∑
t=1

r⊤t q
∗ ≥ ρ

1 + ρ

T∑
t=1

r⊤q∗ − ρ

1 + ρ
Erδ ≥

ρ

1 + ρ
T · OPTr,G − E

r
δ

And thus,

T∑
t=1

r⊤t qt ≥ T · OPTr,G −
1

1 + ρ
T · OPTr,G − E

r
δ − ζEqδ −RD

T (0)−RP
T (q̃)

with probability at least 1 − 3δ. Finally observe that, under Assumption 2 and event E∆,q̂(δ), it
holds:

RP
T (q̃) ≤ Õ

(
(1 + λ1,T )

√
T
)
≤ Õ

(
ζ
√
T
)

and

RD
T (0) ≤

mL2

2

1

100m|X||A|
√

ln
(
T 2

δ

)√T ≤ O (√T)

D.5 AZUMA-HOEFFDING BOUNDS AND PROOFS

In this subsection we prove that events Er
q∗(δ), E

G
q◦(δ), E

G
q∗(δ) each hold with probability at least

1− δ.

Lemma 3. If the rewards are stochastic, then, with probability at least 1− δ, it holds:∣∣∣∣∣
T∑

t=1

(rt − r)
⊤
q∗

∣∣∣∣∣ ≤ Erδ ,
where Erδ := L√

2

√
T ln

(
2
δ

)
.
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Proof. Observe that:

max
t∈[t1..t2]

∣∣∣(rt − r)
⊤
q∗
∣∣∣ ≤ max

t∈[t1..t2]
∥rt − r∥∞︸ ︷︷ ︸

≤1

∥q∗∥1

≤ L

where the second Inequality holds since since q∗(x, a) ≥ 0. By the Azuma-Hoeffding inequality for
martingales we have that:

P

[∣∣∣∣∣
t2∑

t=t1

(rt − r)
⊤
q∗

∣∣∣∣∣ ≥ L√
2

√
T ln

(
2

δ

)]
≤ δ.

We perform the same analysis for the constraints, obtaining:
Lemma 4. If the constraints are stochastic, given a sequence of occupancy measures (qt)Tt=1, then
with probability at least 1− δ, for all [t1..t2] ⊆ [1..T ], it holds:∣∣∣∣∣

t2∑
t=t1

λ⊤
t

(
G⊤

t −G
⊤)

qt

∣∣∣∣∣ ≤ λt1,t2EGt1,t2,δ,

where EGt1,t2,δ := 2L
√
2(t2 − t1 + 1) ln

(
T 2

δ

)
and λt1,t2 := max{∥λt∥1}t2t=t1 .

Proof. Observe that:

max
t∈[t1..t2]

∣∣∣λ⊤
t (G

⊤
t −G

⊤
)qt

∣∣∣ ≤ max
t∈[t1..t2]

∥λt∥1
∥∥∥G⊤

t −G
⊤
∥∥∥
∞︸ ︷︷ ︸

≤2

∥qt∥1

≤ max
t∈[t1..t2]

2||λt||1L

= 2λt1,t2L

where the second Inequality holds since qt(x, a) ≥ 0 and λt,i ≥ 0. By the Azuma-Hoeffding
inequality for martingales we have that:

P

[∣∣∣∣∣
t2∑

t=t1

λ⊤
t (G

⊤
t −G

⊤
)qt

∣∣∣∣∣ ≥ 2λt1,t2L

√
2(t2 − t1 + 1) ln

(
2

δ

T 2

2

)]
≤ 2δ/T 2.

A union bound over all the t1, t2 such that [t1..t2] ⊆ [1..T ] concludes the proof.
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