
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SPARSEDM: TOWARD SPARSE EFFICIENT DIFFUSION
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models represent a powerful family of generative models widely used
for image and video generation. However, the time-consuming deployment, long
inference time, and requirements on large memory hinder their applications on
resource constrained devices. In this paper, we propose a method based on the
improved Straight-Through Estimator to improve the deployment efficiency of
diffusion models. Specifically, we add sparse masks to the Convolution and Linear
layers in a pre-trained diffusion model, then transfer learn the sparse model during
the fine-tuning stage and turn on the sparse masks during inference. Experimental
results on a Transformer and UNet-based diffusion models demonstrate that our
method reduces MACs by 50% while increasing FID by only 0.44 on average.
Sparse models are accelerated by approximately 1.2x on the GPU. Under other
MACs conditions, the FID is also lower than 1 compared to other methods.

1 INTRODUCTION

Diffusion Models (DM) (Song et al., 2021; Karras et al., 2022) have been one of the core gen-
erative modules in various computer vision tasks. Generally, they are composed of two parts: a
forward/diffusion process that perturbs the data distribution to learn the time-dependent score func-
tions, and a reverse/sampling process that generates data samples from a prior distribution in an
iterative manner. Though diffusion models have advantages on both sample quality and mode cov-
erage over other competitors, their slow inference speed and heavy computational load during the
inference process inevitably restrict their applications on most mobile devices.

To reduce the computational load in the inference process of diffusion models, various methods have
been proposed to minimize the number of inference steps, such as the training-free samplers (Bao
et al., 2022; Zhao et al., 2023; Lu et al., 2022; 2023; Zheng et al., 2023) and the distillation methods
(Salimans & Ho, 2022; Luo et al., 2023b;a). However, their sample quality is still unsatisfactory
as a few sampling steps cannot faithfully reconstruct the high-dimensional data space, e.g., the
image or video samples. This problem is even more pronounced on mobile devices with limited
computing capabilities. Simultaneously, a few works explore reducing the Multiple-Accumulate
operations (MACs) at each inference step (Bolya & Hoffman, 2023; Fang et al., 2023b). However,
their work cannot be accelerated on GPUs. Since DM is an intensive model parameter calculation,
NVIDIA Ampere architecture GPU supports a 2:4 sparse (4-weights contain 2 non-zero values)
model calculation, which can achieve nearly 2 times calculation acceleration (Pool & Yu, 2021;
Mishra et al., 2021). Although structural pruning (Fang et al., 2023b) has been used in DM, 2:4
structured sparsity inference has not been implemented. Our method aims to reduce MACs at each
step through 2:4 and other scale sparsity.

Recently, several popular computational architectures, such as NVIDIA Ampere architecture and
Hopper GPUs, have developed acceleration methods for model inference and have been equipped
with fine-grained structured sparse capabilities. A common requirement of these acceleration tech-
niques is the 2:4 sparse mode, which only preserves 2 of the 4 adjacent weights of a pre-trained
model, i.e., requires a sparsity rate of 50%. Given this sparsity, the acceleration techniques only pro-
cess the non-zero values in matrix multiplications, theoretically achieving a 2x speedup. In essence,
a diffusion model supporting the 2:4 sparsity mode can reduce 50% computational load at each in-
ference step, which is valuable when considering the iterative refinement process in a generation. To
the best of our knowledge, previous works have not explored maintaining the sample quality of dif-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: The results of manually redesigning the U-ViT model and sparse pruning the U-ViT model
using ASP. UViT Small is from the U-ViT method. Half UViT Small is set to half the depth and
number of heads of UViT Small. ASP is the method of sparse pruning from Nvidia.

Datasets Models Methods FID MACs (G)

CIFAR10
32x32

UViT Small U-ViT 3.97 11.34
Half UViT Small U-ViT 678.20 5.83

UViT Small ASP 319.87 5.76

CelebA
64x64

UViT Small U-ViT 3.30 11.34
Half UViT Small U-ViT 441.37 5.83

UViT Small ASP 438.31 5.76

fusion models with a 2:4 or other scale sparsity mode, which motivates us to present the techniques
in this work.

We use a state-of-the-art Transformer-based DM, named U-ViT (Bao et al., 2023), to analyze the
shortcomings of existing 2:4 structured sparse tools. Also, we manually design a half-size DM
network to test FID and MACs. From Table 1, we can see that simply reducing the U-ViT model
parameters by nearly 50% may cause FID to collapse catastrophically. Automatic Sparsity (ASP)
(Pool & Yu, 2021; Mishra et al., 2021)) for model sparse training consumes a lot of GPU time, but
FID is poor. Therefore, for DM, we need to redesign the pruning method to reduce the amount
of calculation and maintain FID as much as possible. This paper proposes a new method for
implementing 2:4 structured sparsity and other scale sparse inference. (1) Masks with different
sparsity rates are applied to convolutional and linear layers. (2) Sparse regularization is added to
back-propagation, improving the STE method to train sparse models. (3) Knowledge is gradually
transferred from dense models to sparse models to improve models’ performance with high sparsity
rates.

Our contributions can be listed as follows:

• We propose a transfer learn sparse masks method that achieves 2:4 structured sparse infer-
ence and other scale sparse pruning for DMs with a Transformer or UNet backbones.

• We conduct experiments on four datasets. The average FID of 2:4 sparse DM is only
increased by 0.44 compared with the dense model. The inference acceleration on the GPU
is approximately 1.2x.

• Testing nine scales, with similar MACs for each scale, our sparse inference FID is 1 lower
than other methods.

2 PROBLEM FORMULATION

2.1 DIFFUSION MODELS

The diffusion model is divided into a forward process and a backward process. The forward process
is a step-by-step process of adding noise to the original image to generate a noisy image, generally
formalized as a Markov chain process. The reverse process is to remove noise from a noisy image
and restore the original image as much as possible. Gaussian mode was adopted to approximate
the ground truth reverse transition of the Markov chain. The training process of diffusion models is
the process of establishing noise prediction models. The loss function of DM is minimizing a noise
prediction objective. The forward process is formalized as:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), (1)

where xt is input data at t. In the backward process, the mean network of the denoising transition
probability is formalized as:

µ∗
t (xt) =

1
√
αt

(
xt −

βt√
1− αt

E[ϵ|xt]

)
, (2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where αt and βt are the noise schedule at t, αt + βt = 1. αt =
∏t

i=1 αi, and ϵ is the standard
Gaussian noises added to xt. The DM training is a task of minimizing the noisy prediction errors,
expressed as minW L(W;D), where D is dataset, L is loss function,W is dense weights. The DM
inference, data generation, is expressed as yt = F(W;xt), where F is trained DM, yt is the output
of DM inference.

2.2 SPARSE PRUNING

Sparse network computation is an effective method to reduce MACs in deep networks and accelerate
computation. Currently, one-shot sparse training and progressive sparse training are commonly used.

The one-shot training method is easy to use, and the steps are as follows (Mishra et al., 2021; Pool &
Yu, 2021): Train a regular dense model. Prune the weights on the fully connected and convolutional
layers in a 2:4 sparse mode. Retrain the pruned model. The one-shot pruning is expressed as:

W̃ =W ⊙M, (3)

where, W̃ is the sparse weight after the dense weightW is pruned, recorded as W̃ ← Pruning(W),
M is a 0-1 mask,M is the (N :M) sparse mask (M -weights contain N non-zero values), ⊙ repre-
sents element-wise multiplication.

One-shot sparse pruning can cover most tasks and achieve speedup without losing accuracy. How-
ever, for some challenging tasks that are sensitive to changes in weight values, doing sparse training
for all weights at once will result in a large amount of information loss (Han et al., 2015). With the
same number of tuning iterations, progressive sparse training can achieve higher model accuracy
than one-shot sparse training. Suppose there are k masks [M1,M2, ...,Mk], the progressive sparse
process is formalized as:

W̃ =W ⊙Mi, Mi ∈ [M1,M2, ...,Mk], (4)
The reason why traditional progressive sparse training methods work well is to reuse the knowl-
edge of dense models as much as possible. However, this progressive sparse training method has
only proven effective when the training data distribution is stable, such as when training a CNN
classification model.

2.3 DISTRIBUTION SHIFT ON DM TRAINING AND SPARSE PRUNING

Robust Fairness Regularization (RFR) (Jiang et al., 2024) improved that distribution shift can be
transformed as data perturbation, and data perturbation and model weight perturbation are equivalent
for classifier models. Assuming that the perturbation of the label is not considered, the equivalent
of data perturbation and model weight perturbation is formalized as:

EδD(D)E(D)∼P [L(FW(D + δD(D))] = E(D)∼P [L(FW+∆W(D))], (5)
where the training dataset D with distribution P , suppose the training dataset is perturbed with data
perturbation δ, and the neural network is given by FW(·), for the general case, there exists model
weight pruned as perturbation ∆W , so that the training loss L on perturbed training dataset is the
same with that for model weight perturbation ∆W on training distribution.

The training process of DMs generally involves only the distribution shift of the noisy data. We
believe that DM training adds Gaussian noise to the data, which perturbs the original image data
distribution. Existing sparse pruning methods generally do not consider the distribution shift of
noisy data but only the model’s weight changes. Inspired by RFR’s conclusions, we convert the
distribution shifts caused by changes in model weights into distribution shifts caused by data changes
for the DM’s training process. The DM’s sparse ratio is fixed, and then the knowledge of the dense
model is transferred to the sparse model.

3 SPARSE FINETUNING DM

In this section, we introduce our proposed framework in detail. We start with the overall framework
of our proposal. Then, we present the finetuning DM with sparse masks to reduce MACs and
prepare for 2:4 sparse GPU acceleration. Moreover, we introduce the training and inference with
sparse masks to enhance the DM. Fig. 1 shows an overview of the proposed framework.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Pretrained
Dense DM

Generate Data

Training

Sampling Open Inference
Sparse Masks on DM

DM with Training
and Inferece
Sparse Masks

Finetuning
Trained Sparse

DM

Transfer Learn
Sparse Masks

0 1 1 0
1 0 0 1
1 0 1 0
0 1 0 1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

....

Deploy DM

0 1 1 1
1 0 1 1
1 1 1 0
1 1 0 1

Dataset

0 1 1 1
1 1 1 1
1 1 1 0
1 1 1 1

Figure 1: Framework Overview. This includes the process of transfer learning sparse models.

3.1 STRAIGHT-THROUGH ESTIMATOR FOR SPARSE TRAINING

A straightforward solution for training an N :M sparsity network is to extend the Straight-through
Estimator (STE) (Bengio et al., 2013) to perform online magnitude-based pruning and sparse pa-
rameter updating. The concrete formula is described as:

Wt+1 ←Wt − γtg(W̃(N :M)
t), (6)

where γt is learning rate at time t, and g is the gradient. In STE, a dense network is maintained
during the training process. In the forward pass, the dense weights W are projected into sparse

weights W̃(N :M) = S(W, N,M) satisfying N :M sparsity, and here S(·) is a projection function.
The sparse DM training task is expressed as:

min
S(W,N,M)

L(W;D), (7)

where L is the loss function for training DM. The sparse DM inference is expressed as:

y
(N :M)
t = F(W̃(N :M);xt), (8)

where xt is input data at t, y(N :M)
t is the inference output of N :M sparse DM at time t. We

incorporate sparse mask information into the backward propagation process to mitigate the negative
impact of the approximate gradient calculated by vanilla STE. The updated formula is modified as
follows:

Wt+1 ←Wt − γt

(
g(W̃(N :M)

t) + λW (Wt − W̃(N :M)
t)

)
, (9)

where λW is a tunable hyperparameter, γt is learning rate at time t, and g is the gradient.

Traditional progressive sparse training works well for highly sparse model training (Han et al., 2015;
Pool & Yu, 2021). However, its training data distribution does not change. According to the anal-
ysis of the two distribution shifts in Section 2.3, only one distribution shift is usually optimized
when training using stochastic gradient descent or its improved algorithms. The optimization will
fail if two distribution shifts are optimized simultaneously, such as switching the sparsity rate when
training a DM. Directly training an extremely sparse model, such as 1:32 (1

32 = 0.03125) sparsity,
initialized by dense model weight and using extremely sparse weight gradients for reverse propaga-
tion may cause the sparse model to collapse. In this process, knowledge of the dense model is easily
lost.

3.2 TRANSFER LEARN SPARSE DIFFUSION MODELS

To train a highly sparse DM from a dense DM, we fix the sparsity rate during DM training and
transfer the knowledge to the sparse model via samples generated by the dense model. This method
can accelerate the sparse training of DM and reuse the knowledge of the dense model as much as

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

possible. This method does not change the number of sampling steps used to generate samples. The
following is a formal description of progressive knowledge transfer.

x0 is the data used to train DM. During training, a sparse neural network FW(xt, t) is trained to
predict the noise in xt w.r.t. x0 by minimizing the L2 loss between them. The loss is formulated as
follows:

Ldiff := ||ϵt −FW(xt, t)||22, (10)
The overall loss function of sparse training comprises the original dense task loss Ldense, a diffusion
loss Ldiff that optimizes the diffusion model. It can be formulated as:

Li
sparse = λ1Ldense + λ2Ldiff , i ∈ [1, k], (11)

where λ1 and λ2 are hyper-parameters to balance the losses, with range of [0, 1], and k is the sparse
mask number. When training a sparse model, especially extremely sparse models, we will select a
teacher model, such as a dense or sparse model, and adjust the values of λ1 and λ2.

To achieve 2:4 sparse GPU acceleration, the current sparse training method is to directly train from a
dense model with a sparsity rate of 0 to a sparse model with a sparsity rate of 50%, which can easily
cause information loss. Due to the lengthy training process aimed at obtaining 50% of the sparse
model, we adopt a progressive sparse training process, ensuring we can obtain 50% of the sparse
model with minimal information loss. We add progressive sparse masks to existing STE-based
methods. The progressive sparse DM training task is expressed as follows:

min
S(W⊙M)

L(W;D; [M1,M2, ...,Mk]), (12)

The projection function S(·), which is non-differentiable during back-propagation, generates the
N :M sparse sub-network on the fly. To get gradients during back-propagation, STE computes the
gradients of the sub-network g(W̃) = ▽W̃L(W̃;D) based on the sparse sub-network W̃ , which
can be directly back-projected to the dense network as the approximated gradients of the dense
parameters. The approximated parameter update rule for the dense network can be formulated as:

Wt+1 ←Wt − γtg(W̃(Ni:Mi)
t), i ∈ [1, k], (13)

where γt is learning rate at time t, g is the gradient, W̃(Ni:Mi)
t is the sparse weight with mask

Ni:Mi at time t. This STE-based method could be easily improved by sparse mask regularization
as follows:

Wt+1 ←Wt − γt

(
g(W̃(Ni:Mi)

t) + λW (Wt − W̃(Ni:Mi)
t)

)
, i ∈ [1, k], (14)

where λW is a tunable hyperparameter.

3.3 2:4 SPARSE MASK FOR SAMPLING ON GPU

The structured sparse function provides fully connected layers and convolutional layers with 2:4
sparse weights to achieve 2:4 sparse acceleration on the GPU. If their weights are pruned ahead of
time, these layers can be accelerated using structured sparse functions on the GPU. To test real in-
ference acceleration on an NVIDIA GPU, we used the 2:4 sparse operator in the acceleration library
provided by NVIDIA. NVIDIA Ampere architecture GPUs have implemented CUDA operators to
accelerate the multiplication of such matrices. 2:4 sparsity inference is expressed as:

y
(2:4)
t = F(W̃(2:4);xt), (15)

where xt is input data at t, y(2:4)
t is the inference output of 2:4 sparse DM at time t. Transposable

masks (Hubara et al., 2021) is one of the critical technologies for NVIDIA Ampere architecture
GPUs to accelerate sparse matrices. Transposable masks suggest that a weight matrix and its trans-
pose can be simply pruned by multiplying binary masks, so the backward pass shares the same
sparse weight matrix with the forward pass.

4 RESULTS AND DISCUSSION

In this section, we will compare and discuss the different sparsity rate optimization results and some
ablation study results.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) MS-COCO 256×256 (b) ImageNet 256×256 (c) CIFAR10 32×32 (d) CelebA 64×64

Figure 2: Image generation results of 2:4 sparse U-ViT: selected samples on MS-COCO 256×256,
ImageNet 256×256, on CIFAR10 32×32, and CelebA 64×64.

4.1 EXPERIMENTAL SETTINGS

Evaluation Metrics. In this paper, we concentrate primarily on two types of metrics: The efficiency
metric is MACs; The quality metric is FID, which Equ. (16) calculates.

FID(x,g) = ∥µx − µg∥22 + Tr(σx + σg − 2(σxσg)
0.5), (16)

where Tr represents the trace of the matrix. x and g represent real pictures and generated pictures,
µ represents the mean, and σ is the covariance matrix. We generated 50,000 images and calculated
FID together with the original images.

Baseline Methods. We compare the performance of our method with the following baseline algo-
rithm at 2:4 or other sparsity. Diff-Pruning (Fang et al., 2023b) is a method of structural pruning of
diffusion models. ASP (Automatic SParsity) (Pool & Yu, 2021; Mishra et al., 2021) is a tool that
enables 2:4 sparse training and inference for PyTorch models provided by Nvidia. Nvidia developed
a simple training workflow that can easily generate a 2:4 structured sparse network that matches the
accuracy of the dense network. STE-based Pruning (Bengio et al., 2013; Zhang et al., 2022) only
uses sparse masks for training and inference. To compare the performance of other sparse masks,
we give the results of inference with different sparsity rates. Finally, we provide the ablation study
results of STE-based for the training process and traditional progressive sparse training. We give the
ablation study results of untrained and STE-trained masks for the inference process.

4.2 RESULT COMPARISON

2:4 Sparsity Results. We experimented with four datasets (CIFAR10, CelebA, MS COCO 2014,
and ImageNet) and three resolutions (32×32, 64×64, and 256×256) on Transformer-based and
UNet-based DMs. We reduced the computational load by approximately 50%, and the FID only
increased by 0.44 on average. The higher the resolution, especially for models of similar sizes, the
better the FID effect, such as U-ViT on CIFAR10 32×32 and CelebA 64×64. This way, our method
is more suitable for model acceleration in high-resolution and high-fidelity image generation.

In addition to changes in FID, it is also important to intuitively evaluate the data generated by the
sparse acceleration model. From the generated images in Fig. 2, it can be seen that there is almost
no difference between the images generated by our accelerated model and the images generated by
the original model due to a slight change in FID.

Based on the theoretical acceleration results of 50%, Table 3 shows the actual acceleration results
of testing the 2:4 sparse operator on the GPU, which is approximately 1.2x. The acceleration result
is defined as the ratio between the running of a dense model and a sparse model in the same setting.
The acceleration ratio should almost be the same across all datasets, and the weights have nothing
to do with this. There are two significant hyper-parameters of the experiment: mlp ratio, which sets
the dimension of the MLP layer according to the attention layer dimension, and patch size, which
sets the sequence length for attention computation. Based on experimental experience, the ratio
of sequence length to header dimension affects the speedup ratio. Some other hyper-parameters
are head dimension is 1024, num head is 8, and depth is 1. In the above experiments, we only
used the most primitive acceleration of 2:4 sparsity provided by PyTorch. Defining more advanced

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: The comparison of 2: 4 (50%) sparsity results. No Pruning is the method of U-ViT or
DDPM. U-ViT with LDM is U-ViT using Latent Diffusion Models (LDM) (Rombach et al., 2022)
for data process. Diff-Pruning is a structural pruning method. ASP is the method of sparse pruning
from NVIDIA. STE-based Pruning (Bengio et al., 2013; Zhang et al., 2022) only uses sparse masks
for training and inference. DDPM (Ho et al., 2020) is a diffusion model based on U-Net.

Start DM Datasets Methods FID MACs (G)

U-ViT
(Transformer-Based)

CIFAR10
32x32

No Pruning 3.97 11.34
Diff-Pruning 12.63 5.32

ASP 319.87 5.76
STE-based Pruning 4.23 5.67

Ours 3.81 5.67

CelebA
64x64

No Pruning 3.30 11.34
Diff-Pruning 11.35 5.32

ASP 438.31 5.76
STE-based Pruning 3.75 5.67

Ours 3.52 5.67

U-ViT
(Transformer-Based)

with LDM

MS-COCO
256x256

No Pruning 5.95 11.34
Diff-Pruning 15.20 5.43

ASP 350.87 5.79
STE-based Pruning 8.14 5.68

Ours 7.09 5.68

ImageNet
256x256

No Pruning 3.81 76.66
Diff-Pruning 14.28 34.06

ASP 367.41 37.93
STE-based Pruning 5.83 36.84

Ours 5.25 36.84

DDPM
(UNet-Based)

CIFAR10
32x32

No Pruning 3.23 9.44
Diff-Pruning 12.31 4.75

ASP 328.47 4.91
STE-based Pruning 3.83 4.87

Ours 3.12 4.87

CelebA
64x64

No Pruning 2.94 9.44
Diff-Pruning 11.19 4.75

ASP 441.52 4.91
STE-based Pruning 3.66 4.87

Ours 3.04 4.87

Table 3: Speedup results for 2:4 (50%) sparse model sampling on CIFAR10 32x32 data tested on 4
A40 GPUs. Patch size and mlp ratio are tunable hyperparameters.

Acceleration patch size=1 patch size=2 patch size=4
mlp ratio=1 1.02 1.01 1.01
mlp ratio=2 1.04 0.97 1.01
mlp ratio=4 1.23 1.10 0.98
mlp ratio=8 1.22 1.17 1.08

acceleration operators, such as (Hu et al., 2024), provides further acceleration solutions. If we can
integrate these methods into our model, our model can achieve faster training and inference.

Other Sparsity Results. To better understand the performance of our sparse training method, except
for the 50% sparsity ratio of 2:4, we have also conducted experiments on other sparsity ratios. Since
the ASP method is a sparsity tool provided by Nvidia for GPU hardware acceleration, no other
sparsity ratios are provided. The following is mainly a comparison of different sparsity levels with
other methods.

Fig. 3(a) shows the effect of different sparsity ratios on FID. We evaluated ten sparsity ratios with
32:32, 31:32, 15:16, 7:8, 3:4, 2:4, 1:4, 1:8, 1:16, and 1:32. As shown in this figure, it does not mean
that the greater the sparsity, the better the FID. For example, the sparsity of 31:32 (3132 = 0.96875)
and the sparsity of 15:16 (1516 = 0.9375), which is higher than the FID of 7:8 with a sparsity of

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(78 = 0.875). In addition to GPU hardware acceleration, the sparsity ratio 2:4 also achieves good
FID, proving the 2:4 sparse mask training and inference effectiveness.

Except for the 2:4 sparsity ratio, Fig. 3(c) shows that our method achieves significantly lower FID
than the Diff-Pruning method at different sparse ratios on CIFAR10 and CelebA64.

0.0 0.2 0.4 0.6 0.8 1.0
Sparse Ratio (%)

4

6

8

10

12

14

16

FI
D

CelebA64
CIFAR10

(a) The relationship between FID
and mask sparsity ratio.

100 200 300 400 500
Training Steps (x1000)

10

15

20

25

30

FI
D

10
K

Fix 2:4
31:32 to 2:4
15:16 to 2:4
7:8 to 2:8

(b) Comparison between tradi-
tional progressive and fixed sparse
training.

2 4 6 8 10
MACs (G)

0

50

100

150

200

FI
D

C10 DIff-Pruning
C10 Ours
Cel DIff-Pruning
Cel Ours

(c) Comparison of FID, MACs
trade-off.

100 200 300 400 500
Training Steps (x1000)

5

10

15

20

FI
D

C10 STEs
C10 Ours
Cel STEs
Cel Ours

(d) Comparison of 2:4 sparse train-
ing process.

2 4 6 8 10
MACs (G)

4

6

8

10

12

14

16

FI
D

C10 STEs
C10 Ours
Cel STEs
Cel Ours

(e) Comparison of FID, MACs
trade-off.

0.0 0.2 0.4 0.6 0.8 1.0
Sparse Ratio (%)

0

50

100

150

200

250

300

FI
D

Untrained Mask
STE-trained Mask
Ours

(f) Comparison between the un-
trained, STE-trained and our mask.

Figure 3: The comparison of sparsity results.

4.3 ABLATION STUDY

Our method involves performing sparse mask fine-tuning on the existing trained model. Masks need
to be trained during the training process. We designed three ablation experiments to demonstrate
better our method design’s rationality and the necessity of each step. The first one is the STE-based
method. The second one is traditional progressive sparse training of DM. The last one involves
fixing the mask during the training process and not performing sparse training.

STE Sparse Training. As shown in Fig. 3(d), on datasets CIFAR10 and CelebA64, the learning
curve of STE converges significantly slower than our method, mainly because our sparse model is
trained with knowledge transfer. As shown in Fig. 3(e), STE’s results are worse than ours, mainly
because our method adds sparse mask information during back-propagation. At high compression
ratios, such as 1:32, transfer learn sparse masks also plays an important role.

Traditional Progressive Sparse Training. As shown in Fig. 3(b), DM is trained on dataset CI-
FAR10. Training after switching sparse masks for the first time is almost ineffective. Every 100,000
training steps, the sparsity of masks is increased for progressive sparse training. The traditional pro-
gressive sparse training does not work well on the diffusion model, especially when switching the
sparsity rate every time. It is equivalent to training stopped. However, the fixed sparse mask can be
continuously trained until convergence. This comparison shows that simultaneously transforming
the data and model distribution will fail DM training, prompting us to propose a new method for
gradually sparsely training DMs.

Sparse Mask Inference. Unlike our trained masks, we generate untrained sparse masks for sparse
pruning diffusion models. Dense model weights are imported into the sparse model, and the sparse
model is not trained. As shown in Fig. 3(f), on dataset CIFAR10, the untrained mask’s result is
the worst at all MACs conditions because the mask did not participate in training. The STE-trained

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

mask is worse than ours because the mask did not transfer knowledge from dense model. Compared
to the STE-trained masks, our method achieves 1 less FID at 9 sparsity rates.

5 RELATED WORK

5.1 N: M SPARSITY

A neural network with N :M sparsity (M -weights contains N non-zero values) satisfies that, in
each group of M consecutive weights of the network, there are at most N weights have non-zero
values (Zhou et al., 2021; Chmiel et al., 2022). APEX’s Automatic SParsity (ASP) (Pool & Yu,
2021; Mishra et al., 2021)) is a 2:4 sparse tool provided by NVIDIA. This tool obtains a 2:4 sparse
network and can achieve nearly 2x runtime speedup on NVIDIA Ampere and Hopper architecture
GPUs (Nvidia, 2020). A provable and efficient method for finding N: M transposed masks for
accelerating sparse neural training (Hubara et al., 2021). Compared with dense networks, sparse
network training has gradient changes, and methods such as STE (Bengio et al., 2013) should be
used to improve training performance. In the forward stage, sparse weight is obtained by pruning
dense weight. In the backward stage, the gradient w.r.t. sparse weight will be directly applied to
dense weight. SR-STE (Zhang et al., 2022) enhances the backward pass information by integrating
the sparse weight of the forward pass into the backward pass. DominoSearch (Sun et al., 2021)
found mixed N: M sparsity schemes from pre-trained dense, deep neural networks to achieve higher
accuracy than the uniform-sparsity scheme with equivalent complexity constraints. The N: M sparse
method is also used in SparseGPT (Frantar & Alistarh, 2023) to accelerate the LLM generation
model GPT. Although many N: M sparse methods exist, none have been proven effective for sparse
DM.

5.2 DIFFUSION MODEL PRUNING

Pruning is one of the most used methods to reduce the calculation time of DNN, including DM. The
pruning method was divided into structured pruning and unstructured pruning. Structural pruning
aims to physically remove a group of parameters, thereby reducing the size of neural networks. In
contrast, unstructured pruning involves zeroing out specific weights without altering the network
structure (Fang et al., 2023a). Sparsity can reduce the memory footprint of DM to fit mobile devices
and shorten training time for ever-growing networks (Hoefler et al., 2021). Pay attention to features
and selection of useful features for the target dataset (Wang et al., 2020), which can also reduce
computational complexity. The parameter-grouping patterns vary widely across different models,
making architecture-specific pruners, which rely on manually designed grouping schemes, non-
generalizable to new architectures. Depgraph (Fang et al., 2023a) can tackle general structural
pruning of arbitrary architecture. Structured sparsity was also used for large language models (Ma
et al., 2023; Frantar & Alistarh, 2023; Guo et al., 2023). Because Transformer has been proven to
outperform the other networks in multiple applications, including DM. ToMe (Bolya & Hoffman,
2023) merge redundant tokens of Transformer. LD-Pruner (Castells et al., 2024) and P-ESD (Yang
et al., 2024) prune stable diffusion for specific tasks. There are also proposals for early exiting for
accelerated inference in DM (Moon et al., 2023). Although there are many pruning methods for
DM, either the sparse model FID is poor or structured 2:4 sparsity is not implemented for general
base DM.

6 CONCLUSION

In this paper, we studied how to improve the efficiency of DM by sparse matrix for 2:4 sparse
acceleration GPU. The existing STE-based methods make it difficult to optimize sparse DM. To
address this issue, we improve the STE method and propose to gradually transfer knowledge from
dense models to sparse models. Our method is tested on the latest Transformer-based DM, U-ViT,
and UNet-based DM, DDPM. We trained the 2:4 and other sparse models to perform better than
other methods. Our approach also provides an effective solution for DM deployment on NVIDIA
Ampere architecture GPUs, achieving about 1.2x acceleration.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

7 ETHICS STATEMENT

While our motivation is to make diffusion models generate images faster, we also recognize the
ethical implications inherent in model pruning, as sparse optimization may introduce unintended
biases. There are differences between traditional evaluation metrics (such as FID scores) and human
eye evaluation, and optimization for FID may not capture subtle deviations in human vision. In
addition to performance improvements to diffusion models, we are also actively focusing on the
ethical aspects of AI deployment. We are committed to preventing the spread of content that may
have a negative social impact. Prevent unintended consequences by acknowledging the limitations
of FID indicators.

8 REPRODUCIBILITY

Implementation Details. All of the experiments are implemented by PyTorch and conducted on
servers with 24 GPUs, eight NVIDIA 4090, eight A40, and eight 3090 GPUs. We evaluate the
FID score every 50K training iterations on 10K generated samples (instead of 50K samples for
efficiency).

The anonymous address of the source code for the paper is https://github.com/aaa-bbb-
111/SparseDM. The paper code implementation consists of two parts. The first part, sparse training,
trains the sparse DM and verifies the acceleration theory of the sparse diffusion model. The second
part, GPU inference, verifies GPU inference acceleration.

A APPENDIX

A.1 LIMITATIONS AND FUTURE WORK

The MACs of the sparse diffusion model are significantly reduced, but the acceleration effect on
real processors is limited, especially the 2:4 sparse acceleration that can currently only reach about
1.2 times. Future work will design sparse acceleration schemes for different processors to achieve
better acceleration.

A.2 PARAMETER COUNTS FOR EACH LAYER OF THE DM BEFORE AND AFTER SPARSE
PRUNING

We add a 2:4 sparse mask to each convolutional and fully connected layer, so that all models have
50% of the parameters of each convolutional and fully connected layer. For example, the 5th fully
connected layer of U-ViT has 600,000 parameters, which becomes 300,000 parameters after sparse
masking. We have added this explanation in the revised paper.

MLP Layer1

MLP Layer2

Mult-head
Attention Layer1

Mult-head
Attention Layer2

Add Masks
for Training

MLP Layer1

MLP Layer2

Mult-head
Attention Layer1

Mult-head
Attention Layer2

Model Architecture

Figure 4: Add sparse mask to each layer

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

A.3 THE RELATIONSHIP BETWEEN DIFFUSION TRAINING AND SPARSE TRAINING

As shown in Fig. 3(b) of this paper, from the empirical experimental results, it is observed that fixed
sparsity applies a consistent distribution shift for all noise levels in diffusion training, while pro-
gressive sparsity training gradually shifts the predefined noise level, which may hinder the diffusion
training process.

In theory, the relationship between diffusion training and sparse training is mainly explained from
the perspective of the difficulty of convergence of the SGD optimizer. Existing optimizers are de-
signed for diffusion training and sparse training, respectively, and the design of each optimizer is
challenging. SGD takes the current optimal gradient direction each time it descends, so when using
stochastic gradient descent training, usually only one distribution shift is optimized. However, if
there are two distribution shifts, the SGD gradient descent direction may not be the current opti-
mal one. Therefore, if two distribution shifts are optimized at the same time, such as switching the
sparsity rate when training DM, the optimization will fail.

A.4 DENSE AND SPARSE MATRIX ON GPU

As shown in Fig. 5: Dense and sparse matrices on the GPU, in order to implement the sparse
structure, Nidia CUDA defines an additional 2-bit indices matrix for calculation. Therefore, when
the sparse matrix is not large enough, this additional indices matrix overhead will make the overall
result slower. Therefore, on the GPU, the larger the network model, the better the acceleration results
may be. Fig. 5 is from Google Image. https://images.app.goo.gl/7CDgZVcuUYG8rzyc6

Figure 5: Dense and sparse matrix on GPU.

REFERENCES

Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-dpm: an analytic estimate of the opti-
mal reverse variance in diffusion probabilistic models. In International Conference on Learning
Representations, 2022.

Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth
words: A vit backbone for diffusion models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 22669–22679, 2023.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Daniel Bolya and Judy Hoffman. Token merging for fast stable diffusion. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshop, pp. 4598–4602,
2023.

Thibault Castells, Hyoung-Kyu Song, Bo-Kyeong Kim, and Shinkook Choi. Ld-pruner: Efficient
pruning of latent diffusion models using task-agnostic insights. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshop, pp. 821–830, 2024.

Brian Chmiel, Itay Hubara, Ron Banner, and Daniel Soudry. Optimal fine-grained n: M sparsity for
activations and neural gradients. arXiv preprint arXiv:2203.10991, 2022.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
any structural pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16091–16101, 2023a.

Gongfan Fang, Xinyin Ma, and Xinchao Wang. Structural pruning for diffusion models. NeurIPS,
2023b.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Song Guo, Jiahang Xu, Li Lyna Zhang, and Mao Yang. Compresso: Structured pruning with col-
laborative prompting learns compact large language models. arXiv preprint arXiv:2310.05015,
2023.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. The Journal
of Machine Learning Research, 22(1):10882–11005, 2021.

Yuezhou Hu, Kang Zhao, Weiyu Huang, Jianfei Chen, and Jun Zhu. Accelerating transformer pre-
training with 2: 4 sparsity. arXiv preprint arXiv:2404.01847, 2024.

Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Joseph Naor, and Daniel Soudry. Accel-
erated sparse neural training: A provable and efficient method to find n: m transposable masks.
Advances in neural information processing systems, 34:21099–21111, 2021.

Zhimeng Stephen Jiang, Xiaotian Han, Hongye Jin, Guanchu Wang, Rui Chen, Na Zou, and Xia
Hu. Chasing fairness under distribution shift: A model weight perturbation approach. Advances
in Neural Information Processing Systems, 36, 2024.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems, 35:26565–26577,
2022.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095,
2023.

Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models: Synthe-
sizing high-resolution images with few-step inference. arXiv preprint arXiv:2310.04378, 2023a.

Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu, Patrick von Platen, Apolinário Passos, Longbo
Huang, Jian Li, and Hang Zhao. Lcm-lora: A universal stable-diffusion acceleration module.
arXiv preprint arXiv:2311.05556, 2023b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. arXiv preprint arXiv:2305.11627, 2023.

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh,
Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks. arXiv preprint
arXiv:2104.08378, 2021.

Taehong Moon, Moonseok Choi, EungGu Yun, Jongmin Yoon, Gayoung Lee, and Juho Lee. Early
exiting for accelerated inference in diffusion models. In ICML 2023 Workshop on Structured
Probabilistic Inference, Generative Modeling, 2023.

Nvidia. Nvidia a100 tensor core gpu architecture. https://www.nvidia.com/content/dam/en-
zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf, 2020.

Jeff Pool and Chong Yu. Channel permutations for n: M sparsity. Advances in neural information
processing systems, 34:13316–13327, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
International Conference on Learning Representations, 2022.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021.

Wei Sun, Aojun Zhou, Sander Stuijk, Rob Wijnhoven, Andrew O Nelson, Henk Corporaal, et al.
Dominosearch: Find layer-wise fine-grained n: M sparse schemes from dense neural networks.
Advances in neural information processing systems, 34:20721–20732, 2021.

Kafeng Wang, Xitong Gao, Yiren Zhao, Xingjian Li, Dejing Dou, and Cheng-Zhong Xu. Pay atten-
tion to features, transfer learn faster cnns. In International conference on learning representations,
2020.

Tianyun Yang, Juan Cao, and Chang Xu. Pruning for robust concept erasing in diffusion models.
arXiv preprint arXiv:2405.16534, 2024.

Yuxin Zhang, Mingbao Lin, Zhihang Lin, Yiting Luo, Ke Li, Fei Chao, Yongjian Wu, and Ron-
grong Ji. Learning best combination for efficient n: M sparsity. Advances in Neural Information
Processing Systems, 35:941–953, 2022.

Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. Unipc: A unified predictor-
corrector framework for fast sampling of diffusion models. NeurIPS, 2023.

Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu. Dpm-solver-v3: Improved diffusion ode
solver with empirical model statistics. In Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023.

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and Hong-
sheng Li. Learning n: M fine-grained structured sparse neural networks from scratch. In Interna-
tional Conference on Learning Representations, 2021.

13

	Introduction
	Problem Formulation
	Diffusion Models
	Sparse Pruning
	Distribution Shift on DM Training and Sparse Pruning

	Sparse Finetuning DM
	Straight-Through Estimator for Sparse Training
	Transfer Learn Sparse Diffusion Models
	2:4 Sparse Mask for Sampling on GPU

	Results and Discussion
	Experimental Settings
	Result Comparison
	Ablation Study

	Related Work
	N: M Sparsity
	Diffusion Model Pruning

	Conclusion
	Ethics Statement
	Reproducibility
	appendix
	Limitations and Future Work
	Parameter counts for each layer of the DM before and after sparse pruning
	The relationship between diffusion training and sparse training
	Dense and sparse matrix on GPU

