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A PROOFS

A.1 PROOF OF THEOREM/I]

Proof. Consider the following special case of MINMAXSUM-K: Let K = 1 and for each i, we

have ||u;||2 = 1 where || - ||2 is the Ly norm. In this case, the problem becomes
min  max Z Agiu; 4)
Adtr b ies
S.t. HULHQ =1
| Adallz =1

which is equivalent to the spherical discrepancy problem, which is known to be APX-hard (Jones &
McPartlonl 2020).

Now, for any K > 1, we reduce the problem of spherical discrepancy to MINMAXSUM-K as
follows. For an arbitrary problem instance of the latter with m vectors, we generate another (K — 1)
copy of each vector. These, together with the original ones, we have K'm vectors. Consider the
MINMAXSUm-K problem instance on these K'm vectors. It is easy to prove that a solution of this
MINMAXSUm-K instance is optimal if and only if it is also the optimal solution of the original
spherical discrepancy instance. This concludes the proof. O

Remark. Consider matrix U which has its i*? column as u;. It is easy to show that MINMAXSUM
can be rewritten as follows:

min  maxz? Uy &)
x y
st ||z|le =1
ylloo =1
where || - || is the max-norm, and x and y are (d + 1)-dimensional and m-dimensional vectors,

respectively. The spherical discrepancy problem (i.e., MINMAXSUM-1), on the other hand, is a
modified version of this where we replace the second constraint with ||y||; = 1. That is, we take the
L1 norm of y instead of the max-norm. We conjecture that if we take the general form of ||y||, = 1
constraint with p going from 1 to oo, the problem becomes more difficult in terms of computational
complexity. Thus if with the L.; norm constraint the problem is already APX-hard, we conjecture
that MINMAXSUM is also APX-hard. In addition, based on the argument of [Ko & Lin| (1995),
we further conjecture that MINMAXSUM is I15-hard, where IT5 denotes the second level of the
polynomial-time hierarchy.

A.2 PROOF OF THEOREM[2]

Proof. First assume that one of the candidate vectors is within angle 0 of the optimal direction A} ;.
We denote this candidate vector by n. Note that, for any u € R? we have:

nlu—Agu=(n—Ag) " < fn— A |l
and note that:
(n— A3y) (0 — A3y) = [n]® — 207 Ay, + Jul]® = 2 - 2cos(6) = 2sin®(9/2)
Putting both observations together we have:
n'u—n'Aj < V2|ulsin(6/2)
It then follows that:

Se= < > nTui <Y Af w4 V2msin(0/2)

i:n,;rui>0 i:A§+1ui>(]

Thus to prove the proposed result, we need only show that such a candidate n will be sampled with
probability §. This result was proved by (Gimadi & Rykov|(2016), as a result we defer the interested
reader to the proof of Theorem 4 in (Gimadi & Rykov|(2016). [
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A.3 NECCESSARY AND SUFFICIENT CONDITION ON OPERATOR A

It is well known that a necessary and sufficient condition on matrix A to be a homeomorphism is
that A is invertible. For the sake of completeness we provides the statement and its proof below:

Theorem 3. Let E be complete metric and finite dimensional linear space. A square matrix A can
be seen as a linear map A : E — E. Then A is a homeomorphism if and only if det A # 0.

Proof. If A is a homeomorphism, then A is bijective and hence invertible (det A # 0). Conversely,
if detA # 0, then A is bijective. Since E is finite dimensional, A is continuous. Then A~ is
continuous via Banach’s isomorphism theorem. Therefore, A is a homeomorphism. O

Working on R™ a square matrix only has to be invertible to be a homeomorphism. However, in prac-
tice, even a random matrix is invertible. In probability’s language, since X = detA is a continuous
random variable, the probability that X = 0 is 0 which means that we should not worry about the
invertible condition for the matrix A. Also, ones should note that invertible matrix is full rank.

B ADDITIONAL EXPERIMENTAL DETAILS

Detailed description of experiments. All the pretrained models used in our experiment were
sourced from Keras. For each dataset, we constructed binary classification tasks in the following
manner. First, we select one of the many classes in the dataset. We call this class, the target class.
Every training example belonging to the target class is given a positive labelling, whilst all remain-
ing training examples are given a negative label. In order to have a balanced dataset, we select
(uniformly at random) 1000 examples belonging to the target class, and 1000 examples belonging
to other classes. Our methodology only differs for the ISIC’ 19 skin cancer dataset, as there not 2000
available images. We then pass each selected example through the pretrained network in question
to compute the precision of the network on this new binary classification task. More specifically,
we take the precision of the pretrained network to be the precision of the the most correct ImageNet
class, that is, the class with the highest proportion of positive labellings.

For each input z; from our selected task, let the output of the last layer (the feature vectors)
be v;. Now we generate two data sets SY=" = {(v1,1), (v2,1),..., (v1000,1)}, and S¥=" =
{(v1,t1), (va,t2), ..., (v1000, t1000)}, in Which ¢; is the predicted value (1 for a prediction of the
selected class, or O for any other prediction).

Next we estimate the PDF function p; for S} =! using Gaussian KDE. We estimate the PDF function

po for the subset S5 of SY =1 consisting of only (v;, 1). However, the v; feature vector has very large
dimension (around 1500). As a result, the density is so small so that it appears to be zero and
therefore is not meaningful. To mitigate this issue, we reduce the dimensionality of the feature
vector to 32 using principal component analysis, and perform min-max normalisation.

The TV norm of (p; — p2) is calculated by

Ip1 — p2llpy = Z [P1,n0r (Vi 1) = P2,nor (vi, t4)]
v, €J

where p; o is a normalised version of p; (i.e., to discretize a continuous pdf into a probability
distribution over finite samples), and J = {v; : D1 nor (Vi, 1) — D2.nor (vi, t;) > 0}.

RMSS transformation. Suppose the feature vector v; is d-dimensional. Consider the (d + 1)
dimensional point u; = (v;, p1,; — P2,;) Where D1 ; = D1 nor(vs, 1) and pa; = P2 por(vi, t;) for all
feature vectors v;. The process to compute the transformation is as follows.

1. Randomly and uniformly generate K unit vectors ny,ns, . .., ng in R4t

2. For each unit vector ny calculate ny - u; for all u; points, where - is the inner product.
Now, let’s choose the points u; for which ny - u; > 0, and sum up the inner product
nk - u; over them. Let’s S; be equal to this sum. Thatis S;” = >, ny - u; such that

ng - u; > 0. Similarly we define S, to be the sum of ny, - u; for ng - u; < 0. We denote

by S, = max{S;", —S, }. Itis easy to prove that Sy, is the TV distance between p; and po
after the transformation determined by ny.
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3. Among all the Sj, choose the smallest one: £* = argmax, Sj. Let denote ny- the corre-
sponding unit vector.

4. Use the Gram-Schmidt orthogonalization algorithm over vectors nj and eq,...,eq41
(where e; is the i-th unit vector). After the orthogonalisation we obtain d + 1 vectors,
then ignore the vector having the smallest norm. Let the remainder be g1, qa, - - ., ¢i+1.

Then our transformation matrix will be
R= [qg’ qg? "'qg+1’ nZT}

We output a square matrix R with dimension (d + 1)z(d + 1). In our experiments we
reduced to d = 32 with PCA, so for us R € R33.

5. We now obtain the PDF’s after applying the matrix transformation. Let P, = (v;, p1 ;) and
P5 = (v;,p2,5) Where p1 ; = p1 nor (i, 1) and pa ; = P2 nor (Vi) ;).
We take the last entry pfi(v;, 1) in each output vector R - P;. The entry p¥(v;, 1) is the
image of p1 nor(vi, 1) under the action of R. We then normalize p¥(v;,1) for all z; =

(vi,1) € SY='. Similarly, we obtain DY por(2:) forall z; € S¥='. The value P or(2i)
serves as the joint probability P(xz;,t; = 1) after the action of the matrix R.

We also compute the total variation norm of p; — ps after transformation by the matrix R by
”pl - pQHTV = Z [pfnor(vi’ 1) - pg,nor(vi? tl)]
v, €J
where J = {v; : pf,.,, (vi, 1) — p&,,0 (v, 1) > 0}

Next we analyse the feature vectors for the negative labels. For each input x; which is classified as
negative, let the output of the last layer (the feature vectors) be a;. Now as before we generate a data

set S§7° = {(a1,b1), (az,b2), - .-, (a1000, b1000) }-

Finally, we repeat the same procedure to generate P(v;,t; = 0). Having both P(v;,t; = 0) anf

P(v;,t; = 1) calculated, we can use them to implement our classifier. In particular, if for a vector v

we have P(v,t = 1) > P(v,t = 0), then

P(v,t =0)
P(v)

and therefore we assign v to class 1, and vice versa.

P(v,t =0)

Pt=1Jv) = > P(t=0v) = I;(U) ,

Hardware details. We ran experiments on an internal machine which has the following specifica-
tion: Core 17-10700K @ 3.8GHz 16 core CPU and NVIDIA GeForce RTX 3090 graphics card.

C ADDITIONAL NUMERICAL RESULTS

As well as computing the accuracy for each task, we also computed the change in total variation dis-
tance before/after applying our transformation. Tables 5-6 display the total variation (TV) distance.
Note that the TV distance decreases after RMMS is applied, as expected. Interestingly, although the
TV distance decrease is huge in the skin cancer dataset, this does not correspond to a similarly large
increase in precision.

We also present the change in the precision and F-score values before and after applying our lin-
ear transformation in transfer learning from ImageNet to CIFAR-100, using the ResNet50 network
(Figures [4 and [5). We also include the F-score of the experiments run on EfficientNetB3 and In-
ceptionV3 network architectures in Figures [6] and [7] (before and after applying our transformation
method).

D FURTHER DEFINITIONS IN TOPOLOGICAL DATA ANALYSIS

In this section, we give some more detailed descriptions of the elements of topological data analysis.
As mentioned earlier, for a more detailed introduction to topological data analysis, we refer the
reader to|Edelsbrunner & Harer|(2010).
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Table 5: Total variation norm, computed as described in Appendix B, of EfficientNetB3, ResNet50,
and InceptionV3 trained on ImageNet when attempting to classify the given category in CIFAR-10,
before and after applying our learnt linear homeomorphism.

TV norm Airp’'ne Autom’le Bird Cat Deer Dog Frog Horse Ship Truck

EfficientNetB3 Before 0.588  0.639 0.742 0.822 0.502 0.861 0.724 0.193 0.616 0.271
After 0.032  0.105 0.119  0.194 0.020 0.164 0.003 0.037 0.056 0.005

ResNet50 Before 0.660  0.488 0.844 0.908 0.696 0.862 0.833 0.508 0.657 0.358
After  0.066  0.053 0.205 0.016 0.043 0.076 0.114 0.103 0.045

InceptionV3 Before 0.484  0.569 0.857 0945 0.670 0.787 0.851 0.219 0.642 0.235
After 0.036  0.039 0.0234 0.156 0.028 0.013 0.187 0.028 0.024 0.015

Table 6: Total variation norm, computed as described in Appendix B, of EfficientNetB3, ResNet50,
and InceptionV3 trained on ImageNet when attempting to classify the given category in ISIC’ 19,
before and after applying our learnt linear homeomorphism.

TV norm Melanoma Nevus
EfficientNetB3 Before 0.741 0.205
After 0.038 0.015
ResNet50 Before  0.769 0.480
After 0.010 0.129
InceptionV3 Before  0.723 0.418
After 0.144 0.081
120
lOD LN L 1] o L 1] 0 00 LR B " o L J o L (12 L BN J oo e L ]
1o . %o % ! * ® ® e * . e ... ’
° . . ® L4 L I L ad ° ° P w
e ® o o L NP
80 ° . % @ PS . L4 . o .
° o . ® L) o
g Ps o e® o 1t . © ¢ 1 . o
2 60 [° ? % s ® . S
@ [ *e ¢ e ° ° ° N ¢ i @ 4
o ... "“o ® oo 0,8 e o e ° . ®0ee '., e L. o0
40 o ™ : o ® ° ! % o .
20
0
0 10 20 30 40 50 60 70 80 90 100
Class index (CIFAR-100 dataset)
e Before e After Linear (Before) Linear (After)

Figure 4: Precision results on CIFAR-100 dataset, trained with the Resnet50 model. It shows the
precision of the network before and after using our linear transformation module.

Given a topological space X, and an integer k, we denote the kth singular homology group of X
by Hy(X), and the kth Betti number by S (X) = dim(Hg). Any continuous function f : X — Y
induces linear maps fj : Hi(X) — Hg(Y) between the homology groups. The results which follow
apply to the class of tame functions. Before we proceed with a definition of tame functions, we must
first define the concept of a homological critical value.

Definition D.1. Let X be a topological space and f a real function on X. A homological critical
value of f is a real number a for which there exists an integer k, such that for all sufficiently small
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Figure 5: F-score values on CIFAR-100 dataset, trained with the Resnet50 model. It shows the
precision of the network before and after using our linear transformation module.
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Figure 6: F-score values on CIFAR-100 dataset, trained with the EfficientNetB3 model. It shows
the precision of the network before and after using our linear transformation module.

€ > 0, the map Hp(f'(—00,a —€]) — Hp(f1(—o00,a + €|) induced by inclusion is not an
isomorphism.

More generally speaking, homological critical values are levels at which the homology of the sub-
level sets change. For Morse functions, homological critical values correspond with the standard
definition of critical values. In other words, homological critical values of f correspond to the
values of f at its critical points. We now proceed with the definition of tame functions.

Definition D.2. A function f : X — R is tame if it has a finite number of homological critical values
and the homology groups Hy,(f ~1(—o0, a]) are finite dimensional for all k € 7 and a € R.

Note that all Morse functions defined on compact manifolds are tame. Moreover, we write F,, =
Hy(f~1(—00,]), and for x < y, we write [y + Fr — I, to denote the map induced by the sublevel
of set of « in that of y. Furthermore, let Y = im f¥ denote the image of F, in F},. We refer to the
groups FY as the persistence homology groups. The persistence homology groups inform us about
the topological relationships between sublevel sets.
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Figure 7: F-score values on CIFAR-100 dataset, trained with the InceptionV3 model. It shows the
precision of the network before and after using our linear transformation module.

The persistent homology groups of a tame function can be succinctly represented by a planar draw-
ing known as a persistence diagram. Let f : X — R be a tame function, (a;);=1,... » its homological
critical values, and (b;);=1,.., an interleaved sequence, that is, b,_1 < a; < b; for all 7. We set
b_1 = a9 = occand b,y1 = apy1 = +00. For two integers 0 < ¢ < j < n + 1 we define the
multiplicity of a pair (a;, a;) by: ! = 5117):,1 - B:J + ﬁfjfl - ,Bsfll where Y = dimF¥ denote the
persistent Betti numbers for co < & < y < oo. The multiplicity of each pair (a;, a;) is in fact the
same for all possible interleavings, and thus is well-defined. We are now ready to formally define
persistence diagrams.

Definition D.3. The persistence diagram D(f) C R? of f is the set of points (a;, a;) counted with

multiplicity ug for 0 < i < j < n+ 1, union all points on the diagonal, counted with infinite
multiplicity.
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