
Under review as a conference paper at ICLR 2023

APPENDIX

A NOTATION

f Function corresponding to a neural network

� ReLU activation function

�0 Derivative of a function �

sl Preactivations at layer l

al = �(sL) Activations at layer l

x Input data

y Target data

x(i) Input data point i

pdata Data distribution from which x is sampled

N Number of data points

L Number of layers in a network

T Number of tasks

✓ Parameters of a neural network

✓t Parameters obtained after training on task t

z = f(x;✓) Prediction of the network f on x parameterized by ✓

⇢ Output space distance, for instance Euclidean distance

D(✓0,✓1) Function space divergence between networks parameterized by ✓0 and ✓1

J = r✓f Network Jacobian

G✓ Weight space metric matrix

F✓ Fisher information matrix

m Bernoulli random variable

µ Bernoulli mean parameter

B RECURSION EQUATIONS FOR BGLN-D

We derive the determinstic version of our algorithm by taking expectations and covariances for
the quantities in equations 5 to 12. We use linearity of expectations and our assumptions of
independence between the Bernoulli random variables. We also assume Cov(a0, �a) is close to 0
and ignore it in our computations. This assumption is tested empirically in our experiments and we
find that it does not severely move the FSD estimate away from the true empirical FSD (see Figure
3a). The complete steps for BGLN-D computations are given in Algorithm 2.

C GENERALIZATION TO CONVOLUTIONAL NETWORKS

The generalization of BGLN-S to convolutional networks involves passing the inputs sampled us-
ing the data moments through the network. In convolutional networks, ReLU activation is usually
applied after the convolutional and the fully connected layers. At each ReLU, we use the Bernoulli
mean parameters to sample activation signs and obtain the difference of activations, �a. We treat
any dropout layers as they are treated at evaluation time, i.e. as the identity function. Finally, the
Euclidean distance between the final layer outputs leads to the stochastic estimate of the FSD. The
complete procedure is shown in Algorithm 3.

13

Under review as a conference paper at ICLR 2023

Algorithm 2 BGLN-D

Require: E[x], Cov(x), {W , b}L�1
1 , {µ}L�1

1
1: E[a0],E[a1] E[x]
2: Cov(a0), Cov(a1) Cov(x)
3: E[�a], Cov(�a) 0
4: for l 1 to L� 1 do
5: E[s0] W (l)

0 E[a0] + b(l)
0

6: E[�s] �W (l)E[a0] + W (l)
1 E[�a] + �b(l)

7: E[a0] µ(l) � E[s0]
8: E[�a] µ(l) � E[�s]

9: Cov(s0) W (l)
0 Cov(a0)W

(l)T
0

10: Cov(�s) �W (l)Cov(a0)�W (l)T + W (l)
1 Cov(�a)W (l)T

1

11: Cov(a0) (µ(l)µ(l)T)� Cov(s0)
12: Cov(�a) (µ(l)µ(l)T)� Cov(�s)
13: end for
14: E[�z] �W (L)E[a0] + W (L)

1 E[�a] + �b(L)

15: Cov(�z) �W (L)Cov(a0)�W (L)T + W (L)
1 Cov(�a)W (L)T

1

16: return 1
2 ||E[�z]||2 + 1

2 tr Cov(�z)

Algorithm 3 BGLN-S (Conv)

Require: E[x], Cov(x), {layer}L�1
1 , {µ}L�1

1
1: E[a0],E[a1] E[x]
2: Cov(a0), Cov(a1) Cov(x)
3: a0,a1 ⇠ N (E[a0], Cov(a0))
4: �a 0
5: for l 1 to L� 1 do
6: if layer is Conv or FC then
7: s0 layer(a0,grad=False)
8: s1 layer(a1)
9: else if layer is ReLU then

10: �s = s1 � s0

11: m ⇠ Ber(µ(l))
12: �a m��s
13: else if layer is Dropout then
14: pass
15: else
16: a0 layer(a0)
17: a1 layer(a1)
18: end if
19: end for
20: �z s1 � s0

21: return 1
2 ||�z||2

D CONTINUAL LEARNING EXPERIMENTS

D.1 EXPERIMENTAL DETAILS

Datasets. Split MNIST consists of five binary prediction tasks to classify non-overlapping pairs
of MNIST digits (Deng, 2012). Permuted MNIST is a sequence of ten tasks to classify ten dig-
its, with a different fixed random permutation applied to the pixels of all training images for each
task. Finally, Split CIFAR100 consists of six ten-way classification tasks, with the first being CI-
FAR10 (Krizhevsky et al., a), and subsequent ones containing ten non-overlapping classes each from
the CIFAR100 dataset (Krizhevsky et al., b).

14

Under review as a conference paper at ICLR 2023

Table 4: CL tasks training epochs used in CL experiments.

Method Split MNIST Permuted MNIST Split CIFAR100

NTK (coreset) 15 5 80
BGLN-S 15 15 45
BGLN-D 15 15 -
BGLN-S (CW) 15 15 85
BGLN-D (CW) 15 15 -

Table 5: FSD scale used in CL experiments.

Method Split MNIST Permuted MNIST Split CIFAR100

NTK (coreset) 1 1 0.005
BGLN-S 5 1 0.0005
BGLN-D 0.1 0.005 -
BGLN-S (CW) 2 1 0.0000001
BGLN-D (CW) 0.1 0.005 -

Table 6: Batch size used in CL experiments.

Method Split MNIST Permuted MNIST Split CIFAR100

NTK (coreset) 256 256 512
BGLN-S 32 128 512
BGLN-D 32 128 -
BGLN-S (CW) 32 128 512
BGLN-D (CW) 32 128 -

Architectures. We use standard architectures used by existing methods for fair comparison. For
regression and the MNIST experiments, we use a MLP with two fully connected layers and ReLU
activation. For Split CIFAR100, we use a network with four convolutional layers, followed by two
fully connected layers, and ReLU activation after each. Both Split MNIST and Split CIFAR100
models have a multiheaded final layer.

Hyperparameters. We have performed a grid search over some key hyperparameters and used the
ones that resulted in the best final average accuracy across all tasks. All hyperparameter search was
done with random seed 42. We then took that best set of hyperparameters, repeated our experiments
on seeds 20, 21, 22, and reported the average and standard deviation of our results.

For the learning rate, we used 0.001 for all CL experiments except the BGLN-S method for Split
MNIST and BGLN-D method for Permuted MNIST, where we used 0.0001 instead.

We used the same number of epochs on each CL task and the exact numbers are reported in Table 4.
On the first task, all MNIST experiments used the same number of epochs as the subsequent CL
tasks while CIFAR100 experiments used 200 epochs on the first task.

To compute the Bernoulli mean parameters for our stochastic gating implementation, we used simple
averaging as the default, but also explored exponential moving averaging. While there was not
much difference in performance, we report the momentum values that reproduce our results. All
MNIST experiments had a momentum value of 1/batch size. Note that this momentum value
of 1/batch size corresponds to simple moving average. For CIFAR100 experiments, we used
0.99 for BGLN-S (CW) and NTK, and 1/batch size for BGLN-S.

For each method and dataset, the scaling factor for FSD penalty, �FSD, is reported in Table 5. Simi-
larly, batch size is reported in Table 6.

Evaluation Metrics. In addition to average accuracy over tasks, we measure the backward transfer
metric. For T tasks, let Ri,j be the classification accuracy on task tj after training on task ti. Then,

15

Under review as a conference paper at ICLR 2023

Table 7: Ablation of backward transfer on continual learning benchmarks (higher is better).

Method Split MNIST Permuted MNIST Split CIFAR100

BGLN-D-Var �0.18 ± 0.09 �3.90 ± 0.49 -
BGLN-S-Var �0.13 ± 0.11 �0.41 ± 0.08 �9.25 ± 0.06
BGLN-S (coreset) �0.13 ± 0.11 �0.41 ± 0.08 �9.26 ± 0.06

Tas 0 Tas 1 Tas 2 Tas 3 Tas 4 Tas 5

Tasks
0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

FROMP

NTK

BGLN-S

BGLN-S (CW)

Figure 4: Comparison of task-wise accuracies on the Split CIFAR100 benchmark after training on all tasks is
complete, for our methods, NTK and a nonparametric state-of-the-art method, FROMP.

backward transfer is given by the following formula.

1

T � 1

T�1X

i=1

RT,i �Ri,i

D.2 TASK-WISE CLASSIFICATION RESULTS

We show in Figure 4 the task-wise accuracies on the Split CIFAR100 benchmark after training on
all tasks is complete, drawing a comparison between our methods (BGLN-S and BGLN-S (CW)),
NTK (with coreset) and a nonparametric state-of-the-art method, FROMP.

D.3 ABLATION STUDY - BACKWARD TRANSFER

We include further results on the performance of our ablations on the backward transfer metric in
Table 7.

E INFLUENCE FUNCTION EXPERIMENT

E.1 EXPERIMENTAL DETAILS

We used Concrete, Energy, Housing, Kinetics, and Wine datasets from the UCI collection (Dua &
Graff, 2017). For all datasets, we normalized the training dataset to have a mean of 0 and a standard

16

Under review as a conference paper at ICLR 2023

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Fraction of train data checked

0.0

0.2

0.4

0.6

0.8

Fr
ac

tio
n

of
co

rr
up

tio
n

fix
ed

Random
PBRF
EWC
BGLN

Figure 5: Effectiveness of BGLN in detecting mislabeled examples. BGLN can approximate the FSD term
in the PBRF objective accurately and be used in applications involving influence functions without explicitly
storing or iterating over the dataset.

deviation of 1. We used a 2-hidden layer MLP with 128 hidden units and the base network was
trained for 200 epochs with SGD and a batch size of 128. We performed hyperparameter searches
over the learning rate in the range {0.3, 0.1, 0.03, 0.01, 0.003, 0.001} and selected the learning rate
based on the validation loss.

For each random data point selected, we optimized the PBRF objective for additional 20 epochs
from the base network. The FSD term was computed stochastically with a batch size of 128. Sim-
ilarly, both EWC and BGLN were trained with the same configuration but with the corresponding
approximation to the FSD term.

E.2 MISLABELED EXAMPLE IDENTIFICATION

A common application of the influence function is the detection of influential or mislabeled ex-
amples. Intuitively, if some fraction of the training data labels is corrupted, they would behave as
outliers and have a greater influence on the training loss. One approach to efficiently detect and fix
these examples is to prioritize and examine training inputs with higher self-influence scores.

We use 10% of the MNIST dataset and corrupt 10% of the data by assigning random labels to it.
We train a two-layer MLP with 1024 hidden units and ReLU activation using SGD with a batch
size of 128. Then, we use EWC and BFLN to approximate the FSD term in the PBRF objective
in equation 14 for each data point. We also compare these methods against randomly sampling
datapoints to check for corruptions. The results are summarized in Figure 5. Both PBRF and BGLN
show significantly improved performance compared to the random baseline.

17

	Introduction
	Background
	A Data-based Parametric Approximation
	Linearization with Stochastic Gating
	Bernoulli Gating
	BGLN-D and BGLN-S
	Class-conditioned Estimates

	Related Works
	Experiments
	Continual Learning
	Comparing FSD Estimators
	Influence Function Estimation
	Ablations

	Conclusions
	Reproducibility Statement
	Notation
	Recursion Equations for BGLN-D
	Generalization to Convolutional Networks
	Continual Learning Experiments
	Experimental Details
	Task-wise classification results
	Ablation Study - Backward Transfer

	Influence Function Experiment
	Experimental Details
	Mislabeled Example Identification

