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APPENDIX A
RELATED WORK

A. General Multi-Fingered In-Hand Manipulation

Without explicit constraints of contacts, the general in-
hand manipulation tries to manipulate the object through any
possible finger motions and contact sequences.

Recently, learning-based approaches have been successfully
applied to dexterous manipulation. Reinforcement learning
(RL) has shown excellent performance for in-hand manipu-
lation that requires complex dynamic finger gaiting, with the
in-hand object rotation being a representative task [10]–[13].
By training on large-scale interactions, RL-based approaches
can learn complex multi-fingered behaviors that are difficult
to model and plan. However, RL can be costly for in-
grasp manipulation. First, it must rely on inefficient random
exploration during the early training phase to learn how to
maintain a constant stable grasp [14], which is a prerequisite
for subsequent object movement. Second, generalization to
arbitrary goals and objects is expensive to guarantee, as it
can only be improved by appreciably expanding the training
dataset to implicitly cover any possible test case [12]. Third,
unlike in-hand rotation that allows for larger tolerance in
acceptable finger motions, in-grasp object movement requires
high precision for arbitrary goal poses, which is an objective
at which RL does not excel.

Human skill and experience can also be leveraged in dexter-
ous manipulation, e.g., through imitation learning (IL) [15]–
[17]. Although IL performs well on daily tasks whose goals are
hard to mathematically define, it is less effective for precise in-
grasp object movement, as precisely controlling the object by
teleoperation is difficult for humans lacking complete in-hand
feedback. The generalization is also difficult to guarantee.

In parallel, considerable works have been done on model-
based in-hand manipulation, which can be divided into two
categories. The first is contact-explicit approaches, which
first explicitly search for discrete contact sequences and then
control the hand to track the planned contacts [18]–[20]. Our
approach for in-grasp manipulation falls into this category,
with contacts being predefined by the initial grasp. The second
category is contact-implicit approaches, which use unified
contact-motion models with contact smoothing to efficiently
explore potential finger motions and resulting contacts [21]–
[23]. These approaches excel at efficiently determining contact
sequences but sacrifice physical fidelity, making them less
suitable for precise in-grasp manipulation.

B. In-Grasp Manipulation

As a typical type of in-hand manipulation, in-grasp manip-
ulation refers to controlling the object’s pose within a stable
grasp. One of the key challenges is to strictly maintain a
constant stable grasp while moving the object. A series of
representative works [2]–[4] on in-grasp object movement used
self-designed under-actuated fingers with compliant passive
joints (enabled by springs), which could naturally adapt to
the in-hand object and ensure a stable grasp during random
finger motion. Although such end-effectors are effective for
in-grasp object movement, they may lack versatility for other

types of in-hand manipulation. In contrast, we use an open-
sourced, full-actuated anthropomorphic hand, the Leap Hand
[24], which is a low-cost generic end-effector widely used
for various tasks. Consequently, explicitly constraining the
computed joint motion to maintain a constant stable grasp
is essential. Additionally, they used a local mapping from
robot motion to object motion to iteratively reach local goals
(usually ≤ 2 cm). In contrast, we optimize the full trajectory
to arbitrary large-range goals within a 5 × 5 × 5 (cm) cubic
space, as required by the RGMC.

Classically, the constraint of constant stable grasping is
usually analyzed at the velocity level. Some works used the
velocity constraint to rigorously convert the desired object
velocity into finger joint velocities [25] or convert the desired
object velocity and acceleration into finger joint torques [26].
These approaches were validated in simulation and not easy to
deploy in the real world, since they required fully predefined
object trajectories and accurate system information, including
contact surface parameters or hand-object dynamics.

Our approach was initially inspired by [5], [6] that were
based on purely kinematic trajectory optimization with pose
constraints. To generate in-grasp trajectories, they assumed
rigid contact between the thumb-tip and object (i.e., an in-
variant relative pose) and imposed relaxed-rigidity constraints
on the other fingertips (i.e., penalizing changes in fingertip
poses in the thumb-tip frame). However, the assumption of
rigid thumb-tip contact is overly restrictive, as it completely
forbids rolling between the thumb-tip and object. This severely
limits the object’s moving space owing to the low DoFs and
joint limit of the thumb. In contrast, we allow rolling contacts
of all fingertips by fixing only the fingertip positions in the
object frame, which enlarges the reachable space of the object.

Although we allow fingertip rolling, we do not include the
rigorous rolling constraint in the optimization like a recent
work [27] that required the precise geometry of the object and
fingertips. Moreover, the velocity-level geometry-aware rolling
constraint greatly increases the complexity of the optimization,
making it impractical for real-time deployment (e.g., requiring
around 8 seconds per model predictive control step in [27]).

APPENDIX B
ANALYTICAL GRADIENTS OF THE OPTIMIZATION

In this section, we introduce the key analytical gradients of
the trajectory optimization problem.

A. Preliminaries

According to the theory of Lie groups and Lie algebra for
robotics [9], we denote the conversion from the axis-angle
rotation vector r ∈ so(3) to the rotation matrix R ∈ SO(3)
as R = exp(r∧), and the inverse conversion is denoted as
r = ln(R)∨.

According to the linear approximation of the Baker-
Campbell-Hausdorff (BCH) formula [28], we have

ln(exp(r∧1 ) exp(r
∧
2 ))

∨ ≈
{

Jl(r2)
−1r1 + r2, when r1 → 0,

Jr(r1)
−1r2 + r1, when r2 → 0.

(6)
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Here, Jr(r) = Jl(−r), and Jl(r) can be calculated as

Jl(r) =
sin θ

θ
I +

(
1− sin θ

θ

)
aaT +

1− cos θ

θ
a∧, (7)

Jl(r)
−1 =

θ

2
cot

θ

2
I +

(
1− θ

2
cot

θ

2

)
aaT − θ

2
a∧, (8)

where θ and a are the angle and axis of r, respectively.

B. Gradients of Orientation Distances

Here we generally introduce the gradient regarding the
orientation distance. We define the weighted scalar distance
of orientations R and Rd as

dr(R,Rd,Wr) =
1

2
rTe Wrre, (9)

where re is defined as ln
(
RR−1

d

)∨
. Note that re is defined in

the world frame W . In addition, Wr is a semi-positive definite
matrix for weighting. Here, R is determined by a variable
x, and Rd is a constant desired orientation. Note that re is
defined in the same frame as R and Rd.

In the following derivation, for convenience, we use both
R ∈ SO(3) and r ∈ so(3) to represent the same rotation; e.g.,
R = exp(r∧) and Rd = exp(r∧d ).

The gradient of dr w.r.t. the variable x is derived as

∂dr
∂x

=
∂dr
∂re

∂re
∂x

=
∂dr
∂re

∂re
∂φ

∂φ

∂x
(10)

For convenience of the following calculation, here we intro-
duce a perturbation variable φ ∈ so(3), which means that we
left perturb R by ∆R (i.e., (∆R)R ), where ∆R = exp(φ∧).

First, it is easy to obtain

∂dr
∂re

= rTe Wr (11)

Second, regarding ∂re

∂φ , we have

∂re
∂φ

= lim
φ→0

ln
(
exp(φ∧) exp(r∧) (exp(r∧d ))

−1
)∨

φ

−
ln
(
exp(r∧) (exp(r∧d ))

−1
)∨

φ

= lim
φ→0

ln (exp(φ∧) exp(r∧e ))
∨ − ln (exp(r∧e ))

∨

φ

(12)

It follows from the BCH formula (6) that

∂re
∂φ

= lim
φ→0

Jl(re)
−1φ+ re − re

φ
= Jl(re)

−1 (13)

We thus obtain ∂dr

∂φ = rTe WrJl(re)
−1. Moreover, using (8),

we can obtain rTe Jl(re)
−1 = rTe . Thus, in special cases where

the weights for each orientation dimension are the same (i.e.,
Wr = wI), we further have ∂dr

∂φ = wrTe Jl(re)
−1 = wrTe .

Third, as the perturbation variable φ → 0, we have
∂φ
∂x = Ja(x), where Ja(x) is the space Jacobian that relates
the spatial angular velocity to ẋ.

C. Gradients of Pose Distances

Similar to the derivation of the gradients of orientation dis-
tances, the general formula of the gradients of pose distances
is derived as follows.

The weighted scalar distance between poses T and Td is
defined as

d(T ,Td,W ) =
1

2
eTWe (14)

where e = [pe; re], in which pe = p − pd and re =

ln
(
exp(r∧) (exp(r∧d ))

−1
)∨

. Here, T is determined by a
variable x, and Td is a constant desired pose. Note that e
is defined in the same frame as T and Td.

Similar to (10), we introduce a perturbation variable ϕ ∈
se(3). Then, the gradient of d w.r.t. x is derived as

∂d

∂x
=

∂d

∂e

∂e

∂ϕ

∂ϕ

∂x
(15)

where ∂d
∂e = eTW and

∂e

∂ϕ
=

[
I 0
0 Jl(re)

−1

]
(16)

Additionally, we have ∂ϕ
∂x = J(x), where J(x) is the space

Jacobian that relates the spatial twist to ẋ.

D. Gradients of Jobject

It is easy to see that Jobject is only relevant to the object
pose at time T . The gradient between the position distance
cost and the object position variable is easy to derive. Here,
we introduce the gradient regarding the orientation distance
(i.e., ∂dr

∂ro,T
). For brevity, we omit the subscripts o and T .

Similar to (12) and (13), we derive that

∂φ

∂r
=

(
∂r

∂φ

)−1

= Jl(r) (17)

We then have
∂dr
∂r

= rTe WrJl(re)
−1 ∂φ

∂r
= rTe WrJl(re)

−1Jl(r) (18)

E. Gradients of Jfinger

We denote the Lie algebra corresponding to the object pose
To,t ∈ SE(3) as ξo,t = [po,t; ro,t] ∈ se(3), which is defined in
W . The optimization variable related to d(OTi,t,

OTi,0,Wf)
contains the object pose ξo,t and finger joint angle qi,t. For
brevity, we omit the subscripts o, i, and t. We further denote
ϑ = [ξ; q].

We can use (15) to calculate the gradient, but we still need to
know the space Jacobian that relates the fingertip twist in O to
ϑ̇. As the object frame O is moving, this Jacobian is a relative
Jacobian between the finger and object. We can calculate
this relative Jacobian using individual manipulator Jacobians
defined in W [29], in which we regard the object as a virtual
manipulator. According to (2) in [29], the relative Jacobian
between the fingertip twist in O and ϑ̇ can be expressed as

OJf(ϑ) =
[
−OΨf

OΩwJo(ξ)
OΩwJf(q)

]
, (19)

where Jo(ξ) is the space Jacobian that relates the object’s twist
in W to ξ̇, and Jf(q) is the space Jacobian that relates the
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Fig. 6. Our hardware setup for the competition, comprising a Leap Hand with
soft silicone fingertips, a top-view RGB camera, and an in-hand object with
an AprilTag marker. Each silicone fingertip comprises an inner 3-D printed
base and an outer silicone layer.

fingertip’s twist in W to q̇. Similar to (17), it can be obtained
that

Jo(ξ) =

[
I 0
0 Jl(r)

]
, (20)

where r refers to the object orientation in W . The finger
Jacobian Jf(·) can be obtained from the finger’s kinematics.
The transformation matrices Ψ and Ω are defined as

aΨb =

[
I −S(apb)
0 I

]
, aΩb =

[
aRb 0
0 aRb

]
, (21)

where S(p) refers to the skew-symmetric matrix of vector p.

F. Other Gradients

Other gradients, including the gradients of Jjoint and those
of the constraints, can be easily derived. The details are
omitted here for brevity.

APPENDIX C
IMPLEMENTATION DETAILS

A. Hardware Setup

The hardware setup is shown in Fig. 6. A calibrated top-
view RGB camera (RealSense d405) is used to obtain the
AprilTag pose. We use a Leap Hand [24], which features four
fingers, each with four actuated DoFs. The control commands
to the hand are the target joint angles, which are tracked by
a low-level PD controller. We only use the thumb, index, and
ring fingers for this task, as three fingers with soft frictional
contacts are sufficient for a stable grasp. Including additional
fingers increases the risk of self-collision and reduces the
overall finger workspace. To enhance contact compliance and
friction, we replace the original fingertips with custom-made
soft silicone fingertips. The contacts between these hemispher-
ical fingertips and the object approximate the point contacts
with friction. From a hardware perspective, both the low-
level PD controller and the soft fingertips provide physical
compliance, facilitating stable grasping during manipulation.

B. Optimization Solving

We solve this non-convex constrained optimization
problem using the Sequential Least Squares Programming
(SLSQP) [30] algorithm implemented by the
scipy.optimize.minimize in Python.

C. Initial Grasping

The quality of the initial grasp is critical for the subsequent
in-grasp object movement. For the known cylinder, we man-
ually define the target fingertip positions for the initial grasp.
To efficiently obtain an initial grasp of a novel object without
on-site coding, we develop a human-dragging approach, in
which a human can freely move the fingers along a horizontal
plane, while the algorithm constrains the fingertip heights to
keep them on the same plane. This enables the human to
simultaneously and conveniently adjust the three fingers to
establish and record a stable grasp. Then, the target fingertip
positions are set further inside the object surface with a prede-
fined offset. This ensures that the fingertips apply appropriate
grasping forces, taking advantage of the compliance provided
by the low-level PD controller and soft fingertips. Finally, we
use an optimization-based inverse kinematics (IK) solver [31]
to compute the corresponding joint-space position command.

APPENDIX D
ADDITIONAL DETAILS OF THE COMPETITION

A. Hyper-Parameters

The hyper-parameters we used in the competition were
set as Wo = diag(10, 10, 10, 0.01, 0.01, 0.0), and Wf =
diag(10, 10, 10, 0.001, 0.001, 0.001); for the first trajectory op-
timization for each waypoint, we set T = 3 and λ = 4e− 4;
for the re-planning, we set T = 1 and λ = 5e − 3. These
parameters are also used for the experimental evaluation in
Section V.

As analyzed in Section V-B, for the competition, we set
Nreplan = 4 in the first run to ensure more conservative results
and Nreplan = 8 in the second run to aim for higher precision.

B. Performance Results

The performance details of our approach in the RGMC are
provided by the competition organizers, which are summarized
in the following tables. Specifically, the positions of the ten
goal waypoints in the competition are listed in Table I, ranging
from (-2.5, -2.5, -2.5) to (2.5, 2.5, 2.5) (cm). The average
task error of the ten waypoints in each run is shown in Table
II. Note that the task error of each individual waypoint is
not provided separately, as the organizer did not record them
in detail. From the results, it can be seen that the precision
of the second run is higher than that of the first run. This
improvement is attributed to the different choices of Nreplan.

APPENDIX E
ADDITIONAL RESULTS AND ANALYSIS

A. Comparison with Existing Approach

Given our task setup involving full-actuated hands, unknown
object trajectories, and novel objects, we implement a baseline
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TABLE I
TEN GOAL WAYPOINTS IN THE COMPETITION.

Waypoint index Position (x, y, z) (cm)
1 (2.5, 2.5, 0)
2 (2.5, 2.5, 2.5)
3 (-2.5, -2.5, -2.5)
4 (-1.3, -2.0, 0.6)
5 (-1.2, 0.7, 0.6)
6 (0.6, 0.4, 0.2)
7 (0.9, -1.2, -1.3)
8 (-2.0, 2.0, 2.0)
9 (0.0, 0.0, 2.0)
10 (0.0, 0.0, 0.0)

TABLE II
FINAL RESULTS IN THE COMPETITION.

Average task error (cm)

Cylinder Object Run 1 0.080
Run 2 0.054

Novel Objecta Run 1 0.125
Run 2 0.063

a A mustard bottle from the YCB Dataset, as shown in
Fig. 6)

similar to [5] for comparison, which performed the best in the
benchmark from [32]. Regarding the specific implementation,
we adopt the same framework as our approach, whereas the
optimization variables include only joint angles, and the object
pose is derived from the thumb-tip pose under the rigid
contact assumption. We compare the planned errors, open-
loop execution errors, and closed-loop execution errors in
continuous five-iteration reaching of the eight corners of both
3× 3× 3 and 5× 5× 5 (cm) cubic spaces, using the cylinder
object. We set Nreplan = 8 for the space with a 3-cm side
length, and Nreplan = 4 for the space with a 5-cm side length.

The results are summarized in Fig. 7. It can be seen that:
1) the planned error is smaller in our approach than in the
baseline, since the assumption of rigid object-thumb contact in
the baseline limits the theoretical reachable space of the object,
whereas our formulation allows rolling contacts; 2) both the
open-loop and closed-loop execution errors in our approach
are smaller than those in the baseline, demonstrating that our
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Fig. 7. Comparison between the proposed approach and the baseline [5],
which assumes rigid object-thumb contact, whereas we allow for rolling. Each
bar shows the average error across 40 waypoints at the corners of the cubic
space with side lengths of 3 or 5 cm, and the values of each waypoint are
also plotted as the scattered diamond-shaped points.
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Fig. 8. Evaluation of the object’s reachable space and the relationship between
goal positions and task accuracy. The left figure illustrates the cubic movement
space for the object, with indexed corners and centered at the initial object
position. For reference, the side length of the plotted cubic is approximately
6 cm. The right figure summarizes the closed-loop execution error for each
corner of spaces with side lengths ranging from 1 to 9 cm. The error is
averaged over five trials for each goal.

approach also improves the actual execution accuracy in real-
world scenarios; and 3) in the baseline, the execution accuracy
at certain corners of the space (e.g., the waypoints with the
largest errors) is not significantly improved by closed-loop
execution, suggesting that the task errors for these movement
directions are primarily due to the limited theoretical reachable
space rather than the sim-to-real gap. These performance
results motivated us to develop our proposed approach for the
competition, instead of relying on the baseline.

B. Reachable Space and Accuracy

We analyze the relationship between the distances to goals
and the task accuracy, and further explore the maximum object
reachable space. The cylinder object is manipulated to reach
the corners of cubic spaces with side lengths ranging from
1 to 9 cm. The task becomes increasingly challenging as the
distance to the goal increases. Each corner of each cubic space
is reached five times. For the cubic spaces with side lengths
of 7 and 9 cm, we manually adjust the grasp when necessary
between goals, as slippage may occur during such large-range
movements, potentially affecting subsequent manipulation. We
manually choose appropriate values of Nreplan for different
goals to achieve the best performance.

The average task error of each goal position and the spatial
relationship between the goals and hand is presented in Fig. 8.
The results indicate that: 1) the task accuracy for local goals is
very high, with the average error in reaching each corner of the
1× 1× 1 (cm) space being no larger than 0.5 mm; 2) the task
error increases with the distance to the goal; 3) movements in
certain directions are more challenging; e.g., in the 5× 5× 5
(cm) space, the average task errors for Corners a, c, and h are
larger than those for other corners, due to the asymmetrical
finger layout and the distinct mechanical configurations of the
thumb and other fingers; and 4) our approach can reach the
boundary of a 9× 9× 9 (cm) space with an average error of
approximately 2 cm, demonstrating its ability to fully exploit
the dexterity and workspace of the fingers to achieve goals as
accurately as possible within a large in-hand space.
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Fig. 9. Evaluation of the generalization of our approach to novel everyday
objects. Each bar shows the average error over 40 waypoints on the corners
of the 5×5×5 (cm) space, and the values of each waypoint are also plotted
by the scattered diamond-shaped points.

C. Novel Objects

We further evaluate the generalization of our approach to
novel everyday objects, including a thick cylinder lid, box,
presenter remote, and screwdriver, as shown in Fig. 3(b)-(e).
We task the hand to manipulate each object to continuously
reach the eight corners of the 5 × 5 × 5 (cm) space over
five iterations. Only for the screwdriver do we occasionally
manually adjust the grasp between different goals, due to its
thin structure and highly curved surface.

The results in Fig. 9 indicate that 1) the proposed approach
generalizes well to novel everyday objects, with the average
task error for each object being approximately 5 mm, even
for the challenging screwdriver; and 2) the curvature of the
object surface affects the task accuracy, as high curvature
increases the effect of fingertip rolling on contact situations,
potentially leading to errors or even unstable grasps. From
our experiments, we conclude that objects with lower weights
and curvatures are easier to manipulate using our approach,
whereas objects with higher weights and curvatures present
greater challenges. This is because increased weight tends to
cause slippage, and high curvature causes variations in the
grasp contact during rolling.

D. Analysis of Task Error Variance

The diamond points within Figs. 5, 6, 7 and 9 represent the
task error of each waypoint along with the summary statistic.
Overall, the variance in task errors can be attributed to factors
such as different cubic corners, different iterations, and slight
differences between initial grasps. We further investigate the
variance through extensive experiments. Specifically, we apply
the proposed approach to manipulate the object to the corners
of the 5× 5× 5 (cm) cubic space over five iterations without
human intervention. This process was repeated five times, with
the initial grasp reset by a human before each trial. We provide
a video of four initial grasps at url1.

Fig. 10(a) and (b) summarize the average task errors for
different runs and different cubic corners. The results indicate
that 1) the average task errors of different runs are relatively
consistent, with the gap between the largest and smallest
closed-loop error being less than 0.08 cm, demonstrating that

1https://rgmc-xl-team.github.io/ingrasp manipulation/initial grasp.mp4

the slight differences in initial grasps have little impact on
the overall statistic results; and 2) certain corners (e.g., a,
c, h) exhibit averagely larger errors, as discussed in Section
E-B. Then, we further investigate the variance among different
runs for each corner, as shown in Fig. 10(c). It can be seen
that the planned errors for the same corner remains relatively
consistent; in contrast, the execution errors for the same corner
vary across different runs and iterations. This variability arises
from minor differences in the manually established initial
grasps and slight changes in the grasp (e.g., slippage) during
continuous manipulation.

E. Effect of Moving Back to Initial State
As described in Section III-B, we employ a strategy where

the fingers return to the initial state (following the forward
trajectory) after reaching each waypoint. This approach is
adopted because the initial state typically provides a more
favorable starting point for trajectory optimization toward the
next goal. To experimentally evaluate the effectiveness of this
strategy, we task the hand with manipulating the object to the
corners of the 5× 5× 5 (cm) cubic space over five iterations.
We compare the performance of the approach with and without
this strategy, conducting five trials for each condition. An
example of the manipulation process without returning to the
initial state is shown in a video at url2.

When using this strategy, the average task error of the first
iteration (8 corners) is 0.40 cm, and the average task error of
all five iteration (40 waypoints) is 0.42 cm. When not using
this strategy, the average task error of the first iteration is
0.47 cm; however, the object falls in the second iteration in
all five tests due to low contact quality. These results indicate
that employing this strategy can enhance the robustness in
continuous waypoint reaching.

F. Impact of Excessive Re-Planning
In Section IV-B, we point out that excessive re-planning

may degrade contact quality and lead to larger task errors.
This problem is primarily due to the “initial state” of the
trajectory optimization. We assume the initial grasp is a stable
and manipulable grasp, which holds true for human-designed
initial grasps. However, during replanning, the “initial state” of
the new optimization problem is set as the terminal state from
the previous execution. Note that our simple trajectory opti-
mization problem formulation does not explicitly constrain the
quality of the finger-object contacts. Instead, it tries to implic-
itly maintain the contact quality by softly penalizing deviations
between the terminal and initial configuration (through the cost
term Jfinger and Jjoint). Consequently, the terminal state from
the previous execution may not be as good a grasp as the
initial state, leading to a gradual decline in contact quality as
the number of replanning iterations increases.

We provide an example to illustrate this problem in Fig. 11.
It is shown that when applying too many replanning times to
reach the goal waypoint, unmodeled contact occurs between
the object and non-spherical parts of the fingers, which leads
to significant slippage.

2https://rgmc-xl-team.github.io/ingrasp manipulation/not move back.mp4

https://rgmc-xl-team.github.io/ingrasp_manipulation/initial_grasp.mp4
https://rgmc-xl-team.github.io/ingrasp_manipulation/initial_grasp.mp4
https://rgmc-xl-team.github.io/ingrasp_manipulation/not_move_back.mp4
https://rgmc-xl-team.github.io/ingrasp_manipulation/not_move_back.mp4
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Fig. 10. Variance of task errors. (a) Variance w.r.t. different runs, where each bar represents the average error over 40 waypoints (five iterations of eight
corners) in each run. (b) Variance w.r.t. different cubic corners, where each bar represents the average error over 25 attempts (five iterations in five runs) at
each corner. (c) Variance w.r.t. different runs for each corner, where each bar represents the average error over five iterations for each corner in each run. The
error bars represent the standard deviation.

Fig. 11. Example of applying excessive re-planning.

G. Effect of Weights for Object Pose Cost

In the competition, we empirically used Wo =
diag(10, 10, 10, 0.01, 0.01, 0.0) for the object pose cost
Jobject. We set the goal object orientation as the current (ini-
tial) orientation, and applied the non-zero weights to slightly
regulate the rotation along the X and Y axes, which improved
the manipulation robustness in our experience.

We further quantitatively evaluate the effect of
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Fig. 12. Effect of different weights for the object orientation cost. Each bar
shows the average error over 40 waypoints on the corners of the 5 × 5 × 5
(cm) space, and the values of each waypoint are also plotted by the scattered
diamond-shaped points.

different choices of the weights for the orientation,
including diag(0.0, 0.0, 0.0), diag(0.01, 0.01, 0.0), and
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TABLE III
EVALUATION OF OUR APPROACH WITH GOALS OF OBJECT POSES.

Index
Goal

translation
(cm)

Goal
rotation
(degree)

Position
error
(cm)

Orientation
error

(degree)
1 (0, -1, -1) (0, 20, 0) 0.22 1.7
2 (-2, 0, 0) (30, 0, 0) 0.74 4.5
3 (0, 0, 2) (0, 0, 40) 0.16 1.2

Fig. 13. Snapshots of reaching goal object poses. The figures in the second
row visualize the poses, where the larger axes represent the goal poses and the
smaller axes represent the poses of the AprilTag. The manipulation process
is also shown in the supplementary video.

diag(0.01, 0.01, 0.01). The results of one run (40 waypoints)
are shown in Fig. 12. It can be seen that 1) increasing
the regulation on object orientation leads to larger planned
and closed-loop errors, as it restricts the object’s reachable
space; however, it results in smaller open-loop errors, as
smaller rotation generally reduces the risk of unexpected
slippage during manipulation; and 2) regulating the Z-
axis rotation further increases the closed-loop task errors,
compared with regulating only the X and Y axes. Although
the results of this run suggest that no regulation might
yield higher precision, we find that significant slippage
sometimes occur during continuous manipulation without
any regulation. Consequently, we chose diag(0.01, 0.01, 0.0)
for the competition as a trade-off between accuracy and
robustness.

H. Goals of Object Poses

We further demonstrate our approach’s capability to handle
goals of object poses, which include both positions and
orientations. The task involves continuous reaching three goal
poses, for which we set Wo = diag(10, 10, 10, 1, 1, 1). The
details of the goals and closed-loop manipulation results are
listed in Table III. Snapshots of the manipulation process are
shown in Fig. 13. The results demonstrate that our approach
can be easily adapted to address goal orientations.

I. Implementation of Baseline

In Section E-A, we implement a baseline similar to [5]
for comparison. Here we provide the details regarding the
re-implementation. We adopt the same framework as our
approach, whereas the optimization variables include only

joint angles, and the object pose is derived from the thumb-tip
pose under the rigid contact assumption. Our implementation
closely follows that in [5], with the following differences:
1) we do not include the cost of in-trajectory object poses,
whose references are obtained by linear interpolation between
the start and goal object poses in theirs; 2) we treat the joint
velocity/movement limits as a soft constraint (penalty) instead
of a hard constraint in theirs; and 3) we use the same hyper-
parameters as those in our approach.
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