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ABSTRACT

Deep Neural Networks (DNNs) have been a large driver and enabler for AI break-
throughs in recent years. These models have been getting larger in their attempt to
become more accurate and tackle new upcoming use-cases, including AR/VR and
intelligent assistants. However, the training process of such large models is a costly
and time-consuming process, which typically yields a single model to fit all targets.
To mitigate this, various techniques have been proposed in the literature, including
pruning, sparsification or quantization of the model weights and updates. While
able to achieve high compression rates, they often incur computational overheads
or accuracy penalties. Alternatively, factorization methods have been leveraged
to incorporate low-rank compression in the training process. Similarly, such tech-
niques (e.g., SVD) frequently rely on the computationally expensive decomposition
of layers and are potentially sub-optimal for non-linear models, such as DNNs.
In this work, we take a further step in designing efficient low-rank models and
propose MAESTRO, a framework for trainable low-rank layers. Instead of regularly
applying a priori decompositions such as SVD, the low-rank structure is built
into the training process through a generalized variant of Ordered Dropout. This
method imposes an importance ordering via sampling on the decomposed DNN
structure. Our theoretical analysis demonstrates that our method recovers the SVD
decomposition of linear mapping on uniformly distributed data and PCA for linear
autoencoders. We further apply our technique on DNNs and empirically illustrate
that MAESTRO enables the extraction of lower footprint models that preserve
model performance while allowing for graceful accuracy-latency tradeoff for the
deployment to devices of different capabilities.

1 INTRODUCTION

Deep Learning has been experiencing an unprecedented uptake, with models achieving a
(super-)human level of performance in several tasks across modalities, giving birth to even more in-
telligent assistants and next-gen visual perception and generation systems. However, the price of this
performance is that models are getting significantly larger, with training and deployment becoming
increasingly costly. Therefore, techniques from Efficient ML become evermore relevant (Laskaridis
et al., 2022), and a requirement for deployment in constrained devices, such as smartphones or IoT
devices.

Typical techniques to compress the network involve i) quantization, i.e., reducing precision of the
model (Wang et al., 2019) or communicated updates (Seide et al., 2014; Alistarh et al., 2017),
ii) pruning the model during training, e.g., through Lottery Ticket Hypothesis (LTH) (Frankle &
Carbin, 2019), iii) sparsification of the network representation and updates, i.e., dropping the subset
of coordinates (Suresh et al., 2017; Alistarh et al., 2018) or iv) low-rank approximation (Wang et al.,
2021; Dudziak et al., 2019), i.e. keeping the most relevant ranks of the decomposed network. Despite
the benefits during deployment, that is a lower footprint model, in many cases, the overhead during
training time or the accuracy degradation can be non-negligible. Moreover, many techniques can
introduce mutliple hyperparameters or the need to fine-tune to recover the lost accuracy.

In this work, we focus on training low-rank factorized models. Specifically, we pinpoint the challenges
of techniques (Wang et al., 2021; 2023) when decomposing the parameters of each layer in low-rank
space and the need to find the optimal ranks for each one at training time. To solve this, we adopt
and non-trivially extend the Ordered Dropout technique from (Horváth et al., 2021) and apply it to
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Figure 1: MAESTRO’s construction. To obtain low-rank approximation, the given linear map is decomposed
and trained with ordered dropout to obtain an ordered representation that can be efficiently pruned.

progressively find the optimal decomposition for each layer of a DNN while training (Fig. 1). Critical
differences to prior work include i) the non-uniformity of the search space (i.e. we allow for different
ranks per layer), ii) the trainable aspect of the decomposition to reflect the data distribution, and
iii) the gains to training and deployment time without sacrificing accuracy. Nevertheless, we also
provide a latency-accuracy trade-off mechanism to deploy the model on more constrained devices.

Our contributions can be summarized as follows:

• We propose MAESTRO, a novel layer decomposition technique that enables learning low-rank
layers in a progressive manner while training. We fuse layer factorization and an extended variant
of the ordered dropout, in a novel manner, by embedding OD directly into the factorized weights.
By decomposing layers and training on stochastically sampled low-rank models, we apply ordered
importance decomposed representation of each layer. We combine this with a hierarchical group-
lasso term (Yuan & Lin, 2006) in the loss function to zero out redundant ranks and progressively
shrink the rank space. This way, we enable computationally efficient training achieved by the
proposed decomposition without relying on inexact and potentially computationally expensive
decompositions such as Singular Value Decomposition (SVD).

• MAESTRO is a theoretically motivated approach that embeds decomposition into training. First,
we show that our new objective is able to recover i) the SVD of the target linear mapping for the
particular case of uniform data distribution and ii) the Principal Component Analysis (PCA) of the
data in the case of identity mapping.

• As MAESTRO’s decomposition is part of the training procedure, it also accounts for data distribution
and the target function, contrary to SVD, which operates directly on learned weights. We show
that this problem already arises for a simple linear model and empirically generalize our results in
the case of DNNs, by applying our method to different types of layers (including fully-connected,
convolutional, and attention) spanning across three datasets and modalities. We illustrate that our
technique achieves better results than SVD-based baselines at a lower cost.

2 RELATED WORK

The topic of Efficient ML has received a lot of attention throughout the past decade as networks
have been getting increasingly computationally expensive. Towards this end, we distinguish between
training and deployment time, with the latter having a more significant impact and thus amortizes the
potential overhead during training. Nevertheless, with the advent of Federated Learning (McMahan
et al., 2017), efficient training becomes increasingly relevant to remain tractable.

Efficient inference. For efficient deployment, various techniques have been proposed that either
optimize the architecture of the DNN in a hand-crafted (Howard et al., 2017) or automated manner
(i.e. NAS) (Tan & Le, 2019), they remove redundant computation by means of pruning parts of the
network (Han et al., 2015; Carreira-Perpinán & Idelbayev, 2018; Frankle & Carbin, 2019; Chen et al.,
2021; Sreenivasan et al., 2022; Li et al., 2016; Wen et al., 2016; Hu et al., 2016; Wen et al., 2016;
Zhu & Gupta, 2017; He et al., 2017; Yang et al., 2017; Liu et al., 2018; Yu & Huang, 2019b), in a
structured or unstructured manner, or utilise low-precision representation (Wang et al., 2019) of the
neurons and activations. However, such techniques may involve non-negligible training overheads
or lack flexibility of variable footprint upon deployment. Closer to our method, there have been
techniques leveraging low-rank approximation (e.g. SVD) for efficient inference (Xue et al., 2013;
Sainath et al., 2013; Jaderberg et al., 2014; Wiesler et al., 2014; Dudziak et al., 2019). Last, there
is a category of techniques that dynamically resize the network at runtime for compute, memory or
energy efficiency, based on early-exiting (Laskaridis et al., 2021) or dynamic-width (Yu et al., 2019)
and leverage the accuracy-latency tradeoff.
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Efficient training. On the other hand, techniques for efficient training become very relevant nowadays
when scaling DNNs sizes Hu et al. (2021) or deploying to embedded devices (Lin et al., 2022), and
oftentimes offer additional gains at deployment time. Towards this goal, there have been employed
methods where part of the network is masked (Sidahmed et al., 2021) or dropped (Alam et al., 2022;
Caldas et al., 2019) during training, with the goal of minimizing the training footprint. Similarly to
early-exiting, multi-exit variants for efficient training (Kim et al., 2023; Liu et al., 2022) have been
proposed, and the same applies for width-based scaling Horváth et al. (2021); Diao et al. (2021).
Last but not least, in the era of transformers and LLMs, where networks have scaled exponentially
in size, PEFT-based techniques, such as adapter-based fine-tuning (Houlsby et al., 2019) (such as
LoRA (Hu et al., 2021)), become increasingly important and make an important differentiator for
tackling downstream tasks.

Learning ordered representation. Originally, Ordered Dropout (OD) was proposed as a mech-
anism for importance-based pruning for the easy extraction of sub-networks devised to allow for
heterogeneous federated training (Horváth et al., 2021). The earlier work that aims to learn ordered
representation includes a similar technique to OD—Nested Dropout, which proposed a similar
construction, applied to the representation layer in autoencoders (Rippel et al., 2014) to enforce
identifiability of the learned representation or the last layer of the feature extractor (Horváth et al.,
2021) to learn an ordered set of features for transfer learning. We leverage and non-trivially extend
OD in our technique as a means to order ranks in terms of importance in a nested manner during
training of a decomposed network that is progressively shrunk as redundant ranks converge to 0.
Ranks selection is ensured through hierarchical group lasso penalty, as described in Sec. 3.3. More-
over, contrary to (Horváth et al., 2021), which assumed a uniform width, our formulation allows for
heterogeneous ranks per layer. Last, we leverage the ordered representation of ranks at inference time
to further compress the model, allowing a graceful degradation of performance as a mechanism for
the accuracy-latency trade-off.

3 MAESTRO

In this work, we focus on low-rank models as a technique to reduce the computational complexity and
memory requirements of the neural network model. The main challenge that we face is the selection
of the optimal rank or the trade-off between the efficiency and the rank for the given layer represented
by linear mapping. Therefore, we devise an importance-based training technique, MAESTRO, which
not only learns a mapping between features and responses, but also learns the decomposition of the
trained network. This is achieved by factorizing all the layers in the network.

3.1 FORMULATION

Low-rank approximation. Our inspiration comes from the low-rank matrix approximation of a
matrix A ∈ Rm×n. For simplicity, we assume that A has rank r = min{m,n} with k ≤ r distinct
non-zero singular values σ̃1 > σ̃2 > . . . > σ̃k > 0, with corresponding left and right singular vectors
ũ1, ũ2, . . . , ũk ∈ Rm and ṽ1, ṽ2, . . . , ṽk ∈ Rn, respectively. For such a matrix, we can rewrite its
best l-rank approximation as the following minimization problem

min
U∈Rm×l,V ∈Rn×l

∥∥∥∥∥
l∑

i=1

uiv
⊤
i −A

∥∥∥∥∥
2

F

(1)

where ci denotes the i-th row of matrix C and ∥·∥F denotes Frobenius norm. We note that Problem (1)
is non-convex and non-smooth. However, Ye & Du (2021) showed that the randomly initialized
gradient descent algorithm solves this problem in polynomial time. In this work, we consider the best
rank approximation across all the ranks that leads us to the following objective

min
U∈Rm×r,V ∈Rn×r

1

r

r∑
b=1

∥∥U:bV
⊤
:b −A

∥∥2
F
, (2)

where C:b denotes the first b columns of matrix C. This objective, up to scaling, recovers SVD
of A exactly, and for the case of distinct non-zero singular values, the solution is, up to scaling,
unique Horváth et al. (2021). This formulation, however, does not account for the data distribution,
i.e., it cannot tailor the decomposition to capture specific structures that appear in the dataset.

Data-dependent low-rank approximation. Therefore, the next step of our construction is to
extend this problem formulation with data that can further improve compression, reconstruction, and

3



Under review as a conference paper at ICLR 2024

generalization, and incorporate domain knowledge. We assume that data comes from the distribution
x ∼ X centered around zero, i.e., Ex∼X [x] = 0.1, and the response is given by y = Ax. In this
particular case, we can write the training loss as

min
U∈Rm×r,V ∈Rn×r

Ex,y∼X

[
r∑

b=1

1

r

∥∥U:bV
⊤
:b x− y

∥∥2] . (3)

It is important to note that the introduced problem formulation (3) is the same as the Ordered
Dropout formulation of Horváth et al. (2021) for the neural network with a single hidden layer and no
activations, and it can be solved using stochastic algorithms by sampling from the data distribution X
(subsampling) and rank distribution D. However, there is an important distinction when we apply
MAESTRO for deep neural networks. While FjORD applies uniform dropout across the width of the
network for each layer, we propose to decompose each layer independently to uncover its – potentially
different – optimal rank for deployment. We discuss details in the next paragraph.

DNN low-rank approximation. For Deep Neural Networks (DNNs), we seek to uncover the optimal
ranks for a set of d linear mappings W 1 ∈ Rm1×n1 , . . . ,W d ∈ Rmd×nd , where W i’s are model
parameters and d is model depth, e.g., weights corresponding to linear layers2, by decomposing
them as W i = U i

(
V i
)⊤

. We discuss how these are selected in the next section. To decompose the
network, we aim to minimize the following objective:

Ex,y∼X

[
1∑d

i=1 ri

d∑
i=1

ri∑
b=1

l(h(U1
(
V 1
)⊤

, . . . , U i
:b

(
V i
:b

)⊤
, . . . , Ud

(
V d
)⊤

,W o, x), y)

]
, (4)

where ri = min{mi, ni}, l is a loss function, h is a DNN, and W o are the other weights that we do
not decompose. We note that our formulation aims to decompose each layer, while decompositions
across layers do not directly interact. The motivation for this approach is to uncover low-rank
structures within each layer that are not affected by inaccuracies from other layers due to multiple
low-rank approximations.

3.2 LAYER FACTORIZATION

The following sections discuss how we implement model factorization for different architectures.

FC layers. A 2-layer fully connected (FC) neural network can be expressed as f(x) =
σ(σ(xW1)W2), where W s are weight matrices of each FC layer, and σ(·) is any arbitrary acti-
vation function, e.g., ReLU. The weight matrix W can be factorized as UV ⊤.

CNN layers. For a convolution layer with dimension, W ∈ Rm×n×k×k where m and n are the
number of input and output channels, and k is the size of the convolution filters. Instead of directly
factorizing the 4D weight of a convolution layer, we factorize the unrolled 2D matrix. Unrolling the
4D tensor W leads to a 2D matrix with shape Wunrolled ∈ Rmk2×n, where each column represents the
weight of a vectorized convolution filter. Factorization can then be conducted on the unrolled 2D
matrix; see (Wang et al., 2021) for details.

Transformers. A Transformer layer consists of a stack of encoders and decoders Vaswani et al.
(2017). The encoder and decoder contain three main building blocks: the multi-head attention layer,
position-wise feed-forward networks (FFN), and positional encoding. We factorize all trainable
weight matrices in the multi-head attention (MHA) and the FFN layers. The FFN layer factorization
can directly adopt the strategy from the FC factorization. A p-head attention layer learns p attention
mechanisms on the key, value, and query (K,V,Q) of each input token:

MHA(Q,K, V ) = Concat(head1, . . . , headp)W
O.

Each head performs the computation of:

headi = Attention(QW
(i)
Q ,KW

(i)
K , V W

(i)
V ) = softmax

(
QW

(i)
Q W

(i)⊤
K K⊤√
d/p

)
VW

(i)
V .

where d is the hidden dimension. The trainable weights W
(i)
Q ,W

(i)
K ,W

(i)
V , i ∈ {1, 2, . . . , p} can

be factorized by simply decomposing all learnable weights W · in an attention layer and obtaining
U ·V ⊤· Vaswani et al. (2017).

1
We make this assumption for simplicity. It can be simply overcome by adding a bias term into the model.

2
We can apply our decomposition on different types of layers, such as Linear, Convolutional and Transformers as shown in Sec. 3.2.
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3.3 TRAINING TECHNIQUES

Having defined the decomposition of typical layers found in DNNs, we move to formulate the
training procedure of our method, formally described in Algorithm 1. Training the model comprises
an iterative process of propagating forward on the model by sampling a rank bi per decomposed layer
i up to maximal rank ri (line 3). We calculate the loss, which integrates an additional hierarchical
group lasso component (lines 4) and backpropagate on the sampled decomposed model (line 5). At
the end of each epoch, we progressively shrink the network by updating the maximal rank ri, based
on an importance threshold εps (line 11). We provide more details about each component below.

Algorithm 1: MAESTRO (Training Process)

Input: epochs E, dataset D, model h parametrized by U1 ∈ Rm1×r1 ,
V 1 ∈ Rn1×r1 , . . . , Ud ∈ Rmd×rd , V d ∈ Rnd×rd , W o, and hyperparameters λgl, εps

1 for t← 0 to E − 1 do // Epochs
2 for (x, y) ∈ D do // Iterate over dataset
3 Sample (i, b) ∼

{
{(i, b)}rib=1

}d

i=1
;

4 L = l(h(U1
(
V 1

)⊤
, . . . , U i

:b

(
V i
:b

)⊤
, . . . , Ud

(
V d

)⊤
,W o, x), y)+

+λgl

∑d
i=1

∑ri
b=1

(∥∥U i
b:

∥∥+
∥∥V i

b:

∥∥) // compute loss
5 L.backward() // Update weights
6 end
7 for i← 1 to d do
8 for b← 1 to ri do
9 // rank importance thresholding

10 if
∥∥V i

b:

∥∥∥∥U i
b:

∥∥ ≤ εps then
11 ri = b− 1 // progressive shrinking
12 break
13 end
14 end
15 end
16 end

Efficient training via sampling. In Sec. 4, we show that for the linear case (3), the optimal solution
corresponds to PCA over the linearly transformed dataset. This means that the obtained solution
contains orthogonal directions. This property is beneficial because it directly implies that when we
employ gradient-based optimization, not only is the gradient zero at the optimum, but the gradient
with respect to each summand in Equation (3) is also zero. The same property is directly implied
by overparametrization Ma et al. (2018) or strong growth condition Schmidt & Roux (2013). As
a consequence, this enables us to sample only one summand at a time and obtain the same quality
solution. When considering (4) as an extension to (3), it is unclear whether this property still holds,
which would also imply that the set of stationary points of (3) is a subset of stationary points of the
original objective without decomposition. However, in the experiments, we observed that sampling is
sufficient to converge to a good-quality solution. If this only holds approximately, one could leverage
fine-tuning to recover the loss in performance.

Efficient rank extraction via hierarchical group-lasso. By definition, (3) leads to an ordered set
of ranks for each layer. This ordered structure enables efficient rank extraction and selection. To
effectively eliminate unimportant ranks while retaining the important ones, thus leading to a more
efficient model, we consider Hierarchical Group Lasso (HGL) Lim & Hastie (2015) in the form

λgl

d∑
i=1

ri∑
b=1

(∥∥U i
b:

∥∥+ ∥∥V i
b:

∥∥), (5)

where Cb: denotes the matrix that contains all the columns of C except for the first b− 1 columns.

Progressive shrinking. HGL encourages that unimportant ranks become zero and can be effectively
removed from the model. To account for this, for each layer we remove V i

b: and U i
b: (i.e., set ri = b−1)

if
∥∥V i

b:

∥∥∥∥U i
b:

∥∥ ≤ εps, where εps is a pre-selected threshold – and a hyperparameter of our method.

Initialization. Initialization is a key component of the training procedure He et al. (2015); Mishkin &
Matas (2015). To adopt the best practices from standard non-factorized training, we follow a similar
approach to Khodak et al. (2021); Wang et al. (2021), where we first initialize the non-factorized
model using standard initialization. For initializing factorized layers, we use the Singular Value
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Figure 2: Empirical showcase of theoretical properties of the MAESTRO’s formulation.
Decomposition of the non-factorized initialization – in a full-rank form – to ensure that the resulting
product matrix is the same as the original parameter decomposition. In addition, SVD is an optimal
decomposition for the linear case with uniform data. However, in contrast with the adaptive baseline
method (Wang et al., 2023) we only decompose once, rather than on every training iteration.

3.4 TRAIN-ONCE, DEPLOY-EVERYWHERE

Up until now, we have described how our method works for training low-rank models, which
yield computational, memory, network, and energy (Wu et al., 2022) bandwidth benefits during
training. At deployment time, one can directly deploy the final model (rank ri for each layer) on the
device, which we acquire from performing a threshold sweep of εps over the effective range of rank
importance across layers. However, in case we want to run on even more constrained devices, such as
mobile (Almeida et al., 2021) or embedded (Almeida et al., 2021) systems, the learned decomposition
also gives us the flexibility to further compress the model in a straightforward manner, effectively
trading off accuracy for a smaller model footprint. Inspired by Yu & Huang (2019a), we propose to
use greedy search. We begin with the current model and compare model performance across various
low-rank models, each created by removing a certain percentage of ranks from each layer. We then
eliminate the ranks that cause the least decrease in performance. This process is iterated until we
reach the desired size or accuracy constraint. To make this approach efficient, we estimate the loss
using a single mini-batch with a large batch size, for example, 2048. This also avoids issues with
BatchNorm layers; see Yu & Huang (2019a) for details.

In summary, MAESTRO comprises a technique for trainable low-rank approximation during training
time that progressively compresses the model, reflecting the data distribution, and a method that
enables a graceful trade-off between accuracy and latency for embedded deployment, by selecting
the most important parts of the network. We validate these claims in Sec. 5.2 and 5.5, respectively.

4 THEORETICAL GUARANTEES

In this section, we further investigate the theoretical properties of MAESTRO for the linear mappings,
i.e., the setup of the problem formulation (3).

Theorem 4.1 (Informal). Let A = Ũ Σ̃Ṽ ⊤ be a SVD decomposition of A. Then, the minimization
problem (3) is equivalent to PCA applied to the transformed dataset x → Σ̃Ṽ ⊤x, x ∼ X projected
on the column space of Ũ .

The formal statement can be found in Appendix D. Theorem 4.1 shows that MAESTRO can adapt to
data distribution by directly operating on data x ∼ X and also to the target mapping by projecting
data to its right singular vectors scaled by singular values. In particular, we show that in the special
case, when X is the uniform distribution on the unit ball, (3), i.e., MAESTRO, exactly recovers
truncated SVD of A, which is consistent with the prior results Horváth et al. (2021). In the case
A is the identity, it is straightforward to see that MAESTRO is equivalent to PCA. We can see that
MAESTRO can efficiently extract low-rank solutions by filtering out directions corresponding to the
null space of the target mapping A and directions with no data. We also numerically verify both of
the special cases–PCA and SVD, by minimizing (3) using stochastic gradient descent (SGD) with D
being the uniform distribution. These preliminary experiments are provided in Fig. 2a and 2b.
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We showed that MAESTRO could recover SVD in a particular case of the linear model and the uniform
data distribution on the unit ball. We note that in this case, SVD is optimal, and we cannot acquire
better decomposition. Therefore, it is desired that MAESTRO is equivalent to SVD in this scenario. In
the more general setting, we argue that MAESTRO decomposition should be preferable to SVD due to
the following reasons:

• MAESTRO formulation is directly built into the training and tailored to obtain the best low-rank
decomposition, while SVD relies on linearity assumption.

• SVD does not account for data, and even in the linear NN case, the learned singular vectors might
exhibit wrong ordering. We demonstrate this issue using a simple example where we take matrix
A with rank 3. We construct the dataset X in such a way that the third singular vector is the most
important, the second one is the second, and the first is the third most important direction. Clearly,
SVD does not look at data. Therefore, it cannot capture this phenomenon. We showcase that
MAESTRO learns the correct order; see Fig. 5 of the Appendix.

• Pre-factorizing models allow us to apply hierarchical group-lasso penalty (Yuan & Lin, 2006) for
decomposed weights to directly regularize the rank of different layers.

• SVD is computationally expensive and can only run rarely, while MAESTRO is directly built into
the training and, therefore, does not require extra computations. In addition, MAESTRO supports
rank sampling so training can be made computationally efficient.

5 EXPERIMENTS

We start this section by describing the setup of our experiments, including the models, datasets and
baselines with which we compare MAESTRO. We then compare MAESTRO against the baselines on
accuracy and training Multiply-Accumulate operations (MACs) and discuss the results. Subsequently,
we analyze the behaviour of our system in-depth and provide additional insights on the performance
of our technique, along with an ablation study and sensitivity analysis to specific hyperparameters.
Finally, we showcase the performance of models upon deployment and how we can derive a smaller
footprint model with some accuracy trade-off, without the need to fine-tune.

5.1 EXPERIMENTAL SETUP

Models & datasets. The datasets and models considered in our experiments span across four datasets,
concisely presented along with the associated models on Tab. 1. We have implemented our solution
with PyTorch (Paszke et al., 2017)(v1.13.0) trained our models on NVidia A100 (40G) GPUs. Details
for the learning tasks and hyperparameters used are presented in the Appendix.

Table 1: Datasets and models for evaluation. The net-
work footprints depict the vanilla variants of the models.

Dataset Model # GMACs # Params (M) Task

MNIST LeNet 2e−4 0.04 Image classification
CIFAR10 ResNet-18 0.56 11.18 Image classification
CIFAR10 VGG-19 0.40 20.00 Image classification
TinyImageNet ResNet-50 5.19 53.9 Image classification
Multi30k 6-layer Transformer 1.37 48.98 Translation (en-ge)

Baselines. We have selected various baselines
from the literature that we believe are closest to
aspects of our system. On the pruning front, we
compare with the IMP (Paul et al., 2023) and
RareGems (Sreenivasan et al., 2022) techniques,
themselves based on the LTH (Frankle & Carbin,
2019). On the quantization front, we compare
with XNOR-Net (Rastegari et al., 2016). With respect to low-rank methods, we compare with Spectral
Initialisation Khodak et al. (2021), Pufferfish (Wang et al., 2021) and Cuttlefish (Wang et al., 2023).

5.2 PERFORMANCE COMPARISON

We start off by comparing MAESTRO with various baselines from the literature across different
datasets and types of models3. Results are depicted in Tab. 2 and 3, while additional performance
points of MAESTRO for different model footprints are presented in the Appendix F.2 and F.3.

Comparisons with low-rank methods. The low-rank methods we are comparing against are
Pufferfish (Wang et al., 2021) and Cuttlefish (Wang et al., 2023). These methods try to reduce training
and inference runtime while preserving model accuracy by leveraging low-rank approximations. For
ResNet-18, we achieve 94.19±0.07% for 4.08M parameters and 93.97±0.25% for 2.19M parameters
compared to the 94.17% of Pufferfish at 3.3M parameters. For VGG-19, we achieve +0.41pp
(percentage points) higher accuracy compared to Pufferfish and -0.29pp to Cuttlefish at 44.8% and

3
The operating points we select for MAESTRO are the closest lower to the respective baseline in terms of footprint. Where the result is not present in the Tab. 2, we

provide the λgp value so that it can be referenced from the Appendix, Tab. 11, 12.
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Table 2: Maestro vs. baselines on CIFAR10.

Variant Model Acc. (%) GMACs Params. (M )

Non-factorized ResNet-18 93.86±0.20 0.56 11.17
Pufferfish ResNet-18 94.17 0.22 3.336
Cuttlefish ResNet-18 93.47 0.3 3.108
IMP ResNet-18 92.12 - 0.154
RareGems ResNet-18 92.83 - 0.076
XNOR-Net ResNet-18 90.06 - 0.349†

MAESTRO†
ResNet-18 94.19±0.07 0.39±0.00 4.08±0.02(λgp = 16e−6)

MAESTRO†
ResNet-18 93.86±0.11 0.15±0.00 1.23±0.00(λgp = 64e−6)

Non-factorized VGG-19 92.94±0.17 0.40 20.56
Pufferfish VGG-19 92.69 0.29 8.37
Cuttlefish VGG-19 93.39 0.15 2.36
RareGems VGG-19 86.28 - 5.04
IMP VGG-19 92.86 - 5.04
XNOR-Net VGG-19 88.94 - 0.64†
Spectral Init.∗ VGG-19 83.27 - ≈ 0.4
MAESTRO†

VGG-19 93.10±0.10 0.13±0.00 2.20±0.03(λgp = 32e−6)
MAESTRO†

VGG-19 88.53±0.13 0.03±0.00 0.35±0.00(λgp = 512e−6)
∗Results from original work; †: XNOR-Net employs binary weights and
activations; although the overall #trainable parameters remain the same as
the vanilla network, each model weight is quantized from 32-bit to 1-bit.
Therefore, we report a compression rate of 3.125%(1/32).

Table 3: Maestro vs. baselines on Multi30k.

Variant Model Perplexity GMACs Params. (M )

Non-factorized Transformer 9.85±0.10 1.370 53.90
Pufferfish∗ Transformer 7.34±0.12 0.996 26.70
MAESTRO† Transformer 6.90±0.07 0.248±0.0032 13.80±0.113

∗Results from original work; † tuned λgp from {2i/100; i ∈ 0, . . . , 9}

Table 4: Ablation study for ResNet18 on CIFAR10

Variant Acc. (%) GMACs Params. (M )

MAESTRO 94.19±0.39 0.39±0.0008 4.08±0.020

w/out GL 94.04±0.10 0.56±0.0000 11.2±0.000

w/out PS 94.12±0.36 0.39±0.0010 4.09±0.027

w/ full-training 94.05±0.32 0.39±0.0004 4.09±0.032

93.2% of the sizes, respectively. Finally, comparing with the spectral initialization (Khodak et al.,
2021) for VGG-19, we achieve +5.26pp higher accuracy for 87.5% of parameter size. Detailed results
are shown in Tab. 2. This performance benefits also apply in the case of Transformers (Tab. 3), where
MAESTRO performs 6% better in terms of perplexity at 25% of the cost (MACs) and 51.7% of the
size (parameters) compared to Pufferfish.

Comparisons with pruning methods. The next family of baselines is related to the LTH (Frankle
& Carbin, 2019). Specifically, we compare against IMP (Paul et al., 2023) and witness from
Tab. 2 that MAESTRO can achieve +1.25pp (λgp = 128e−6) and +0.24pp (λgp = 32e−6) higher
accuracy for ResNet-18 and VGG-19 respectively. Although we cannot scale to the size that
RareGems (Sreenivasan et al., 2022) for ResNet-18, the sparsity that they achieve is unstructured,
which most modern hardware cannot take advantage of. In contrast, our technique performs ordered
structured sparsity, compatibly with most computation targets. On the other hand, for VGG-19, we
achieve +6.82pp higher accuracy at 43.6% of the footprint.

Comparisons with quantized models. We also compare against XNOR-Net (Rastegari et al., 2016),
which binarizes the network to achieve efficient inference. Training continues to happen in full
precision, and inference performance is dependent on the operation implementation of the target
hardware. Nonetheless, assuming a compression rate of 3.125%, for the same model size, we achieve
+1.08pp (λgp = 512e−6) and +2.18pp (λgp = 256e−6) higher accuracy on ResNet-18 and VGG-19.

5.3 TRAINING BEHAVIOUR OF MAESTRO

Having shown the relative performance of our framework to selected baselines, we now move to
investigate how our method behaves, with respect to its convergence and low-rank approximations.

Model and rank convergence. In Fig. 3, we present the training dynamics for MAESTRO. Fig. 3a
illustrates the evolution of total rank throughout the training steps. We observe that the ranks are
pruned incrementally. This aligns with the observations made during Pufferfish Wang et al. (2021)
training, where the authors suggest warm-start training with full precision to enhance the final
model performance. In our situation, we do not need to integrate this heuristic because MAESTRO
automatically prunes rank. Fig. 3b reveals the ranks across layers after training. We notice an
intriguing phenomenon: the ranks are nested for increasing λgl. This could imply apart from a natural
order of ranks within each layer, a global order. We briefly examine this captivating occurrence in
the following section, and we plan to investigate it more thoroughly in future work, as we believe
this might contribute to a superior rank selection and sampling process. Lastly, Fig. 3c depicts the
progression of training loss. We find that our hypothesis, that sampling does not adversely impact
training, is also supported empirically.

5.4 ABLATION STUDY

In this section, we examine the impact of each component on the performance of MAESTRO.
Specifically, we run variants of our method i) without the hierarchical group lasso regularization
(HGL), ii) without progressive shrinking (PS). Additionally, we integrate iii) an extra full low-rank
pass (b = ri) into the training at each step to assess whether extra sampling would be beneficial.
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Figure 3: Training dynamics of MAESTRO for ResNet18 on CIFAR10.
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Figure 4: Accuracy-latency trade-off of MAESTRO under different settings for VGG19 on CIFAR10.
The results are displayed in Tab. 4. As anticipated, our findings confirm that neither inclusion of
hierarchical group lasso with a tuned λgl nor progressive shrinking impair the final performance,
but they do significantly enhance the efficiency of MAESTRO. Moreover, sampling more ranks at
each training step does not improve the final performance, and, in fact, it hampers training efficiency,
making it approximately twice as computationally demanding.

5.5 ACCURACY-LATENCY TRADE-OFF AT TRAINING AND DEPLOYMENT TIME

In Fig. 4, we illustrate various approaches to balance latency (proxied through MACs operations)
and accuracy in model training and deployment. Fig. 4a demonstrates how MAESTRO (λgl = 0) can
be pruned effectively for deployment using the greedy search method discussed in Section 3.4. We
contrast this with the greedy pruning of a non-factorized model that has been factorized using SVD.
We reveal that this straightforward baseline does not measure up to the learned decomposition of
MAESTRO and results in a significant performance decrease. Next, Fig. 4b portrays the final accuracy
and the number of model parameters for varying hierarchical group lasso penalties. This leads to the
optimal latency-accuracy balance for both training and inference. However, it’s crucial to point out
that each model was trained individually, while greedy pruning only necessitates a single training
cycle. Lastly, we delve into the observation of nested ranks across increasing λgl. Fig. 4c displays the
performance of MAESTRO (λgl = 0) across different ranks selected by smaller models MAESTRO
(λgl > 0). Intriguingly, we observe that MAESTRO (λgl = 0) performs very well—for instance, we
can decrease its operations in half (and parameters by 10×) and still maintain an accuracy of 87.7%
without fine-tuning, just by reusing rank structure from independent runs. As aforementioned, we
intend to further explore this in the future.

6 CONCLUSION AND FUTURE WORK

In this work, we have presented MAESTRO, a method for trainable low-rank approximation of DNNs
that leverages progressive shrinking by applying a generalized variant of Ordered Dropout to the
factorized weights. We have shown the theoretical guarantees of our work in the case of linear
models and empirically demonstrated its performance across different types of models, datasets, and
modalities. Our evaluation has demonstrated that MAESTRO outperforms competitive compression
methods at a lower cost. In the future, we plan to expand our technique to encompass more advanced
sampling techniques and apply it to different distributed learning scenarios, such as Federated
Learning, where data are natively non-independent or identically distributed (non-IID).
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A BROADER IMPACT

The goal of our work is to make the training and deployment of DNNs more efficient, affecting the
total computation, memory and bandwidth of systems, as well as the energy they require to run the
respective tasks. DNN model training requires significant amounts of energy, whether in a data center
or at the edge Wu et al. (2022); Patterson et al. (2022). However, such techniques should not be used
as an excuse to make data centers less green, but rather as a complementary measure to further reduce
the carbon footprint of Deep Learning.

Additionally, as our technique involves a training-aware methodology for progressively selecting
ranks, it depends on the quality of data used in training. Deploying the model in the wild for various
downstream tasks may result in behavior different from the intended outcomes. Therefore, it should
be thoroughly tested before deployment to ensure it adheres to the required Service Level Objectives
(SLOs), especially in performance-critical use cases, such as self-driving vehicles or UAV navigation.

B LIMITATIONS

In this work, we have proposed a method for trainable low-rank approximation of DNNs that provides
performance benefits for both training and inference times. While we suggest that this could have
repercussions on the energy consumption of these tasks, we have not yet evaluated this hypothesis
experimentally across different devices, be they data center-grade or at the edge.

Additionally, we have applied our technique to CNN and Transformer models spanning across vision
and NLP tasks. While we anticipate generalization to any type of network, it remains to be seen
whether our techniques can also be applied to alternative types of layers, such as recurrent ones, and
the benefits they may bring.

Although we have provided a thorough investigation of the behaviour of our proposed system,
the only way we can control the end footprint of the model during training is via the λgl and εps
hyperparameters. However, there is no guarantee about the final footprint of the model. If we are
willing to sacrifise accuracy, then the technique illustrated in Sec. 3.4 and evaluated in Sec. 5.5 is a
start. More robust ways of globally ranking per-layer importances are left as future work.

Lastly, our sampling method during training is uniform up to the maximum rank during progressive
shrinking. Although this method has proven effective, alternative sampling methods could potentially
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accelerate rank exploration, thereby hastening the shrinking and convergence of the network during
training.

C EXTENDED BACKGROUND

Ordered Dropout. Ordered Dropout is a technique of importance-based, nested and ordered pruning
that works along the indices of a layer’s parameters (neurons, filters, etc.) Introduced by (Horváth
et al., 2021), the authors describe a training technique where a layer’s width is discretised in |P |
values, where P = {s1, s2, . . . , s|P |}, and at each training step, they sample p ∼ UP to get a specific
subnetwork, extracted by selecting the first

⌈
p ∗Kl − 1

⌉
neurons per layer and dropping the rest.

In contrast to our work, sampling is happening directly on model parameters (rather than ranks)
and is uniform across layers (i.e. a single p-value is set). Nested-ness refers to the fact that larger
p-value models include the parameters of lower p-values and importance-based pruning means that
via stochastic sampling, the right-most (in terms of index) parameters train on progressively less data
due to the probability of sampling and nestedness (i.e. all data pass from the parameters of minimal
subnetwork, less pass the higher the p-value).

D THEORETICAL PROPERTIES OF LOW-RANK LAYERS

In this section, we show that for the case of linear mappings, i.e., the problem formulation discussed in
(3), MAESTRO acts as PCA applied to the original dataset X projected onto the space weighted by the
corresponding singular values. Before proceeding with the theorem, we first recall the assumptions
and notations introduced in the main paper.

We denote C:b as the first b columns of matrix C, C:a,:b denotes the first a rows, and b columns of a
matrix C, a+1 : denotes the all the columns/rows from index a+1, : denotes the all the columns/rows,
and for vectors, we use a single subscript. As discussed in the main paper, we reformulate the original
least squares problems to the following decomposition problem

min
U∈Rm×r,V ∈Rn×r

Ex,y∼X

[
Eb∼D

[∥∥U:bV
⊤
:b x− y

∥∥2]] , (6)

where D is a distribution that samples b ∈ {1, 2, . . . , r} with probability pb > 0 and we assume that
y is linked with x through linear map A, i.e., y = Ax.

Theorem D.1. Let A = Ũ Σ̃Ṽ ⊤ be a SVD decomposition of A. Then, the minimization problem (6)
is equivalent to PCA applied to the transformed dataset x → Σ̃Ṽ ⊤x, x ∼ X projected on the column
space of Ũ . Concretely, we can first solve

min
U∈Rm×r,V ∈Rn×r

Ez∼X

[
Eb∼D

[∥∥∥(U:bV
⊤
:b − I

)
Σ̃Ṽ ⊤x

∥∥∥2]] , (7)

and then we can obtain the solutions of (6) using U⋆ = Ũ⊤Ū , V ⋆ = Ṽ ⊤V̄ , where Ū , V̄ belong to
the set of optimal solutions of problem (7).zx

In the particular case, where X is a uniform distribution on the unit ball, (6) recovers the best rank
approximation of A across all ranks, i.e., up to the scale of U and V recovers truncated SVD. In the
case, A is identity, (6) leads to standard PCA decomposition.

Proof. From the assumptions that y = Ax and A = Ũ Σ̃Ṽ ⊤, we can rewrite (6) as

min
U∈Rm×r,V ∈Rn×r

Ex∼X

[
Eb∼D

[∥∥∥(U:bV
⊤
:b − Ũ Σ̃Ṽ ⊤

)
x
∥∥∥2]] .

Since Ũ is orthogonal, we have ∥z∥ = ∥Ũ⊤z∥. Therefore, the above problem is equivalent to

min
U∈Rm×r,V ∈Rn×r

Ex∼X

[
Eb∼D

[∥∥∥(Ũ⊤U:bV
⊤
:b − Σ̃Ṽ ⊤

)
x
∥∥∥2]] ,

which is also equivalent to

min
U∈Rm×r,V ∈Rn×r

Ex∼X

[
Eb∼D

[∥∥∥(U:bV
⊤
:b − Σ̃Ṽ ⊤

)
x
∥∥∥2]]

15



Under review as a conference paper at ICLR 2024

after reparametrization. The next step involves injecting identity in the form Ṽ Ṽ ⊤ as that leads to the
equivalent reformulation

min
U∈Rm×r,V ∈Rn×r

Ex∼X

[
Eb∼D

[∥∥∥(U:bV
⊤
:b Ṽ − Σ̃

)
Ṽ ⊤x

∥∥∥2]] .
As for the previous case, we can reparametrise the problem to obtain

min
U∈Rm×r,V ∈Rn×r

Ex∼X

[
Eb∼D

[∥∥∥(U:bV
⊤
:b − Σ̃

)
Ṽ ⊤x

∥∥∥2]] .
Let k = rank(Σ̃) = rank(A) ≤ r and z = Ṽ ⊤x. Furthermore, let g = Σ̃z for any z ∈ Rn, then
gk+1: = 0⃗. This, combined with the nested structure of the optimization problem, implies that the
optimal solution for U has to be of the form ui,k+1: = 0⃗ for all interesting (non-zero mapping)
directions, i.e., there exists x ∈ X such that v⊤i Ṽ

⊤x ̸= 0. These are the only interesting solutions
since the case where for all x ∈ X : v⊤i Ṽ

⊤x = 0 yields zero mapping on X , which is not of interest
and could be dropped, e.g., using group lasso penalty discussed in the main part. Therefore, to solve
the original problem, we could first solve the following problem

min
U∈Rk×r,V ∈Rn×r

Ez∼X

[
Eb∼D

[∥∥∥(U:k,:bV
⊤
:b − Σ̃:k,:

)
z
∥∥∥2]]

and then reconstruct the corresponding solution of the original problem by appending zeros to the
resulting matrix U . By a similar argument, we can argue that for all non-zero mapping directions, it
has to be the case that vi,k+1: = 0⃗. Therefore, solving the original minimization reduces to

min
U∈Rk×r,V ∈Rk×r

Ez∼X

[
Eb∼D

[∥∥∥(U:bV
⊤
:b − Σ̃:k,:k

)
z:k

∥∥∥2]] .
This can be further simplified using reparametrization V ⊤ → V ⊤Σ̃−1

:k,:k, which leads to

min
U∈Rk×r,V ∈Rk×r

Ez∼X

[
Eb∼D

[∥∥∥(U:bV
⊤
:b − Ik

)
Σ̃:k,:kz:k

∥∥∥2]] , (8)

where Ik is k× k identity. If X is centred around zero, then Σ̃:k,:kz:k is also centred around zero, and
the above problem is up to scaling equivalent to PCA of Σ̃:k,:kz:k as shown by Rippel et al. (Rippel
et al., 2014). Since Σ̃ is a diagonal matrix with only k × k non-zero upper left sub-matrix, therefore,
PCA on Σ̃:k,:kz:k is equivalent to PCA on Σ̃z by appending zeros to the obtained principal component
vectors. Thus, we can write an equivalent formulation

min
U∈Rm×r,V ∈Rn×r

Ez∼X

[
Eb∼D

[∥∥∥(U:bV
⊤
:b − I

)
Σ̃Ṽ ⊤x

∥∥∥2]] .
Furthermore, let Ū , V̄ belong to the set of optimal solutions of problem (7). Then U⋆ = Ũ⊤Ū , V ⋆ =
Ṽ ⊤V̄ belong to the set of optimal solutions of problem (6). This can be proved by reversing our
construction and ignoring scaling since (7) is scaling invariant.

For the case X is a uniform distribution on the unit ball, we have Σ̃:k,:kz:k is a k-dimensional ellipsoid
with principal axes being standard basis vectors {ei}ki=1, where the length of the axes is given by
ordered singular values, i.e., the first basis vector corresponds to the largest singular vector. Therefore,
its principal component vectors correspond to the basis vectors. Following our construction, one can
see that the solution to the original problems leads to truncated SVD up to the scaling factor.

For the case A is an identity, we have k = r = m = m, Σ̃ is an identity, and Ũ = Ṽ . Under this
setting, the principal component vectors obtained from (8) corresponds to principal component vectors
of X in basis given by columns of Ũ . Similarly, as in the previous case, reversing the transformations
to return back to the original problem, we conclude that the optimal solution of the original problem
corresponds to principal component vectors of X since we reverse the transformation by Ũ⊤.
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E EXPERIMENTAL SETUP

E.1 DATASETS

MNIST. The MNIST dataset (LeCun et al., 2010) is a database of 28×28 greyscale handwritten
digits, with a training set of 60k examples and a test set of 10k samples.

CIFAR-10. The CIFAR10 dataset (Krizhevsky et al., 2009) is a computer vision dataset that consists
of 32×32 RGB images classified into 10 labels. It is split into 50k training images and 10k test
images which are balanced across labels.

WMT16. The WMT dataset from statmt is machine translation dataset, spanning news commentaries
and parliament proceedings, that aims to investigate the applicability of machine translation techniques
when translating between language pairs. Specifically, we focus on the task of German-English
language translation of image descriptions, commonly referred to as Multi30k (Elliott et al., 2016).
We only utilise the text modality for the translation task. Data is taken straight from torchtext.

TinyImagenet. The TinyImagenet dataset (Le & Yang, 2015) is a image classification challenge
similar to ILSVRC (Deng et al., 2009). The task it to classify an 64×64 RGB image among 200
classes, with each class having 500 training samples. The test set contains 10,000 images.

E.2 MODELS

LeNet. LeNet is a simple convolutional network, introduced by LeCun at al. for recognizing
handwritten digits (LeCun et al., 2010). It consists of a sequence of two convolutional layers,
followed by three fully-connected layers. However, we are using a ReLU instead of the initially
proposed sigmoid activation. The detailed architecture of the network is depicted in Tab. 5

ResNet. ResNet (He et al., 2016) is a deep neural network whose prominent feature is the existence
of skip (or residual) connections, that is connections that perform identity mappings merged with
the target layer it joins with through summation. Multiple residual blocks are stacked to form the
network. The result is an easier to optimise network that offers enhanced accuracy. We use ResNet-18
in our experiments, the architecture of which is depicted in Tab. 6, except for TinyImageNet, where
we use ResNet-50.

Table 5: Detailed architecture of the LeNet-5 archi-
tecture used in our experiments. Each convolution
and linear layer is followed by a ReLU activation
that is ommitted from the table. The shapes for
convolution layers follows (m,n, k, k).

Parameter Shape Layer hyper-parameter

layer1.conv1.weight 1× 6× 5× 5 stride:1;padding:1

pooling.max N/A kernel size:2;stride:1;dilation:1

layer2.conv2.weight 6× 16× 5× 5 stride:1;padding:0;dilation:1

pooling.max N/A kernel size:2;stride:2

layer3.fc1.weight 256× 120 N/A

layer4.fc2.weight 120× 84 N/A

layer5.fc3.weight 84× 10 N/A

Table 6: The hybrid ResNet architecture for the CIFAR-
10 and TinyImageNet datasets used in the experiments.

Layer Name ResNet-18 ResNet-50

conv1 3×3, 64, stride 1, padding 1 7×7, 64, stride 2, padding 1

conv2_x

3×3 maxpool, stride 2[
3×3, 64
3×3, 64

]
×2

[
1×1, 64
3×3, 64
1×1, 256

]
×3

conv3_x
[

3×3, 128
3×3, 128

]
×2

[
1×1, 128
3×3, 128
1×1, 512

]
×4

conv4_x
[

3×3, 256
3×3, 256

]
×2

[
1×1, 256
3×3, 256
1×1, 1024

]
×6

conv5_x
[

3×3, 512
3×3, 512

]
×2

[
1×1, 512
3×3, 512
1×1, 2048

]
×3

Avg Pool, 10-dim FC, SoftMax Avg Pool, 20-dim FC, SoftMax

VGG. VGG (Simonyan & Zisserman, 2015) is a also a convolutional network that leverages smaller
3×3 convolutions that enables deeper architecture than before. For our experiments we are using
VGG-19, the architecture of which is depicted in Tab. 7.

Transformers. The transformer architecture (Vaswani et al., 2017) has been lately revolutionising
deep learning. Based on the notion of self-attention, for each input token, it produces a weighted
combination of other relevant tokens weighed by the attention weight. Each attention unit has three
weight matrices, namely WQ, WK , WV , for query, key and value weights respectively producing the
equivalent vectors. Attention is defined as the scaled dot product between key and query. For our
translation task, we use the architecture depicted in Tab. 9.
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Table 7: Detailed architecture of the VGG-19 architecture used in our experiments. There is a BatchNorm layer
followed by a ReLU activation (omitted in the table) after each convolution layer. The shapes for convolution
layers follows (m,n, k, k).

Parameter Shape Layer hyper-parameter

layer1.conv1.weight 3× 64× 3× 3 stride:1;padding:1

layer2.conv2.weight 64× 64× 3× 3 stride:1;padding:1

pooling.max N/A kernel size:2;stride:2

layer3.conv3.weight 64× 128× 3× 3 stride:1;padding:1

layer4.conv4.weight 128× 128× 3× 3 stride:1;padding:1

pooling.max N/A kernel size:2;stride:2

layer5.conv5.weight 128× 256× 3× 3 stride:1;padding:1

layer6.conv6.weight 256× 256× 3× 3 stride:1;padding:1

layer7.conv7.weight 256× 256× 3× 3 stride:1;padding:1

layer8.conv8.weight 256× 256× 3× 3 stride:1;padding:1

pooling.max N/A kernel size:2;stride:2

layer9.conv9.weight 256× 512× 3× 3 stride:1;padding:1

layer10.conv10.weight 512× 512× 3× 3 stride:1;padding:1

layer11.conv11.weight 512× 512× 3× 3 stride:1;padding:1

layer12.conv12.weight 512× 512× 3× 3 stride:1;padding:1

pooling.max N/A kernel size:2;stride:2

layer13.conv13.weight 512× 512× 3× 3 stride:1;padding:1

layer14.conv14.weight 512× 512× 3× 3 stride:1;padding:1

layer15.conv15.weight 512× 512× 3× 3 stride:1;padding:1

layer16.conv16.weight 512× 512× 3× 3 stride:1;padding:1

pooling.avg N/A kernel size:2

classifier.weight 512× 10 N/A

classifier.bias 10 N/A

Table 8: Detailed information of the encoder layer in
the Transformer architecture in our experiment

Parameter Shape Hyper-param.

embedding 9521 × 512 padding index: 1

positional encoding N/A N/A

dropout N/A p = 0.1

encoder.self-attention.wq(WQ) 512 × 512 N/A

encoder.self-attention.wk(WK ) 512 × 512 N/A

encoder.self-attention.wv(WV ) 512 × 512 N/A

encoder.self-attention.wo(WO) 512 × 512 N/A

encoder.self-attention.dropout N/A p = 0.1

encoder.self-attention.layernorm 512 ε = 10−6

encoder.ffn.layer1 512 × 2048 N/A

encoder.ffn.layer2 2048 × 512 N/A

encoder.layernorm 512 ε = 10−6

dropout N/A p = 0.1

Table 9: Detailed information of the decoder layer in
the Transformer architecture in our experiment

Parameter Shape Hyper-param.

embedding 9521× 512 padding index: 1

positional encoding N/A N/A

dropout N/A p = 0.1

decoder.self-attention.wq(WQ) 512× 512 N/A

decoder.self-attention.wk(WK ) 512× 512 N/A

decoder.self-attention.wv(WV ) 512× 512 N/A

decoder.self-attention.wo(WO) 512× 512 N/A

decoder.self-attention.dropout N/A p = 0.1

decoder.self-attention.layernorm 512 ε = 10−6

decoder.enc-attention.wq(WQ) 512× 512 N/A

decoder.enc-attention.wk(WK ) 512× 512 N/A

decoder.enc-attention.wv(WV ) 512× 512 N/A

decoder.enc-attention.wo(WO) 512× 512 N/A

decoder.enc-attention.dropout N/A p = 0.1

decoder.enc-attention.layernorm 512 ε = 10−6

decoder.ffn.layer1 512× 2048 N/A

decoder.ffn.layer2 2048× 512 N/A

encoder.layernorm 512 ε = 10−6

dropout N/A p = 0.1

E.3 HYPERPARAMETER SELECTION

LeNet. We use a standard configuration that is commonly employed for training LeNet models — a
step size of 0.01, a momentum of 0.9, and no weight decay. We train for a total of 20 epochs.
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VGG and ResNet-18. Similarly, we use a standard configuration that is commonly employed for
training VGG and ResNet-18 models — a step size of 0.01, a momentum of 0.9, weight decay of
1e−4, and a learning schedule with step size reductions by a factor of 10 at epochs 150 and 250. We
train for a total of 300 epochs.

ResNet-50. Similarly, we use a standard configuration that is commonly employed for training
ResNet-50 models — a step size of 0.01, a momentum of 0.9, weight decay of 1e−4, and a learning
schedule with step size reductions by a factor of 10 at epochs 30 and 60. We train for a total of 90
epochs.

Transformers. For the Transformer model, we use the Adam optimizer with an initial learning rate
at 0.001, βs = (0.9, 0.98), ε = 10−8 batch size at 256. We also conduct gradient norm clipping with
norm bound at 0.25. The entire training takes 400 epochs. For the vanilla warm-up training, we use
warm-up epoch Ewu = 10. We enable label smoothing, weight sharing for the source and target
word embedding, and weight sharing between target word embedding and the last dense layer. The
learning rate schedule follows directly from the one proposed Vaswani et al. (2017).

E.4 DECIDING AGAINST DECOMPOSITION

During inference, if the rank of a given layer is so large that keeping it as a non-decomposed layer is
more efficient, we opt not to decompose that particular layer.

F EXTENDED EVALUATION

F.1 MAESTRO RECOVERS CORRECT ORDERING

In the main text, we pointed out that SVD fails to consider data. Indeed, even in the case of linear NN,
the acquired singular vectors may exhibit incorrect ordering. To illustrate this problem, we provide a
simple example in which we use a matrix A with a rank of 3. We organize the dataset X such that the
third singular vector has the highest importance, followed by the second and then the first singular
vector in decreasing order of significance. It is clear that SVD doesn’t consider the data, and as a
result, it cannot comprehend this behavior. Below (in Fig. 5), we demonstrate how MAESTRO is able
to correctly discern the order.
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Figure 5: Verification that MAESTRO recovers correct order of importance. Target mapping is of rank 3, and the
dataset is constructed in such a way that the singular vectors have reversed the order of importance. p and k
stand for relative and actual rank, respectively.

F.2 TRAINING BEHAVIOUR OF MAESTRO

For completeness, we also include an extended version of Fig. 3 from the main paper, where we
presented the training dynamics for MAESTRO. Fig.6, 7 and 8 present similar plots, but across both
MNIST and CIFAR-10. Specifically, Fig. 6 illustrates the evolution of total rank throughout the
training steps. We observe that the ranks are pruned incrementally. This aligns with the observations
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made during Pufferfish Wang et al. (2021) training, where the authors suggested warm-start training
with full precision to enhance the final model performance. In our case, the necessity to implement
this heuristic is avoided, as MAESTRO prunes rank automatically. Fig. 7 demonstrates the ranks
across layers post-training. An intriguing trend is observed: the ranks are nested for increasing λgl,
suggesting a potential inherent ordering of ranks not only within each layer but also possibly a global
one. We provide a preliminary exploration of this fascinating pattern in the subsequent section and
intend to probe it more deeply in future studies. We believe this may enhance the rank selection
and sampling process. Finally, Fig. 8 portrays the evolution of the training loss. Our premise that
sampling does not negatively affect training is validated by empirical performance.
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Figure 6: Total rank (
∑d

i=1 ri) progression during training.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Layer Index

0

20

40

60

80

100

120

Ra
nk

Full Rank
Maestro:  = 4e-05
Maestro:  = 8e-05
Maestro:  = 0.00016
Maestro:  = 0.00032
Maestro:  = 0.00064
Maestro:  = 0.00128
Maestro:  = 0.00256

(a) LeNet on MNIST

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Layer Index

0

100

200

300

400

500

Ra
nk

Full Rank
Maestro:  = 4e-06
Maestro:  = 8e-06
Maestro:  = 1.6e-05
Maestro:  = 3.2e-05
Maestro:  = 6.4e-05
Maestro:  = 0.000128
Maestro:  = 0.000256
Maestro:  = 0.000512
Maestro:  = 0.001024

(b) ResNet-18 on CIFAR10

2 4 6 8 10 12 14 16
Layer Index

0

100

200

300

400

500

Ra
nk

Full Rank
Maestro:  = 4e-06
Maestro:  = 8e-06
Maestro:  = 1.6e-05
Maestro:  = 3.2e-05
Maestro:  = 6.4e-05
Maestro:  = 0.000128
Maestro:  = 0.000256
Maestro:  = 0.000512

(c) VGG19 on CIFAR10

Figure 7: Ranks ri’s across different layers after training.
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Figure 8: Convergence of MAESTRO with λgl = 0.

F.3 MODEL SIZE-ACCURACY TRADE-OFF AT TRAINING AND DEPLOYMENT TIME

In addition to the original illustrations, we present an extended interpretation of Fig. 4, where we
depict diverse strategies to maintain a balance between model size and accuracy in the process
of model training and deployment. In Fig. 9, we demonstrate the effective pruning of MAESTRO
(λgl = 0) for deployment, utilizing the greedy search methodology discussed in Section 3.4. This is
juxtaposed with the greedy pruning of a model not originally factorized but later factorized through
SVD. Our findings reveal that this straightforward baseline does not match the performance of
MAESTRO’s learned decomposition, leading to a considerable performance drop.
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(c) VGG19 on CIFAR10

Figure 9: Accuracy-latency trade-off comparing MAESTRO (λgl=0) and SVD.
Subsequently, Fig. 10 displays the end accuracy and the count of model parameters corresponding to
various hierarchical group lasso penalties. This results in an optimal compromise between latency
and accuracy for both the training and inference stages. It’s worth noting, though, that each model
was trained separately, in contrast to greedy pruning, which demands just a single training round.
Additionally, we scrutinize the training expense for each model illustrated in Fig. 10, the results of
which are exhibited in Tables 10, 11, 12, 13 and 14, where we display and the final accuracy of the
model, MACs and the number of parameters for inference, and relative total training cost in terms of
the number of model parameters and MACs compared to the non-factorized model. Interestingly,
smaller models are not only advantageous in terms of inference efficiency, but they can also be trained
at a small portion of the cost required by full-rank models. On the downside, the smallest models
cause a non-negligible reduction in performance.
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(c) VGG19 on CIFAR10

Figure 10: Impact of hierarchical group lasso on the accuracy-memory trade-off. Exact values are provided in
Tables 10, 11 and 12, respectively.

Table 10: LeNet performance on MNIST for different regularization parameters. The last column in the table
displays the relative total training cost in terms of the number of Multiply-Accumulate operations (MACs) and
model parameters, compared to the non-factorized model.

Variant Acc. (%) MACs (Inf.) Params. (Inf.) Rel. MACs / Params. (Train.)

Non-Factorized 98.99±0.09 281640±0 (1.00×) 44426±0 (1.00×) 1.00× / 1.00×
MAESTRO (λgp = 0.) 99.06±0.09 281640±0 (1.00×) 44426±0(1.00×) 1.14×/ 1.49×
MAESTRO (λgp = 8e−5) 98.91±0.09 268577±389 (0.95×) 31363±0 (0.71×) 1.08×/ 1.14×
MAESTRO (λgp = 16e−5) 98.92±0.05 255369±217 (0.91×) 44426±217 (0.41×) 1.06×/ 0.80×
MAESTRO (λgp = 32e−5) 98.31±0.39 237084±6268 (0.84×) 18155±271 (0.26×) 0.93×/ 0.53×
MAESTRO (λgp = 64e−5) 98.20±0.49 178165±19098 (0.63×) 7996±662 (0.18×) 0.77×/ 0.33×
MAESTRO (λgp = 128e−5) 97.92±0.22 131789±8965 (0.47×) 6375±77 (0.14×) 0.54×/ 0.21×
MAESTRO (λgp = 256e−5) 96.65±0.14 99969±6252 (0.35×) 5293±214 (0.12×) 0.39×/ 0.14×

Lastly, we delve deeper into the observation of nested ranks with increasing λgl. Fig. 11 outlines
the performance of MAESTRO (λgl = 0) across various ranks chosen by smaller models MAESTRO
(λgl > 0). We observe that MAESTRO (λgl = 0) delivers impressive results—for example, we can
reduce its parameters by 10x for VGG while preserving an accuracy of 87.7% without any fine-tuning
simply by leveraging rank structure from separate runs. For LeNet, a reduction in model size by a
factor of three is achievable without sacrificing accuracy. Last, for ResNet-18 the reduction is 1.7×.
As highlighted earlier, we aim to delve deeper into this subject in future studies.
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Table 11: ResNet-18 performance on CIFAR10 for different regularization parameters. The last column in the
table displays the relative total training cost in terms of the number of Multiply-Accumulate operations (MACs)
and model parameters, compared to the non-factorized model.

Variant Acc. (%) GMACs (Inf.) Params. (M) (Inf.) Rel. MACs / Params. (Train.)

Non-Factorized 93.86±0.20 0.56±0 (1.00×) 11.2±0 (1.00×) 1.00× / 1.00×
MAESTRO (λgp = 0.) 94.04±0.10 0.56±0 (1.00×) 11.2±0 (1.00×) 1.10× / 1.13×
MAESTRO (λgp = 4e−6) 94.22±0.16 0.55±0.0047 (1.00×) 11.1±0.030 (0.99×) 1.09× / 1.10×
MAESTRO (λgp = 8e−6) 94.09±0.01 0.49±0.0002 (0.89×) 7.41±0.004 (0.66×) 1.00× / 0.85×
MAESTRO (λgp = 16e−6) 94.19±0.07 0.39±0.0008 (0.70×) 4.08±0.020 (0.37×) 0.83× / 0.58×
MAESTRO (λgp = 32e−6) 93.97±0.25 0.25±0.0013 (0.45×) 2.19±0.007 (0.20×) 0.60× / 0.36×
MAESTRO (λgp = 64e−6) 93.86±0.11 0.15±0.0006 (0.27×) 1.23±0.004 (0.11×) 0.39× / 0.22×
MAESTRO (λgp = 128e−6) 93.37±0.07 0.094±0.0006 (0.17×) 0.79±0.009 (0.07×) 0.25× / 0.13×
MAESTRO (λgp = 256e−6) 92.48±0.04 0.064±0.0002 (0.12×) 0.54±0.006 (0.05×) 0.16× / 0.08×
MAESTRO (λgp = 512e−6) 91.14±0.16 0.044±0.0004 (0.08×) 0.37±0.007 (0.03×) 0.11× / 0.05×
MAESTRO (λgp = 1024e−6) 89.55±0.30 0.032±0.0002 (0.06×) 0.27±0.007 (0.02×) 0.07× / 0.03×

Table 12: VGG19 performance on CIFAR10 for different regularization parameters. The last column in the
table displays the relative total training cost in terms of the number of Multiply-Accumulate operations (MACs)
and model parameters, compared to the non-factorized model.

Variant Acc. (%) GMACs (Inf.) Params. (M) (Inf.) Rel. MACs / Params. (Train.)

Non-Factorized 92.94±0.17 0.40±0 (1.00×) 20±0 (1.00×) 1.00× / 1.00×
MAESTRO (λgp = 0.) 93.06±0.17 0.40±0 (1.00×) 20±0 (1.00×) 1.10× / 1.12×
MAESTRO (λgp = 4e−6) 93.33±0.08 0.39±0.0017 (0.97×) 18.8±0 (0.94×) 1.06× / 1.04×
MAESTRO (λgp = 8e−6) 93.27±0.33 0.30±0.0017 (0.76×) 9.91±0.008 (0.49×) 0.90× / 0.73×
MAESTRO (λgp = 16e−6) 93.13±0.07 0.21±0.0014 (0.53×) 4.66±0.052 (0.23×) 0.69× / 0.46×
MAESTRO (λgp = 32e−6) 93.10±0.10 0.13±0.0009 (0.33×) 2.20±0.025 (0.11×) 0.47× / 0.27×
MAESTRO (λgp = 64e−6) 92.70±0.34 0.08±0.0005 (0.20×) 1.17±0.010 (0.06×) 0.30× / 0.16×
MAESTRO (λgp = 128e−6) 92.34±0.12 0.05±0.0005 (0.13×) 0.72±0.002 (0.04×) 0.19× / 0.09×
MAESTRO (λgp = 256e−6) 91.12±0.19 0.04±0.0007 (0.09×) 0.50±0.023 (0.02×) 0.12× / 0.05×
MAESTRO (λgp = 512e−6) 88.53±0.13 0.03±0.0003 (0.06×) 0.35±0.003 (0.02×) 0.08× / 0.03×

Table 13: Transformer performance on Multi30k for different regularization parameters. The last column in the
table displays the relative total training cost in terms of the number of Multiply-Accumulate operations (MACs)
and model parameters, compared to the non-factorized model.

Variant Acc. (%) Ppl. GMACs (Inf.) Params. (M) (Inf.) Rel. MACs / Params. (Train.)

Non-Factorized 65.33±1.13 9.85±0.10 1.370±0.0000 (1.00×) 53.9±0.000 (1.00×) 1.00× / 1.00×
MAESTRO (λgp = 0.32) 61.30±0.26 12.99±0.31 1.125±0.0030 (0.82×) 45.1±0.101 (0.84×) 1.03× / 1.14×
MAESTRO (λgp = 0.64) 63.78±0.14 9.37±0.32 0.957±0.0112 (0.70×) 39.1±0.413 (0.73×) 0.95× / 1.05×
MAESTRO (λgp = 1.28) 66.14±0.08 7.02±0.17 0.570±0.0088 (0.42×) 25.3±0.315 (0.47×) 0.75× / 0.86×
MAESTRO (λgp = 2.56) 66.08±0.09 6.90±0.07 0.248±0.0032 (0.18×) 13.8±0.113 (0.26×) 0.47× / 0.58×
MAESTRO (λgp = 5.12) 57.70±0.13 13.97±0.43 0.123±0.0002 (0.9×) 9.3±0.001 (0.17×) 0.28× / 0.39×

Table 14: ResNet50 performance on Tiny-Imagenet-200 for different regularization parameters. The last column
in the table displays the relative total training cost in terms of the number of Multiply-Accumulate operations
(MACs) and model parameters, compared to the non-factorized model.

Variant Acc. (%) GMACs (Inf.) Params. (M) (Inf.) Rel. MACs / Params. (Train.)

Non-Factorized 61.74±0.27 5.19±0.0000 (1.00×) 23.9±0.000 (1.00×) 1.22× / 1.22×
MAESTRO (λgp = 0.) 61.05±0.09 5.19±0.0000 (1.00×) 23.9±0.000 (1.00×) 1.21× / 1.20×
MAESTRO (λgp = 4e−5) 60.13±0.34 4.72±0.0013 (0.91×) 18.8±0.017 (0.79×) 0.81× / 0.69×
MAESTRO (λgp = 8e−5) 59.20±0.40 3.01±0.0064 (0.58×) 9.64±0.023 (0.40×) 0.00× / 0.00×
MAESTRO (λgp = 16e−5) 58.35±0.40 1.49±0.0142 (0.29×) 4.48±0.022 (0.19×) 0.61× / 0.54×
MAESTRO (λgp = 32e−5) 56.52±0.08 0.72±0.0022 (0.14×) 2.25±0.013 (0.09×) 0.51× / 0.47×
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(b) ResNet-18 on CIFAR10
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(c) VGG19 on CIFAR10

Figure 11: MAESTRO with progressive pruning to showcase nested rank importance structure. The original
model corresponds to an evaluation in Fig. 10, and pruned models are based on MAESTRO with λgl = 0, and
they are pruned using the same ranks as selected by MAESTRO with λgl > 0.
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