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Channel-Spatial Support-Query Cross-Attention for Fine-Grained
Few-Shot Image Classification

Anonymous Authors

ABSTRACT
Few-shot fine-grained image classification aims to use only few
labelled samples to successfully recognize subtle sub-classes within
the same parent class. This task is extremely challenging, due to the
co-occurrence of large inter-class similarity, low intra-class similar-
ity, and only few labelled samples. In this paper, to address these
challenges, we propose a new Channel-Spatial Cross-Attention
Module (CSCAM), which can effectively drive a model to extract
discriminative fine-grained feature representations with only few
shots. CSCAM collaboratively integrates a channel cross-attention
module and a spatial cross-attention module, for the attentions
across support and query samples. In addition, to fit for the char-
acteristics of fine-grained images, a support averaging method is
proposed in CSCAM to reduce the intra-class distance and increase
the inter-class distance. Extensive experiments on four few-shot
fine-grained classification datasets validate the effectiveness of
CSCAM. Furthermore, CSCAM is a plug-and-play module, conve-
niently enabling effective improvement of state-of-the-art methods
for few-shot fine-grained image classification.

KEYWORDS
Few-shot learning, Fine-grained image classification, Channel cross-
attention, Spatial cross-attention

1 INTRODUCTION
Few-shot fine-grained image classification aims to recognize subtle
sub-classes within the same parent class (e.g., bird species [35],
car models [12]), with only few labeled samples for training. In
addition to the intrinsic challenge of few labeled samples, there are
two more major challenges co-occurring in few-shot fine-grained
image classification: large inter-class similarity, and low intra-class
similarity [19, 36].

Therefore, technically speaking, few-shot fine-grained image
classification needs to tackle challenges from two frontiers, fine
grains and few shots. On the one hand, fine-grained image classifica-
tion requires attention to small and hard-to-explore discriminative
feature regions, which is challenging even for advanced few-shot
image classification methods such as Proto [28] and FRN [38], as
shown in Figure 1. On the other hand, most of existing fine-grained
image classifiers rely on a large number of labeled samples for
training, which is unavailable under the few-shot setting. Hence,
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Figure 1: Queries from four fine-grained datasets (CUB, Air-
craft, Flowers, Cars). The Grad-CAM visualization showcases
areas of interest localised by Proto [28], FRN [38], and our
method. Ours offers more focused discriminative areas.

how to deal with few-shot fine-grained image classification task is
an extremely challenging topic.

Metric learning, which classifies query images by comparing the
distance between query features and support features, is widely
used in few-shot learning. For example, Proto [28] uses the co-
sine similarity; Relation [30] learns a metric; FRN [38], TDM [14],
BiFRN [40] and BSFA [44] use reconstructed features. Many metric
learning networks can be diagrammed as Figure 2(a).


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Figure 2: Different attention mechanisms for metric-based
few-shot learning. (a) Without attention, e.g., Proto [28] and
FRN [38]. (b) With spatial cross-attention, e.g., CAM [9] and
CAD [4]. (C) With channel and spatial self-attentions, e.g.,
MattML [47]. (d) Our method with collaborative channel-
spatial support-query cross-attentions, which can generate
more focused and discriminative features to improve the
performance of few-shot fine-grained image classification.
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Attention mechanisms have also been explore for few-shot learn-
ing. For example, Hou et al. [9] and Chikontwe et al. [4] use spatial
cross-attention to implicitly reweight the underlying spatial map
to focus on relevant target regions, which can be combined with
metric learning and diagrammed as in Figure 2(b). Recently, people
use the self-attention mechanism in both channel and space to
learn better corresponding relation, which can be diagrammed as
Figure 2(c), for example, Zhu et al. [47] and Xu et al. [42]. However,
none of them explore the cross-attention in both channel and space.

Therefore, this paper considers the cross-attentions between sup-
port and query features from both spatial and channel perspectives,
and proposes the channel-spatial cross-attention module (CSCAM) as
diagrammed in Figure 2(d), which can improve the state-of-the-art
performance in few-shot fine-grained image classification.

The proposed CSCAM contains two sub-modules: a channel
cross-attention module (CCAM), and a spatial cross-attention mod-
ule (SCAM). CCAM explores the dependence between the query
and support samples along the feature channel dimension; SCAM
explores the spatial dependence between the query and support
samples. Finally, the outputs of these two sub-modules are mixed to
simultaneously enhance the feature representations in the channel
and spatial dimensions and generate more discriminative features.

In addition, to fit for the characteristics of fine-grained images,
we propose a support averagingmethod to further adjust the weight
of the cross-attention score to expand the inter-class distance and
reduce the intra-class distance.

In summary, the novelties of our CSCAM are twofold:
First, unlike existing methods, we consider the cross-attentions

from both channel and space perspectives, fully leveraging the
spatial and channel cross-information between support and query.

Secondly, different from the existing attention methods that
usually generate class prototypes before attention or stack multi-
dimensional features after attention, CSCAM averages the attention
scores of all support features, reducing the between-class similarity
and increasing the within-class similarity, as shown by ablation
studies and visualisation.

Both novelties makes CSCAM fit for few-shot fine-grained image
classification. Extensive experiments including ablation studies
show that CSCAM achieves excellent performance on few-shot
fine-grained image classification tasks. Moreover, we note that
CSCAM is a plug-and-play module that can be integrated without
restricting the choice of embedding module and metric module.

2 RELATEDWORK
2.1 Metric-based Few-shot Fine-grained

Classification
In few-shot learning, metric-based methods have been widely used
because of their simplicity and efficiency [18]. Well-established
methods in this category include Proto [28], which evaluates the
Euclidean distance between a query sample and a class proto-
type, and Relation [30], which learns a metric. In recent years,
feature reconstruction-based approaches have also demonstrated
promising results. TDM [14] highlights the information of different
channels. BiFRN [40] proposes a self-reconstruction module and
a bidirectional reconstruction module to enlarge the inter-class
distance and reduce the intra-class distance. BSFA [44] proposes a

two-stage framework that incorporates background suppression
and foreground alignment to localize foreground objects and miti-
gate background interference. However, the problems with these
methods include insufficient mining of channel information and
insufficient capture of the cross-information between support and
query samples, hence the features generated by them are still not
strong enough for few-shot fine-grained image classification.

Different from the aforementionedmethods, our proposed CSCAM
mixes channel and spatial cross-attentions to fully leverage the spa-
tial and channel cross-information.

2.2 Attention Mechanisms for Few-shot
Fine-grained Classification

The objective of attention mechanisms is to highlight important
local regions, thereby enhancing the discriminative nature of the
reweighted features. In recent years, various attention mechanisms
have been explored in few-shot learning. For example, Hou et al. [9]
employed spatial cross-attention between support features and
query features to reweight key regions of the target. Similarly,
Chikontwe et al. [4] utilized spatial cross-attention from the mixed-
set to the prototype, placing greater emphasis on critical regions and
generating adaptive reweighted features. However, these two meth-
ods only use cross-spatial attentions and are not for fine-grained
classification. For few-shot fine-grained image classification, Zhu
et al. [47] utilized two CBAM modules to adaptively attend to the
discriminative parts from both channel and spatial perspectives.
Xu et al. [42] propose two dual branches incorporating both hard
and soft attention. However, these two attention methods do not
consider the channel and spatial cross-attentions between support
and query features simultaneously.

Different from the above methods, we construct and fuse cross-
attentions from both channel and spatial perspectives. In addition,
to fit the characteristics of fine-grained images, we propose a new
support averaging method for channel and spatial cross-attentions,
which reduces the weight of similar regions from different classes
and increases the weight of similar regions within the same class.

3 METHOD
3.1 Problem Setting
In standard few-shot classification, both the training and test stages
consist of multiple episodes. Each episode is composed of randomly
sampled𝐶 classes, andwithin each class, there are𝐾 support images
and 𝑈 query images. This is referred to as a 𝐶-way 𝐾-shot episode.
In each episode, the model is provided with the 𝐾 labeled images
from each of the 𝐶 classes and is tasked with correctly classifying
the 𝑈 unlabeled images. The model’s performance is evaluated
based on its ability to accurately classify the unlabeled images
in these episodes. Given a dataset D = {(𝑥𝑖 , 𝑦𝑖 ), 𝑦𝑖 ∈ Y}, where
Y is the label set. It is divided into three parts, that is, D𝑡𝑟𝑎𝑖𝑛 =

{(𝑥𝑖 , 𝑦𝑖 ), 𝑦𝑖 ∈ Y𝑡𝑟𝑎𝑖𝑛}, D𝑣𝑎𝑙 = {(𝑥𝑖 , 𝑦𝑖 ), 𝑦𝑖 ∈ Y𝑣𝑎𝑙 } and D𝑡𝑒𝑠𝑡 =

{(𝑥𝑖 , 𝑦𝑖 ), 𝑦𝑖 ∈ Y𝑡𝑒𝑠𝑡 }, where 𝑥𝑖 , 𝑥𝑖 , 𝑥𝑖 and 𝑦𝑖 , 𝑦𝑖 , 𝑦𝑖 are the origi-
nal image and class label of the 𝑖𝑡ℎ image on D𝑡𝑟𝑎𝑖𝑛,D𝑣𝑎𝑙 ,D𝑡𝑒𝑠𝑡 ,
respectively. The label space of the training labels Y𝑡𝑟𝑎𝑖𝑛 , vali-
dation labels Y𝑣𝑎𝑙 and test labels Y𝑡𝑒𝑠𝑡 are non-overlapping, i.e.,
{Y𝑡𝑟𝑎𝑖𝑛 ∩Y𝑣𝑎𝑙 } = 𝜙 , {Y𝑡𝑟𝑎𝑖𝑛 ∩Y𝑡𝑒𝑠𝑡 } = 𝜙 , and {Y𝑣𝑎𝑙 ∩Y𝑡𝑒𝑠𝑡 } = 𝜙 .
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Figure 3: Diagram of our proposed method. We first use a shared backbone 𝐹𝜃 to extract globally pooled features, then use a
channel-spatial cross-attention module (CSCAM) to refine the features of the query set samples. The query embedding 𝑍𝑞 and
the support embedding 𝑍𝑠 are fed into CSCAM, which re-weights 𝑍𝑞 to produce 𝑍𝑞𝑐 and 𝑍𝑞𝑠 in channel and spatial aspects,
respectively. After that, we collaboratively mix the channel and spatial re-weighted query features to obtain 𝑍𝑞 . Finally, we feed
𝑍𝑞 and 𝑍𝑠 into the metric module for image classification. Notation:𝑤𝑎𝑦 represents the number of classes; 𝑠ℎ𝑜𝑡 is the number of
images in each class; 𝐵𝑆 and 𝐵𝑄 are the sizes of support sets and query sets, respectively; 𝐶 represents the number of channels
of the images; 𝐷 is the number of channels of the features; 𝐻,𝑊 represent the height and width of the images; ℎ,𝑤 represent
the height and width of the features; and𝑀 is equal to ℎ ×𝑤 .
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Figure 4: Diagram of the Channel-Cross Attention Module
(CCAM). The initial support embeddings 𝑍𝑠 and query em-
beddings 𝑍𝑞 are fed into CCAM; 𝑍𝑞 is projected as 𝐾𝑐 and
𝑉𝑐 , and 𝑍𝑠 as 𝑄𝑐 . Duplicate 𝐵𝑄 copies of 𝑄𝑐 and 𝐵𝑆 copies of
𝐾𝑐 and compute channel attention scores. Then, the support
average 𝑆𝑐 of the attention scores re-weights query features
𝑉𝑐 to obtain 𝑍𝑞𝑐 . Notation: 𝐵𝑆 and 𝐵𝑄 denote the cardinalities
of support sets and query sets, respectively; 𝐷 is the number
of channels; ℎ,𝑤 represent the height and width of the fea-
ture;𝑀 is equal to ℎ ×𝑤 ; and 𝑓𝑄𝑐 , 𝑓 𝐾𝑐 , 𝑓 𝑉𝑐 are fully-connected
(𝐹𝐶) layers for feature projections. Note: The spatial cross-
attention module (SCAM), with its diagram omitted here, is
structurally similar to CCAM, but with feature projections in
the channel dimension replaced by 𝑓𝑄𝑠 , 𝑓 𝐾𝑠 , 𝑓 𝑉𝑠 in the spatial
dimension, hence the resulting 𝑄𝑠 , 𝐾𝑠 , 𝑉𝑠 , 𝑆𝑠 , and 𝑍𝑞𝑠 .

In few-shot classification, the objective is to improve the per-
formance of 𝐶-way 𝐾-shot classification on the test dataset D𝑡𝑒𝑠𝑡

by leveraging knowledge from the training dataset D𝑡𝑟𝑎𝑖𝑛 and se-
lecting optimal model weights through the validation dataset D𝑣𝑎𝑙 .

During episodic training, a task T is formed by randomly sampling
𝐶 classes from D𝑡𝑟𝑎𝑖𝑛 , with each class having 𝐾 randomly selected
labeled (support) samples S = {(𝑥𝑠 , 𝑦𝑠 )}𝐶×𝐾𝑠=1 and𝑈 randomly sam-
pled unlabeled (query) samples Q = {(𝑥𝑞, 𝑦𝑞)}𝐶×𝑈𝑞=1 . Similarly, tasks
T̄ and T̃ are defined on D𝑣𝑎𝑙 and D𝑡𝑒𝑠𝑡 for validation and test sce-
narios, respectively. The training process on D𝑡𝑟𝑎𝑖𝑛 is analogous
to the prediction process on D𝑡𝑒𝑠𝑡 .

3.2 Channel-Spatial Cross-Attention Module
(CSCAM)

3.2.1 Overview. The diagram of our proposed method including
the Channel-Spatial Cross-Attention Module (CSCAM) is shown in
Figure 3. CSCAM consists of two attention modules named Channel
Cross-Attention Module (CCAM) and Spatial Cross-Attention Mod-
ule (SCAM). Different from existing attention methods, CSCAM
collaborates cross-attentions from both channel and spatial perspec-
tives. To fit for the characteristics of fine-grained images, a support
averaging method is proposed on the basis of the two-aspect at-
tentions, with the attention scores further adjusted to enlarge the
inter-class distance and reduce the intra-class distance. Specifically,
for each query feature, all support features are averaged to capture
the relationship between each query feature and all support fea-
tures, reducing the weight of similar regions from different classes
and increasing the weight of similar regions within the same class.

To obtain more discriminative features, we introduce a cross-
attention mechanism from both spatial and channel perspectives,
to re-weight the query features by considering the relevant features
between the support features and the query features. Let 𝐷 be
the number of channels of the feature, 𝑀 be the resolution (ℎ ×



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

𝑤 ) of the feature, and 𝐵𝑠 and 𝐵𝑄 be the amount of data of the
support features and query features, respectively. Formally, let 𝑍𝑠 ∈
R𝐵𝑠×𝐷×𝑀 and 𝑍𝑞 ∈ R𝐵𝑄×𝐷×𝑀 be the globally pooled features
extracted by backbone 𝐹𝜃 . Then, query embeddings 𝑍𝑞 and support
embeddings𝑍𝑠 are further fed to our channel-spatial cross-attention
module to generate re-weighted query features. Finally, we feed
the re-weighted query features 𝑍𝑞 and support features 𝑍𝑠 into the
metric module.

3.2.2 Channel Cross-Attention Module (CCAM). Following the
work of Vaswani et al. [34], we employ an attention function to
re-weight 𝑉 using the similarity between 𝑄 and 𝐾 :

𝜑 (𝑄,𝐾,𝑉 ) = softmax(𝑄𝐾
𝑇

√
𝐷
𝑉 ) . (1)

In our CCAM, as shown in Figure 4, through feature projections
using fully-connected (𝐹𝐶) layers 𝑓𝑄𝑐 , 𝑓 𝐾𝑐 , 𝑓 𝑉𝑐 from the channel
perspective, the projections of the query embedding 𝑍𝑞 are denoted
by 𝐾𝑐 and 𝑉𝑐 and the projection of the support embedding 𝑍𝑠 by
𝑄𝑐 :

𝑄𝑐 = 𝑓
𝑄
𝑐 (𝑍𝑠 ), 𝐾𝑐 = 𝑓 𝐾𝑐 (𝑍𝑞),𝑉𝑐 = 𝑓 𝑉𝑐 (𝑍𝑞) . (2)

Then, we duplicate 𝐵𝑄 copies of 𝑄𝑐 and 𝐵𝑆 copies of 𝐾𝑐 , to
facilitate the subsequent operation, where the support average
attention score 𝑆𝑐 is obtained by performing the support averaging
operation 𝐴𝑐 on the attention scores as

𝑆𝑐 = 𝐴𝑐 (𝑄𝑐 , 𝐾𝑐 ) =
1
𝐵𝑆

𝐵𝑆∑︁
𝑖=1

softmax(𝑄𝑐 × (𝐾𝑐 )𝑇√
𝐷′

), (3)

where 𝐷′ is the number of channels after projection.
The obtained support average attention score 𝑆𝑐 is then used to

weight 𝑉𝑐 :

𝜑 (𝑄𝑐 , 𝐾𝑐 ,𝑉𝑐 ) = 𝑆𝑐 ×𝑉𝑐 = 𝐴𝑐 (𝑄𝑐 , 𝐾𝑐 ) ×𝑉𝑐 . (4)

3.2.3 Spatial Cross-Attention Module (SCAM). The architecture of
SCAM is similar to that of CCAM in Figure 4, hence the similarity
between the computation of SCAM and that of CCAM in the section
above.

In the end, similar to Equation (4), the obtained support average
attention score 𝑆𝑠 is used to weight the 𝑉𝑠 :

𝑄𝑠 = 𝑓
𝑄
𝑠 (𝑍𝑠 ), 𝐾𝑠 = 𝑓 𝐾𝑠 (𝑍𝑞),𝑉𝑠 = 𝑓 𝑉𝑠 (𝑍𝑞), (5)

𝑆𝑠 = 𝐴𝑠 (𝑄𝑠 , 𝐾𝑠 ) =
1
𝐵𝑆

𝐵𝑆∑︁
𝑖=1

softmax(𝑄𝑠 × (𝐾𝑠 )𝑇√
𝐷′

), (6)

𝜑 (𝑄𝑠 , 𝐾𝑠 ,𝑉𝑠 ) = 𝑆𝑠 ×𝑉𝑠 = 𝐴𝑠 (𝑄𝑠 , 𝐾𝑠 ) ×𝑉𝑠 . (7)

3.2.4 Integration of CCAM and SCAM. The re-weighted query fea-
tures obtained in channel 𝑍𝑞𝑐 and spatially 𝑍𝑞𝑠 are mixed to obtain
a more discriminative query feature 𝑍𝑞 . In addition, to prevent the
attention from focusing on non-critical areas, which causes the
weight of key locations to become extremely small and causes over-
fitting [7], we retain𝑉𝑐 and𝑉𝑠 . This is represented by summing the
original query features:

𝑍𝑞𝑐 = 𝜑 (𝑄𝑐 , 𝐾𝑐 ,𝑉𝑐 ) +𝑉𝑐 ,
𝑍𝑞𝑠 = 𝜑 (𝑄𝑠 , 𝐾𝑠 ,𝑉𝑠 ) +𝑉𝑠 ,

(8)

𝑍𝑞 = 𝑓𝑂 (𝑚1 × 𝑍𝑞𝑐 +𝑚2 × 𝑍𝑞𝑠 ) + 𝑍𝑞, (9)

where𝑚1,𝑚2 with the initial value of 0.5 can be learnable parame-
ters, representing the weights of the channel and space, and 𝑓𝑂 is
a fully-connected (𝐹𝐶) layer.

The innovation of CSCAM is to capture the channel and spatial
cross-attention between query features and support features simul-
taneously. Also, to fit for the characteristics of fine-grained images,
the support averaging method is proposed to adjust the attention
scores from both channel and spatial perspectives. Specifically, the
whole support set of the attention scores is averaged to increase
the weight of regions with high similarity within the same class,
and reduce the weight of regions with high similarity from differ-
ent classes, hence enlarging the inter-class distance and reducing
the intra-class distance to generate discriminative features more
suitable for few-shot fine-grained image classification tasks.

3.3 Plug-and-Play with Existing Methods
Our proposed module CSCAM can be readily integrated into exist-
ing metric-based few-shot learning models, for example, Proto [28],
Relation [30], FRN [38] and TDM [14] (inductive only), using their
metric module and loss functions. Here, for illustrative purposes, we
use FRN [38] as an example to outline the entire network training
process.

The output of the convolutional feature extractor for 𝑥𝑠 , 𝑥𝑞 are
feature map 𝑍𝑠 ∈ R𝑀×𝐷 , 𝑍𝑞 ∈ R𝑀×𝐷 , where𝑀 denotes the spatial
resolution (height × width) of the feature map, and 𝐷 denotes the
number of channels. We obtain the weighted query features 𝑍𝑞
after feeding 𝑍𝑠 , 𝑍𝑞 into our CSCAM:

𝑍𝑞 = 𝐶𝑆𝐶𝐴𝑀 (𝑍𝑠 , 𝑍𝑞) . (10)

For each class 𝑐 ∈ 𝐶 , pool all features from the 𝐾 support images
into a single matrix of support features 𝑍𝑠𝑐 , and calculate the final
probability distribution:

𝑃 (𝑦𝑞 = 𝑐 |𝑥𝑞) =
exp(−𝑑

〈
𝑍𝑞, 𝑍𝑠𝑐

〉
)∑

𝑐′∈𝐶 exp(−𝑑
〈
𝑍𝑞, 𝑍𝑠𝑐′

〉
)
, (11)

where 𝑑 denotes the metric module.
Following FRN [38], it optimizes the network by the cross-entropy

loss 𝑙𝑜𝑠𝑠𝑐𝑟𝑜𝑠𝑠 and the auxiliary loss 𝑙𝑜𝑠𝑠𝑎𝑢𝑥 (details in FRN [38]):

𝑙𝑜𝑠𝑠𝑐𝑟𝑜𝑠𝑠 = − 1
𝐵𝑄

𝐵𝑄∑︁
𝑞=0

𝑦⊤𝑞 log(𝑃 (𝑦𝑞 |𝑥𝑞)). (12)

𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠𝑐𝑟𝑜𝑠𝑠 + 𝑙𝑜𝑠𝑠𝑎𝑢𝑥 , (13)
where 𝐵𝑄 is the number of query images, and 𝑦𝑞 is the one-hot
vector that predicts the label of the 𝑞-th query image.

In short, our CSCAM, only requiring the input support features
and query features, is a plug-and-play module.

4 EXPERIMENTAL ANALYSIS
4.1 Datasets
We conduct all the experiments on four benchmark datasets:

CUB-200-2011 [35] (CUB): 11,788 images from 200 bird species;
FGVC-Aircraft [22] (Aircraft): 10,000 images from 100 aircraft

species;
Flowers-102 [24] (Flowers): 102 categories of common flowers;
Stanford-Cars [12] (Cars): 16,185 images of 196 classes of cars.
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Table 1: Performance of five-way few-shot classification on the CUB-200-2011 (CUB), FGVC-Aircraft (AIRCRAFT), 102 Flowers
(FLOWERS), and Stanford-Cars (CARS) datasets using the ResNet-12 and Conv-4 backbones, respectively.

ResNet-12
CUB Aircraft Flowers Cars

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Proto (NeurIPS’17) [28]† 79.64 ± 0.20 91.15 ± 0.11 86.57 ± 0.18 93.51 ± 0.09 75.41 ± 0.22 89.46 ± 0.14 82.29 ± 0.20 93.11 ± 0.10
Relation (CVPR’18) [30] † 63.94 ± 0.92 77.87 ± 0.64 64.24 ± 1.03 77.56 ± 0.66 65.93 ± 1.00 85.10 ± 0.63 65.77 ± 0.99 84.29 ± 0.60
Baseline++ (ICLR’19) [3] ⋄ 64.62 ± 0.98 81.15 ± 0.61 74.51 ± 0.90 88.06 ± 0.44 69.03 ± 0.92 85.72 ± 0.63 67.92 ± 0.92 84.17 ± 0.58
DeepEMD (CVPR’20) [46]⋄ 71.11 ± 0.31 86.30 ± 0.19 69.86 ± 0.30 85.17 ± 0.28 70.00 ± 0.35 83.63 ± 0.26 73.30 ± 0.29 88.37 ± 0.17

VFD (ICCV’21) [41] ⋄ 79.12 ± 0.83 91.48 ± 0.39 76.88 ± 0.85 88.77 ± 0.46 76.20 ± 0.92 89.90 ± 0.53 77.52 ± 0.85 90.76 ± 0.46
RENet (ICCV’21) [11] ⋄ 79.49 ± 0.44 91.11 ± 0.24 82.04 ± 0.41 90.50 ± 0.24 79.91 ± 0.42 92.33 ± 0.22 79.66 ± 0.44 91.95 ± 0.22
MixFSL (ICCV’21) [1] ⋄ 67.87 ± 0.94 82.18 ± 0.66 60.55 ± 0.86 77.57 ± 0.69 72.60 ± 0.91 86.52 ± 0.65 58.15 ± 0.87 80.54 ± 0.63
FRN (CVPR’21) [38] † 83.11 ± 0.19 92.49 ± 0.11 87.53 ± 0.18 93.98 ± 0.09 81.07 ± 0.20 92.52 ± 0.11 85.91 ± 0.18 94.52 ± 0.09
CAD (CVPR’22) [4] ⋇ 82.95 ± 0.67 90.80 ± 0.51 - - - - - -
AGPF (PR’22) [31] ⋇ 78.73 ± 0.84 89.77 ± 0.47 - - - - 85.34 ± 0.74 94.79 ± 0.35

HelixFormer (MM’22) [45] † 81.66 ± 0.30 91.83 ± 0.17 75.79 ± 0.23 83.03 ± 0.16 63.30 ± 0.26 66.96 ± 0.22 79.40 ± 0.43 92.26 ± 0.15
TDM (CVPR’22) [14] † 82.41 ± 0.19 92.37 ± 0.10 87.96 ± 0.17 94.20 ± 0.08 82.41 ± 0.19 93.42 ± 0.10 86.77 ± 0.17 95.94 ± 0.07

BSFA (IEEE TCSVT’23) [44] † 82.27 ± 0.46 90.76 ± 0.26 87.85 ± 0.35 94.93 ± 0.14 74.48 ± 0.54 86.05 ± 0.36 88.93 ± 0.3888.93 ± 0.3888.93 ± 0.38 95.20 ± 0.20
IDEAL-clean (TPAMI’23) [2] † 77.56 ± 0.86 88.87 ± 0.51 61.37 ± 0.92 82.51 ± 0.55 74.39 ± 0.93 87.29 ± 0.61 74.02 ± 0.89 89.98 ± 0.50

BiFRN (AAAI’23) [40] † 83.08 ± 0.19 93.33 ± 0.10 86.88 ± 0.17 93.74 ± 0.09 80.62 ± 0.20 92.54 ± 0.11 87.98 ± 0.16 96.66 ± 0.0696.66 ± 0.0696.66 ± 0.06
C2-Net (AAAI’24) [21] † 83.37 ± 0.42 92.20 ± 0.23 87.98 ± 0.39 93.96 ± 0.20 80.86 ± 0.46 91.54 ± 0.27 84.42 ± 0.43 92.72 ± 0.23
Proto+CSCAM (Ours) 81.69 ± 0.20 91.01 ± 0.11 87.45 ± 0.17 93.68 ± 0.09 80.36 ± 0.20 91.11 ± 0.12 85.73 ± 0.18 93.26 ± 0.10

Relation+CSCAM (Ours) 71.14 ± 0.95 85.15 ± 0.58 67.72 ± 1.05 78.24 ± 0.63 69.62 ± 0.96 85.17 ± 0.66 70.08 ± 0.99 85.63 ± 0.64
FRN+CSCAM (Ours) 84.00 ± 0.1884.00 ± 0.1884.00 ± 0.18 93.52 ± 0.1093.52 ± 0.1093.52 ± 0.10 88.01 ± 0.1788.01 ± 0.1788.01 ± 0.17 95.06 ± 0.0795.06 ± 0.0795.06 ± 0.07 82.35 ± 0.19 93.87 ± 0.1093.87 ± 0.1093.87 ± 0.10 86.24 ± 0.18 95.55 ± 0.08
TDM+CSCAM (Ours) 83.34 ± 0.19 92.98 ± 0.10 87.84 ± 0.17 94.37 ± 0.08 82.50 ± 0.1982.50 ± 0.1982.50 ± 0.19 93.57 ± 0.10 86.86 ± 0.17 95.63 ± 0.08

Conv-4
CUB Aircraft Flowers Cars

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Proto (NeurIPS’17) [28] † 61.82 ± 0.23 83.37 ± 0.15 50.90 ± 0.22 80.65 ± 0.15 64.23 ± 0.23 84.94 ± 0.16 48.42 ± 0.22 71.38 ± 0.18
Relation (CVPR’18) [30] † 63.94 ± 0.92 77.87 ± 0.64 61.73 ± 0.98 75.96 ± 0.72 69.50 ± 0.96 83.91 ± 0.63 46.04 ± 0.91 68.52 ± 0.78
Baseline++ (ICLR’19) [3] ⋄ 62.36 ± 0.84 79.08 ± 0.61 58.38 ± 0.83 77.62 ± 0.60 70.54 ± 0.84 86.63 ± 0.58 46.82 ± 0.76 68.20 ± 0.72
DN4 (CVPR’19) [15] ∗ 57.45 ± 0.89 84.41 ± 0.58 68.41 ± 0.91 87.48 ± 0.49 70.44 ± 0.95 89.45 ± 0.52 34.12 ± 0.68 87.47 ± 0.47
DSN (CVPR’20) [27] ⋄ 71.57 ± 0.92 83.51 ± 0.60 66.30 ± 0.87 79.00 ± 0.61 67.71 ± 0.92 84.58 ± 0.70 48.16 ± 0.86 60.77 ± 0.75

BSNet (D&C) (IEEE TIP’20) [17] ∗ 62.84 ± 0.95 85.39 ± 0.56 56.51 ± 1.09 70.80 ± 0.81 66.60 ± 1.04 80.42 ± 0.75 40.89 ± 0.77 86.88 ± 0.50
MattML (IJCAI’20) [47] ⋇ 66.29 ± 0.56 80.34 ± 0.30 - - - - 66.11 ± 0.54 82.80 ± 0.28
MixFSL (ICCV’21) [1] ⋄ 53.61 ± 0.88 73.24 ± 0.75 44.89 ± 0.75 62.81 ± 0.73 68.01 ± 0.90 85.10 ± 0.62 44.56 ± 0.80 59.63 ± 0.79
FRN (CVPR’21) [38] † 73.46 ± 0.21 88.13 ± 0.13 69.29 ± 0.22 83.94 ± 0.13 73.60 ± 0.22 88.69 ± 0.14 64.03 ± 0.22 84.02 ± 0.13
TDM (CVPR’22) [14] † 74.39 ± 0.21 88.89 ± 0.13 69.90 ± 0.23 83.34 ± 0.15 70.66 ± 0.24 85.14 ± 0.17 65.89 ± 0.22 82.45 ± 0.15

DUAL ATT-NET (AAAI’22) [42] ⋇ 72.89 ± 0.50 86.60 ± 0.31 - - - - 70.21 ± 0.50 85.55 ± 0.31
CAML (WACV’23) [29] ⋇ 59.71 ± 1.46 73.09 ± 0.73 57.55 ± 1.37 72.88 ± 0.64 - - - -

BSFA (IEEE TCSVT’23) [44] † 68.16 ± 0.52 82.41 ± 0.35 61.17 ± 0.49 76.96 ± 0.36 66.84 ± 0.59 79.34 ± 0.47 49.98± 0.48 67.52 ± 0.44
IDEAL-clean (TPAMI’23) [2] † 69.93 ± 0.89 81.67 ± 0.69 52.56 ± 0.83 80.36 ± 0.69 72.25 ± 0.90 86.43 ± 0.70 52.64 ± 0.91 70.28 ± 0.69

BiFRN (AAAI’23) [40] † 76.52 ± 0.21 89.75 ± 0.11 75.72 ± 0.21 86.91 ± 0.12 71.49 ± 0.23 85.02 ± 0.16 72.24 ± 0.21 87.39 ± 0.12
Proto+CSCAM (Ours) 72.33 ± 0.21 87.18 ± 0.13 69.96 ± 0.23 85.24 ± 0.13 71.20 ± 0.23 85.43 ± 0.16 66.58 ± 0.23 83.25 ± 0.15

Relation+CSCAM (Ours) 65.50 ± 1.02 79.10 ± 0.66 53.04 ± 0.95 67.22 ± 0.79 66.02 ± 1.04 80.72 ± 0.73 45.63 ± 0.87 71.50 ± 0.79
FRN+CSCAM (Ours) 77.68 ± 0.20 89.88 ± 0.1289.88 ± 0.1289.88 ± 0.12 76.12 ± 0.20 88.02 ± 0.12 74.29 ± 0.2274.29 ± 0.2274.29 ± 0.22 88.70 ± 0.1488.70 ± 0.1488.70 ± 0.14 71.44 ± 0.21 86.44 ± 0.13
TDM+CSCAM (Ours) 77.81 ± 0.2177.81 ± 0.2177.81 ± 0.21 89.60 ± 0.12 78.84 ± 0.2078.84 ± 0.2078.84 ± 0.20 88.89 ± 0.1188.89 ± 0.1188.89 ± 0.11 74.08 ± 0.22 88.63 ± 0.14 73.27 ± 0.2173.27 ± 0.2173.27 ± 0.21 87.81 ± 0.1287.81 ± 0.1287.81 ± 0.12

∗: results from BSNet [17]. ⋄: results from LCCRN [16]. ⋇: results reported in the official papers.
†: reproduced results from using the officially published code.

For each dataset, following the setting in [38], we divide the data
into training set D𝑡𝑟𝑎𝑖𝑛 , validation set D𝑣𝑎𝑙 and test set D𝑡𝑒𝑠𝑡 in a
ratio of 2:1:1. All images are resized to 84×84. Dataset preprocessing
also follows [38]; each image in CUB is cropped to a manually
annotated bounding box, while original images is used from the
other three datasets.

4.2 Implementation Details
In our experiments, we set the training epoch to 1,200, the initial
learning rate to 0.1, and the weight decay to 5e-4. The learning rate
is decreased after every 400 epochs, and we verify the model’s per-
formance every 20 epochs to monitor its progress during training.

During the test stage, we use the trained model to classify 10,000
test images. The average classification accuracy of the model on
these test images is taken as the performance metric.
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Table 2: Five-way few-shot classification performance on the CUB-200-2011 (CUB) and Stanford-Cars (Cars) datasets for the
Conv-4 and the ResNet-12 backbone.

Attention module CUB (Conv-4) Cars (Conv-4) CUB (ResNet-12) Cars (ResNet-12)

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
Proto [28] 63.21 ± 0.23 83.88 ± 0.15 48.70 ± 0.22 72.18 ± 0.18 78.56 ± 0.20 90.39 ± 0.11 82.29 ± 0.20 93.11 ± 0.10
+SE [10] 68.27 ± 0.22 86.20 ± 0.14 64.15 ± 0.23 81.70 ± 0.15 77.14 ± 0.21 90.67 ± 0.11 80.83 ± 0.20 93.82 ± 0.09

+CBAM [39] 69.89 ± 0.22 86.29 ± 0.14 64.43 ± 0.24 82.34 ± 0.15 78.12 ± 0.20 90.95 ± 0.11 80.00 ± 0.21 93.39 ± 0.09
+DA[5] 68.18 ± 0.22 86.28 ± 0.14 59.63 ± 0.22 81.08 ± 0.16 75.95 ± 0.21 90.85 ± 0.11 80.23 ± 0.21 93.88 ± 0.09

+CAM [9] 68.43 ± 0.22 86.41 ± 0.13 61.88 ± 0.22 81.60 ± 0.15 76.53 ± 0.21 90.50 ± 0.11 82.43 ± 0.20 93.83 ± 0.09
+Triplet [23] 70.19 ± 0.23 86.10 ± 0.14 65.22 ± 0.23 82.20 ± 0.15 79.06 ± 0.20 90.92 ± 0.11 80.46 ± 0.21 93.83 ± 0.09
+S2 [43] 71.18 ± 0.23 84.16 ± 0.15 66.51 ± 0.24 80.32 ± 0.17 77.38 ± 0.21 88.78 ± 0.12 81.97 ± 0.20 91.09 ± 0.12

+GAM [20] 69.16 ± 0.23 84.56 ± 0.14 64.20 ± 0.24 80.09 ± 0.16 77.96 ± 0.20 90.62 ± 0.11 81.22 ± 0.21 93.63 ± 0.09
+Parnet [6] 70.42 ± 0.22 86.39 ± 0.13 65.93 ± 0.22 83.03 ± 0.15 76.19 ± 0.21 90.59 ± 0.11 82.06 ± 0.20 93.71 ± 0.09

+ACmixAttention [25] 69.17 ± 0.22 85.58 ± 0.14 67.35 ± 0.22 83.17 ± 0.14 76.25 ± 0.21 90.39 ± 0.11 82.43 ± 0.20 94.16 ± 0.0994.16 ± 0.0994.16 ± 0.09
+DAN [37] 62.59 ± 0.23 84.06 ± 0.15 66.81 ± 0.22 82.94 ± 0.14 79.74 ± 0.20 90.65 ± 0.12 83.35 ± 0.21 93.06 ± 0.10

+CSCAM (Ours) 72.33 ± 0.2172.33 ± 0.2172.33 ± 0.21 87.18 ± 0.1387.18 ± 0.1387.18 ± 0.13 67.58 ± 0.2367.58 ± 0.2367.58 ± 0.23 83.25 ± 0.1583.25 ± 0.1583.25 ± 0.15 81.69 ± 0.2081.69 ± 0.2081.69 ± 0.20 91.01 ± 0.1191.01 ± 0.1191.01 ± 0.11 85.73 ± 0.1885.73 ± 0.1885.73 ± 0.18 93.26 ± 0.10

Additionally, we conduct experiments using different backbone
architectures. Specifically, we use the Conv-4 backbone [13, 32] and
the ResNet-12 backbone [8, 13]. For the Conv-4 backbone, we set
the parameter training way to 20, while for the ResNet-12 backbone,
We set the parameter training way to 10.

4.3 Comparison with State-of-the-Art Methods
In our experiments, we evaluate the performance of the proposed
method and compared it against state-of-the-art metric-based few-
shot methods on four fine-grained benchmark datasets in Table 1.

As shown in Table 1, when integrated into Proto [28], Relation
[30], FRN [38] and TDM [14], our method can mostly improve their
performances, on both ResNet-12 and Conv-4 backbones. In partic-
ular, when the Conv-4 backbone is used, CSCAM integrated with
FRN or TDM achieves the highest accuracy on all four datasets;
when the ResNet-12 backbone is used, CSCAM integrated with FRN
or TDM achieves the highest accuracy on three datasets. This veri-
fies general effectiveness of our CSCAM as a plug-and-play module
for various few-shot fine-grained image classification models.

4.4 Comparison with Other Attention Modules
To evaluate the effectiveness of our method in comparison to other
attention mechanisms, we integrate various attention modules into
Proto [28] and list their performances in Table 2. The compared
attention modules include those of SE [10], CBAM [39], DA [5],
CAM [9], Triplet [23], S2 [43], GAM [20], Parnet [6], ACmixAtten-
tion [25] and DAN [37], as presented in their official papers.We only
take their attention modules to compare with the proposed CSCAM
and do not use the whole network of these methods. We note that
some of the previously mentioned attention methods [4, 42, 47]
have no officially published code, hence we only compare their
entire network with our proposed method in Table 1.

As shown in Table 2, CSCAM has the highest classification per-
formance in seven out of eight few-shot settings. This shows that
our CSCAM, which exploit cross-attentions from both channel and
spatial perspectives and can generate more discriminative features,
is superior to these current attention mechanisms for few-shot
fine-grained image classification.

4.5 Ablation Studies
To further explore the effectiveness of two sub-attention modules
and the support averaging method of our CSCAM, we conduct
a series of ablation studies: (1) what if without the spatial cross-
attention module (SCAM); (2) what if without the channel cross-
attention module (CCAM); and (3) what if without the support
averaging method. We perform the ablation experiments for both
FRN and Proto. The experimental results are presented in Table 3.

From the results, we can observe the followings. Firstly, using
SCAM or CCAM alone with the support averaging can already
improve the baseline performance. Secondly, if integrated into FRN,
CCAM performs mostly better than SCAM. However, if integrated
into Proto, CCAM can be often worse than SCAM. This suggests
that each of spatial cross-attention and channel cross-attention has
their own strength. Thirdly, the proposed CSCAM, which combines
both CCAM and SCAM, always performs the best. This proves that
the attention mechanism from a single perspective is insufficient,
and the best performance improvement can be achieved by leverag-
ing cross-attentions collaboratively from both spatial and channel
perspectives. Finally, a comparison of the experimental results in
the last two rows of each table shows the positive effect of the
support averaging method.

4.6 Visualization
4.6.1 Feature visualization by Grad-CAM. To verify the effective-
ness of CSCAM in learning discriminative features, we utilize Grad-
CAM [26] to visualize the features. The visualization results are
presented in Figure 5, where the heatmaps highlight the regions
that contribute significantly to the classification decisions.

We can observe the following patterns. First, it shows that in
some cases, Proto [28] and FRN [38] focus on background regions
(e.g., the sky in the Aircraft dataset, the grass in the Flowers dataset,
the wall in the Cars dataset). Secondly, in comparison with Proto
and FRN, when the proposed sub-module CCAM or SCAM is inte-
grated into FRN, the model can focus more on regions critical for
classification. Thirdly, when CSCAM, which includes both CCAM
and SCAM, is integrated into FRN, the model accurately focuses on
the discriminative regions of fine-grained images (such as the claws,
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Table 3: Ablation studies on the CUB, Flower, and Cars datasets, employing the Proto (Conv-4) and FRN (Conv-4) backbones in
a 5-way few-shot setup. These studies involved the removal of both CCAM and SCAM, as well as the separate utilization of
CCAM or SCAM.

Proto [28] CUB Flowers Cars

CCAM SCAM SA 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

× × × 61.82 ± 0.23 83.37 ± 0.15 64.23 ± 0.23 84.94 ± 0.16 48.42 ± 0.22 71.38 ± 0.18
✓ × ✓ 71.17 ± 0.22 85.72 ± 0.14 69.77 ± 0.23 84.07 ± 0.17 65.73 ± 0.22 82.82 ± 0.16
× ✓ ✓ 71.67 ± 0.22 86.08 ± 0.14 70.24 ± 0.22 85.12 ± 0.16 64.30 ± 0.23 81.61 ± 0.16
✓ ✓ × 71.94 ± 0.23 86.89 ± 0.14 71.13 ± 0.21 85.28 ± 0.15 66.13 ± 0.23 81.52 ± 0.16
✓ ✓ ✓ 72.33 ± 0.2172.33 ± 0.2172.33 ± 0.21 87.18 ± 0.1387.18 ± 0.1387.18 ± 0.13 71.20 ± 0.2371.20 ± 0.2371.20 ± 0.23 85.43 ± 0.1685.43 ± 0.1685.43 ± 0.16 66.58 ± 0.2366.58 ± 0.2366.58 ± 0.23 83.25 ± 0.1583.25 ± 0.1583.25 ± 0.15

FRN [38] CUB Flowers Cars

CCAM SCAM SA 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

× × × 73.46 ± 0.21 88.13 ± 0.13 73.60 ± 0.22 88.69 ± 0.14 64.03 ± 0.22 84.02 ± 0.13
✓ × ✓ 76.34 ± 0.21 89.28 ± 0.13 74.16 ± 0.22 88.17 ± 0.14 71.40 ± 0.22 86.17 ± 0.13
× ✓ ✓ 76.59 ± 0.21 88.88 ± 0.12 72.89 ± 0.22 87.53 ± 0.15 70.76 ± 0.22 85.74 ± 0.13
✓ ✓ × 77.26 ± 0.21 89.38 ± 0.12 73.68 ± 0.22 88.06 ± 0.16 70.34 ± 0.23 85.82 ± 0.16
✓ ✓ ✓ 77.68 ± 0.2077.68 ± 0.2077.68 ± 0.20 89.88 ± 0.1289.88 ± 0.1289.88 ± 0.12 74.29 ± 0.2274.29 ± 0.2274.29 ± 0.22 88.70 ± 0.1488.70 ± 0.1488.70 ± 0.14 71.44 ± 0.2171.44 ± 0.2171.44 ± 0.21 86.44 ± 0.1386.44 ± 0.1386.44 ± 0.13
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Figure 5: Visualization of features extracted by Proto, FRN, and our proposed method and its ablated variants, using Grad-
CAM [26] for the visualization on the CUB, Aircraft, Flowers, and Cars datasets.

beak, and wings of birds; the head and engine of aircraft; the petal,
core, and edge of flowers; the lights, mirrors, roof, and handlebars
of cars). This indicates that the attention mechanism of CSCAM
successfully captures discriminative features and effectively attends
to the critical parts of the input images for classification.

4.6.2 Feature visualization by T-SNE. Furthermore, we will use
T-SNE [33] to illustrate the effect of support averaging on increas-
ing the inter-class distance and decreasing the intra-class distance.

Specifically, we take ResNet-12 as the backbone and compare the vi-
sualization results of their 5-way 5-shot on two fine-grained bench-
marks, CUB and Cars, as shown in Figure 6, in which the same
color represents the same class of samples.

From Figure 6, by comparing the proposed support averaging
method (Ours) with the case without using it (w/o SA), it can be
found that the support averaging method can enlarge the distance
between feature classes while reducing the distance within a class,
which verifies the rationality and positive effect of the support
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Figure 6: Features dimension-reduction visualization by T-
SNE for FRN, FRN+CSCAM(w/o SA), and FRN+CSCAM (Ours) on
CUB and Cars with ResNet-12 for 5-way 5-shot.

averaging method. In addition, by comparing the feature dimension-
reduction visualization of 𝐹𝑅𝑁 +𝐶𝑆𝐶𝐴𝑀 and 𝐹𝑅𝑁 , it can be found
that the between-class distance of 𝐹𝑅𝑁 + 𝐶𝑆𝐶𝐴𝑀 is clearer and
more separable, and the within-class distance is relatively more
compact, which confirms that the proposed method can better meet
the requirements of fine-grained image classification and is more
suitable for the few-shot fine-grained classification tasks.

4.7 Remarks on Strength and Limitation
4.7.1 Strength. Through the above experimental comparisons and
visualizations, it can be verified that our method can improve state-
of-the-art performance in few-shot fine-grained image classifica-
tion. This can be ascribed to several reasons. Firstly, CSCAMmakes
full use of the channel and spatial cross-attention between query
features and support features, hence the network can obtain richer
information than the existing attention modules, so as to improve
the classification of fine-grained images. Secondly, while focusing
on the intra-class similarity, the proposed CSCAM also consid-
ers the regions with high inter-class similarity by averaging the
attention scores over the entire support set through the support
averaging method, which can further expand the inter-class dis-
tance and reduce the intra-class distance, so as to generate more
fine-grained and discriminative features. It hence can better meet
the needs of few-shot fine-grained image classification tasks.

4.7.2 Limitation. Although in the task of few-shot fine-grained im-
age classification, the proposed CSCAM can achieve a good perfor-
mance improvement when inserted into the existing metric-based
few-shot learning models, it still has the following limitation: In
the attention computation, the space overhead is large. Hence it is
our future work to reduce various computational overheads in the
attention computation.

5 CONCLUSION
In this paper, we proposed a channel-spatial cross-attention mod-
ule (CSCAM) for few-shot fine-grained image classification. The

proposed attention module contains a channel cross-attention mod-
ule and a spatial cross-attention module. Different from other self-
attentionmethods based on single spatial or channel cross-attention
in few-shot learning, CSCAM captures the cross-attention between
query features and support features from both channel and space si-
multaneously. In addition, the support averaging method proposed
to fit for the characteristics of fine-grained images can enlarge the
between-class distance and reduce the within-class distance, obtain-
ing more subtle and discriminative features for fine-grained image
classification. Extensive experiments show that CSCAM can clearly
improve state-of-the-art performance on few-shot fine-grained im-
age classification.
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