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S1 CORRESPONDENCE BETWEEN DARWINIAN EVOLUTION AND NEURAL
NETWORK OPTIMIZATION USING DIFFERENTIAL EVOLUTION
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Figure S1: Conceptual illustration of our proposed Darwinian evolution on neural networks
using DE. (Left) In analogy to Darwinian evolution, the dataset provides the environment where
different types of neural networks strike to survive. (Middle) The evolution (natural selection and
inheritance) applies to different network architectures and trainable weights in the same architect.
Pretrained neural networks are the primordial ancestors for the DE to evolve and to select the ’elite’
solution. (Right) An illustration of DE mutation.

The theory of evolution (Smithl [1993)), supported by evidence from genetics, paleontology, and geol-
ogy, describes how living beings originate from primordial soup, make up the first species (primordial
ancestor, also known as last universal common ancestor (LUCA)), survive under environmental
pressure, and evolve in nature over long periods. Since Charles Darwin’s book "On the Origin of
Species" was published in 1859 (Darwin, [2004)), the theory has been expanding to describe the
necessary conditions, ingredients, and mechanisms before the start of and the transition to evolution.
In Fig.[S1] we illustrate Darwinian Evolution’s analogy to the neural network optimization problem
using differential evolution (DE). The neural network architecture and the dataset play the role of the
species and environment, respectively. Different architectures specialize in different functions, for
example, convolutional neural networks (e.g., ResNet (He et al.l 2015)), MobileNet (Howard et al.|
2017)) and recurrent neural networks (e.g., LSTM (Hochreiter & Schmidhuber} |1997), GRU (Chung
et al.| |2014))) capture translation invariances and temporal dependencies underlie the data by im-
plementing the inner workings of the visual cortex and memory. The trainable parameters can be
interpreted as the genetic traits within the architect framework that affects survival and breeding. On
the other side, the complexity of the dataset can be interpreted as the complexity of the environment,
scaling from simple MNIST(LeCun et al., [1998)) to big data ImageNet(Deng et al.,|2009). Survival
fitness can be defined as the loss function of the learning tasks. This work focuses on ANN training
by considering the evolution of a population of trainable parameters in the pre-defined architecture
(i.e., single organism) rather than evolving a population of different architectures (Real et al.} 2017}
Lu et al., [2020).

A detailed description of DE is provided in the Method section of the main text. In Fig.[ST] an
illustration of the DE’s mutation strategy S7 in 2D search space is shown, with the contour lines
indicating fitness functions in the search space. The figure shows how DE simulates mutation using
any three candidate solutions in the population. Various improvements have been on the ordinary DE
by adding adaptive learning (i.e., SADE, SHADE) of mutation & recombination, trigonometric and
sinusoidal mutations (Sin-F’) for scaling factor F'.
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S1.1 CONCEPT OF PRIMORDIAL SOUP AND ANCESTOR

Primordial soup theory (Taylor, 2005), the Miller-Urey experiment (Miller,|1953), and others (Kasting,
1993) studied and simulated the conditions of early Earth for the first life, which arose from non-living
matters, give rise to other species through evolution. This work examined neuro-evolution that begins
with the primordial ancestor, ADAM-trained neural networks as the first species. Neuro-evolution
that starts from the primordial ancestor is found to be empirically superior to the primordial soup,
randomly initialized neural networks, as shown in Fig.[S2] Hence, the results align with the Primordial
soup theory, showing the importance of forming a species before neuro-evolution takes place.
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Figure S2: The starting point of neuro-evolution: primordial ancestor v.s. primordial soup. The
left and middle figures illustrate how the losses and accuracies change over the epoch for DNNs
trained by Adam (blue curves) and DE (red markers) using Adam as the primordial ancestor, with
and without regularization. It is observed that Adam requires regularization to handle overfitting,
while DE does not require. The right figure evolves a neural network from the primordial soup using
random initialization, which has difficulty in convergence.

S2 SMALL DATASET AND LENETS

We carried out experiments in small datasets, MNIST, Fashion MNIST, CIFAR-10, and CIFAR-100,
and we trained models (i.e., LeNetl, LeNet5, MLP, RNN) from scratch using BP with early stopping
and used the DNNs from the ending epochs (the last ps epochs) as the initial population for ordinary
DE. The hyperparameters of DE being examined are summarized in Table[S2] The ordinary DE with
strategy .S; and crossover are used to evolve DNNs. The moderate size of datasets and DNNs allows
us to examine different configurations of evolving DNNs in a controllable way.

In Fig@ LeNetl and LeNet5 architectures are evolved in the environment (dataset) with different
complexities, which provide different amounts of training data generated using data augmentation.
The evolution of DE is observed to have positive impacts on the ADAM-trained neural network.
Moreover, datasets and models with higher complexity are observed to achieve better performance.
Both the LeNet1 and LeNet5 evolved using the proposed Darwinian evolution framework are found
to be better than the LeNet5 trained using BP by LeCun et al. in 1998 (Lecun et al.| [1998). The
result is summarized in Table [ST} with the error curve shown in Figure [S4 The middle panel of
Fig.[S3]shows the degrees of improvement on top of the BP-based approach under different degrees
of L2 regularization. It is observed that the best results are achieved with a regularization of 0.0001
compared to no regularization at all, and all regularization parameters lead to increased model
accuracy. The use of regularization reduces the impact of over-fitting in BP-based optimizers. During
the Darwinian evolution, it is observed that the trait of preventing over-fitting is inherited without an
explicit L2 regularization in the fitness function. To assess the out-of-distribution robustness of the
neural network trained using the proposed framework, two datasets with common corruptions are
used, namely MNIST-C and CIFAR-10-C. The types of corruption are summarized at the right panel

of Fig.[S3]
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Figure S3: The impact of environment (dataset and loss function) on the DNNs.
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figure shows the relationships between the accuracy and the complexity of the dataset (MNIST
with data augmentation) and model (LeNets). The middle bottom figure illustrates the influence of
regularization. The two figures at the right show the performance of ADAM and DE on the corrupted

MNIST-C and CIFAR-10-C.

Table S1: Test accuracy of LeNets on MNIST and CIFAR. (M) MNIST, (F.M) Fashion MNIST,

(C) CIFAR
LeCun’s (]Lecun et al.j |1998} Adam DE Params
Acc Acc  Acc

LeNet1(M) 98.30 98.78 99.03 3,246
LeNet5(M) 99.05 98.95 99.20 62,006
LeNet5(F.M) na 89.27 89.43 62,006
LeNet5(C-10) na 60.16 61.36 62,006
LeNet5(C-100) na 24.47 26.73 62,006
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Figure S4: Average classification error with standard errors across epochs during the training
process. LeNet-1 model consistently converges across 10 runs on MNIST.

S2.1

DARWINIAN EVOLUTION DOES NOT OVERFIT

In nature, species evolve for better fit but not overfit (e.g., giraffes can reach higher leaves with the
evolved long necks, but not over-long necks (Wang et al,[2022))). In this work, we studied whether
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evolving neural networks using DE will lead to overfitting that gradient descent methods suffer.
Generally, DE is found to have no overfitting issue, as shown in Fig.[S2] Comparing the primordial
ancestor trained with and without regularization, it is also observed that the quality of the primordial
ancestor has a significant impact on DNNs, demonstrating the effect of descent in the same lineage.
In the same lineage, offspring receive the genetic traits from parents through inheritance with slight
variation and modification. In Fig.[S2] the lineage trained using BP with regularization performs
better, as the use of regularization reduces the impact of over-fitting in BP-based optimizers. During
the Darwinian evolution, it is observed that the trait of preventing over-fitting is inherited without an
explicit L2 regularization in the fitness function.

S2.2 PERFORMANCE ON DIFFERENT DATASETS AND MODELS
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Figure S5: Generalization of DE on different datasets and deep learning models. Datasets include
MNIST, Fashion MNIST, CIFAR-10, and CIFAR-100, while models include: LeNetl, LeNet5, MLP,
and RNN. The blue lines represent Adam optimizer, and the red points represent the DE optimizer.

S2.3 IMPACT OF SCALING FACTOR AND CROSSOVER RATE
Our comprehensive analysis has revealed the crucial significance of selecting appropriate parameters,

namely F and C'r, shown in Figs.[S6]and[S7] Hence, an adaptive approach is employed to enhance
the performance of the DE optimizer to evolve DNN on ImageNet.
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Figure S6: The impact of the mutation factor  Figure S7: The impact of the crossover rate
F. Comparison between DE (blue curves) and  C'R. Comparison between DE (blue curves) and
Adam (red marker) for RNN models, with fixed ~ Adam (red marker) for RNN models, with fixed
crossover rate and different F. mutation factor and different CR.
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S2.4 HYPERPARAMETS USED

Table S2: Hyper-parameters for DE. Table S3: Hyper-parameters in SHADE-tri-ensin
Name Symbol Value/ Range Name Symbol Value/ Range
Scaling factor F [0.01,0.1, 1, 2] Scaling factor F 0-0.2
Crossoverrate  Cr [0, 0.05, 0.5, 1] Crossover rate Cr 0-0.3
Mutation strategy .S S Mutation strategies S 57 -S4, STrigo
# of generations Gen 200-300 # of generations Gen 200
Batch size bs 50000 Batch size bs 2048
Population size  ps 20 Population size ps 10
BP algorithm ADAM BP algorithm SGD pretraining
Update scope whole NN Update scope exempt FC
Regularization a [0,107%, 1073, 1072] Archive size H 5

S2.5 ROBUSTNESS AGAINST NOISE

To verify the robustness and generalization of our approach, we trained the model using MNIST data
and CIFAR-10 data and tested it on the MNIST-C and CIFAR10-C datasets, respectively. Table[S4]
shows the LeNetl and LeNet5’s performance on MNIST-C. Table[S3]shows the LeNetl and LeNet5’s
performance on CIFAR10-C. Table[S6|shows the ResNet performance on CIFAR10-C.

Table S4: Performance on MNIST-C. The error and mean corruption error (mCE) of ADAM and
DE for LeNet models trained on MNIST. Models that perform the best for each type of corruption is
colored blue. Overall, LeNet5 trained by DE is found to be less susceptible to corruptions.

Error mCE
§ § § §
s 5 5 5057 5§ ;3
5 5 g 7 5 5 g g

Shot Noise 2.7% 2.4% 3.0% 2.1% 100% 2% 114%  19%
Impulse Noise | 13.6% 142% 11.3% 9.6% 100%  104% 83%  70%
Glass Blur 131% 122% 8.9% 6.3% 100% 93% 68%  48%
Motion Blur 20.1% 15.6% 10.8% 8.9% 100% 78% 54%  44%
Shear 3.5% 3.1% 3.1% 2.5% 100% 89% 88%  74%
Scale 11.2% 79% 12.4% 8.1% 100% 1% 111% 13%
Rotate 9.6% 8.7% 9.5% 7.9% 100% 90% 9%  83%
Brightness 849%  84.8% 8.2% 4.2% 100%  100% 10% 5%
Translate 449% 43.0% 433% 42.0% 100%  96%  96%  94%
Stripe 322% 318% 151%  82% 100% 9%  47%  26%
Fog 819% 824% 22.0% 18.2% 100% 101%  27%  22%
Spatter 5.2% 4.9% 3.1% 2.6% 100% 95% 59%  49%
Dotted Line 4.8% 4.6% 4.0% 3.6% 100% 96% 84%  76%
Zigzag 16.0% 154% 13.0% 11.3% 100% 96% 81% 71%
Canny Edges 229% 201% 402% 37.9% 100% 8% 176% 165%
Average 244% 234% 13.9% 11.6% 100% 92% 80%  65%

Table S5: Performance on CIFAR10-C. The error and mean corruption error (mCE) of ADAM and
DE for LeNet models trained on CIFAR10. Models that perform the best for each type of corruption
is colored blue. In all corruptions, LeNet5 trained by DE is found to be less susceptible to corruptions.

Error mCE
s § < 4 s § < 4
5 I~ o’ el I~ 5 o' 9
g £ g £ g £ £ z
N N N N N N 5 3

Gaussian 527% 52.3% 444% 43.7% 100%  99% 84% 83%
Shot 512% 512% 42.5% 42.3% 100% 100% 83% 83%
Impulse 56.2% 56.1% 48.3% 47.4% 100% 100% 86% 84%
Defocus 51.3% 499% 442% 43.4% 100%  97% 86% 85%
Glass 533% 52.1% 48.0% 46.9% 100%  98% 90% 88%
Motion 532% 51.9% 49.0% 47.4% 100%  97% 92% 89%
Zoom 535% 52.1% 48.5% 46.9% 100%  97% 91% 88%
Snow 52.1% 52.1% 46.4% 46.0% 100% 100% 89% 88%
Frost 549% 559% 52.4% 50.2% 100%  102% 96% 92%
Fog 58.8% 57.6% 56.7% 54.7% 100%  98% 96% 93%
Brightness | 50.8% 49.8% 44.4% 43.5% 100%  98% 87% 86%
Contrast 672% 655% 653% 64.0% 100%  97% 97% 95%
Elastic 527% 51.7% 45.8% 45.0% 100%  98% 87% 85%
Pixel 497% 49.1% 41.7% 41.1% 100%  99% 84% 83%
JPEG 497% 48.7% 42.0% 41.1% 100%  98% 84% 83%
Average 538% 53.1% 48.0% 46.9% 100%  99% 89% 87%
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Table S6: Performance of deeper models on CIFAR10-C. The error and mean corruption error
(mCE) of ADAM and DE for deeper models trained on CIFAR10. Models that perform the best
for each type of corruption is colored blue. Overall, deeper models trained by DE is found to be
less susceptible to corruptions. ResNet and MobileNet are observed to be comparable, where each
manages certain corruptions better.

Error mCE
§ §
§ < g < 4
i~ ) 7 ! i~ 3l o o
< Q o o < Q o o
3’ 5’ 5 5 Yy ¥ 5 &
5 F 7 3 F 5 & 2
& <& 5 5 < & 5 5
Gaussian 375% 309% 68.6% 68.1% 7% 59% 130% 129%
Shot 36.0% 284% 562%  55.6% 70% 55% 110% 109%
Impulse 399% 358% 492% 49.1% 1%  64% 88% 87%
Defocus 403% 269% 21.7% 21.2% 79%  52% 42% 41%
Glass 424% 378% 49.6%  48.9% 80% 71% 93% 92%
Motion 49.3% 338% 31.1% 30.3% 9% 64% 58% 57%
Zoom 44.0%  30.7% 289% 28.3% 82% 57% 54% 53%
Snow 41.1%  29.6% 222% 21.8% 79%  57% 43% 42%
Frost 454%  27.6% 285% 27.9% 83% 50% 52% 51%
Fog 474% 303% 178% 17.4% 81% 51% 30%  30%
Brightness | 39.5% 21.4% 9.3% 9.2% 78%  42% 18% 18%
Contrast 61.9% 43.7% 33.1% 32.6% 2%  65% 49% 49%
Elastic 41.6% 28.0% 205% 20.0% 79%  53% 39% 38%
Pixel 36.7% 24.7% 264%  26.9% 74%  50% 53% 54%
JPEG 36.0% 23.0% 24.0% 24.0% 2%  46% 48% 48%
Average 42.6% 302% 325% 32.1% 79%  56% 61% 60%

S3 ADDITIONAL RESNETS EXPERIMENT ON IMAGENET

S3.1 IMPACT OF POPULATION SIZE AND BATCH SIZE

Our method is similar to ensemble learning, where typically a larger number of models leads to better
performance. Therefore, we increased the number of populations for analysis, as shown in Table [S7}
Additionally, in evolutionary algorithms, we require a certain number of samples to calculate fitness
values for population selection. The mini-batch size of samples also has an impact on the evolution
results, as demonstrated in Table S8}

Table S7: Impact of population size. The performance of different population size for evolution.
Population size 6 10 20 40
Top-1 (%) 76.542 76.568 76.611 76.648

Table S8: Impact of batch size. The mini-batch samples for computing fitness value with DE
algorithms.

DE batch size 256 512 1024 64000 320000 980000
Top-1 (%) 76.542 76.568 76.553 76.551 76.561 76.563

S3.2 POPULATION INITIALIZATION

In this paper, the population initialization is obtained by fine-tuning a pre-trained model. To validate
the importance of this approach, we replaced the fine-tuning method with randomly generated
Gaussian white noise for population initialization, i.e. Ref. (Whitaker & Whitley}, 2023). Specifically,
we computed the standard deviation of the initially fine-tuned population and used this standard
deviation to generate Gaussian noise, which was then added to the pre-trained model. This resulted
in a randomly initialized population. From the Table[S9] it can be observed that the random noise
initialization did not provide any benefits to our method.

S4 TIME COMPLEXITY

Remarkably, if a m-layers network is employed, ZZ’;I l; parameters are to be optimized, where
l; represents number of i-th layer. Time complexity are thus O(n, - HZ':Il liliv1) and O(n, -
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Table S9: Comparison with randomly initialized population.

Method  Pytorch Benchmark Random noise Fine-tuned parents
Top-1 (%) 76.13 76.15 76.57

>, 1;) where ng and n. are training samples for gradient-based back-propagation and evolutionary

algorithms, respectively.

Step by step, we analyze the algorithmic complexity for both gradient-based back propagation and
evolutionary algorithm to train a layered neural network.

We emphasise that our analysis is on training a m-layered neural network, where Z:’;l l; parameters
are to be optimized. The procedure to produce update parameters are focused.

For feed-forward pass direction, each layer has experienced such process
Zig1— Mip1,- 2y, Zig1 — f(Zigr), (S1)

where f(x) is the activation function and M, ; contains the weights going from layer ¢ to 7 + 1.
Thus, time complexity is the same as feed-forward case, which in total demands O(n, Y77 " liliy1)
basic operations and O(ng Z?:ll l;+1) queries to the inverse activation function.

For back-propagation direction, each layer has experienced such process
E;«+ f'(Z;—0;), ,Dij-14 E;i-Zi—1, M;; 14 M;;—1—D;,; 1 (82)

where F;_1 and D; ;1 are the error terms and adjust matrix. Remarkably, different algorithms
are supposed to be employed here and we consider the typical case. Thus, time complexity is
O(ngl;li+1) operations, and O(ngyl;) queries to the inverse activation function. In total, feed-forward
pass algorithm demands O(n, 27" 1;1;41) basic operations and O(ny 327" ;1) queries to the
activation function.

For the differential evolution algorithm, as described by equations in the Method section of the main

text, demands O(n. Z:’;l l;), including both the mutation operation and the crossover operation.

S5 PARTICLE SWARM OPTIMIZER

To demonstrate that Darwinian evolutionary theory applies to a wide range of evolutionary algorithms,
and the DE algorithm is not a special case. We selected the PSO algorithm (Kennedy & Eberhart,
1995) to replace DE and tested its optimization performance. As shown in Fig.|S8| we find that the
results for PSO are similar to those for DE in Fig.[S2] It further proves the generalization and validity
of our theory.
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Figure S8: Other nature-inspired optimizer To demonstrate the generalization of our proposed
method beyond differential evolution, another population-based optimizer, PSO, is used. Similar
results in Figure 2 are observed. Hence, it further demonstrates the generalization and validity of the
positive impacts of population-based optimizers on deep neural networks.
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