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Appendix

A Additional background
A.1  Group theory
A.2  Equivariance
A.3  eSCN Convolution
B Details of architecture
C Details of experiments on OC20

C.1 Training details
C.2  Details of Running Relaxations
C.3 Details of AdsorbML

A Additional Background

We first provide relevant mathematical background on group theory and equivariance. We note that
most of the content is adapted from Equiformer [17] and that these works [69, 70] have more in-depth
and pedagogical discussions. Then, we provide mathematical details of eSCN convolutions.

A.1 Group Theory

Definition of Groups. A group is an algebraic structure that consists of a set G and a binary
operator o : G x G — G. Typically denoted as G, groups satisfy the following four axioms:

1. Closure: go h e G forall g,h € G.

2. Identity: There exists an identity element e € G such that goe =eog =g forall g € G.

1 1

3. Inverse: For each g € G, there exists an inverse element g~ € G such that go g7 =

glog=e.
4. Associativity: gohoi = (goh)oi=go (hoi)forall g, h,i€eG.

In this work, we consider 3D Euclidean symmetry, and relevant groups are:

1. The Euclidean group in three dimensions E(3): 3D rotation, translation and inversion.
2. The special Euclidean group in three dimensions SE(3): 3D rotation and translation.
3. The orthogonal group in three dimensions O(3): 3D rotation and inversion.

4. The special orthogonal group in three dimensions SO(3): 3D rotation.

Since eSCN [18] and this work only consider equivariance to 3D rotation and invariance to 3D
translation but not inversion, we mainly discuss S F(3)-equivariance in the main text and in appendix
and note that more details of E(3)-equivariance can be found in the work of Equiformer [17].

Group Representations. Given a vector space X, the way a group G acts on X is given by
the group representation Dx. Dy is parameterized by g € G, with Dx(g) : X — X. Group
representations D x are invertible matrices, and group transformations, or group actions, take the
form of matrix multiplications. This definition of group representations satisfies the requirements of
groups, including associativity, D(g)D(h) = D(g o h) for all g, h € G. We say that the two group
representations D(g) and D’(g) are equivalent if there exists a change-of-basis N x N matrix P
such that P~1D(g)P = D’(g) for all g € G. D(g) is reducible if D’(g) is block diagonal for all
g € G, meaning that D’(g) acts on multiple independent subspaces of the vector space. Otherwise,
the representation D(g) is said to be irreducible. Irreducible representations, or irreps, are a class of
representations that are convenient for composing different group representations. Specifically, for
the case of SO(3), Wigner-D matrices are irreducible representations, and we can express any group
representation of SO(3) as a direct sum (concatentation) of Wigner-D matrices [55, 69, 70]:

?

D(Lo)(g)
D(g)=P! ((—B D(Li)(9)> p=p! D) (g) P 2

where D(%)(g) are Wigner-D matrices of degree L;.
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A.2 Equivariance

A function f mapping between vector spaces X and Y is equivariant to a group of transformations G if
for any input € X, output y € Y and group element g € G, we have f(Dx (g)x) = Dy (g9)f(z) =
Dy (g)y, where Dx (g) and Dy (g) are transformation matrices or group representations parametrized
by ¢ in X and Y. Additionally, f is invariant when Dy (g) is an identity matrix for any g € G.

As neural networks comprise many composable operations, equivariant neural networks comprise
many equivariant operations to maintain the equivariance of input, intermediate, and output features.
Incorporating equivariance as a strong prior knowledge can help improve data efficiency and gen-
eralization of neural networks [5,9,71]. In this work, we achieve equivariance to 3D rotation by
operating on vector spaces of SO(3) irreps, incorporate invariance to 3D translation by acting on
relative positions, but do not consider inversion.

A.3 eSCN Convolution

Message passing is used to update equivariant irreps features and is typically implemented as SO(3)
convolutions. A traditional SO(3) convolution interacts input irrep features :m(#) and spherical har-
monic projections of relative positions YrgLff ) (7;s) with an SO(3) tensor product with Clebsch-Gordan

coefficients C' (Lf”m_”) . Since tensor products are compute-intensive, eSCN convolutions [18]
(Li,mi),(Ly,my)

are proposed to reduce the complexity of tensor products when they are used in SO(3) convolutions.
Rotating the input irreps features :cg,f
products and enables reducing SO(3) convolutions to SO(2) linear operations. Below we provide
the mathematical details of SO(3) convolutions built from tensor products and how rotation can

reduce their computational complexity.

") based on the relative position vectors 7 simplifies the tensor

3

Tensor products interact type-L; vector z(%:) and type-L ¢ vector f (L1) to produce type-L,

Lo,mo) Clebsch-Gordan coefficients

vector y(L°) with Clebsch-Gordan coefficients C((Li mi)s(Lymp)”

(%:77777:))( L;m,) A€ NON-zero only when |L; — L,| < Ly < |L; + L,|. Each non-trivial com-

bination of L; ® Ly — L, is called a path, and each path is independently equivariant and can be
assigned a learnable weight wr, ., r,-

We consider the message m., sent from source node s to target node ¢ in an SO(3) convolution. The
L,-th degree of m.s can be expressed as:

mie? = 3 wenrp, (085 @ L, YEO () ) 3
L;,Ly

where x; is the irreps feature at source node s, ngi) denotes the L;-th degree of x5, and 75 = I?ﬁ

The spherical harmonic projection of relative positions y(Ls) (7+s) becomes sparse if we rotate ;5
with a rotation matrix Ry, to align with the direction of . = 0 and m = 0, which corresponds to the
z axis traditionally but the y axis in the conventions of e3nn [55]. Concretely, given R;,7, aligned

with the y axis, Yn(lLff ) (Rys7ts) # 0 only for my = 0. Without loss of equivariance, we re-scale

YO(Lf) (Rys7%s) to be one. Therefore, by rotating 2" and V(1) based on 75, we can simplify Eq. 3

11



430  as follows:

-1
(D(L ) (Rys) ) > wrr,L, (D(Li)(Rts)ngi) ®77 1, Y(Lf)(RtsTAts))
L,;,Lf
—1
L; L; (L0a7 O) L ~
(D ) Z wLi»Lf’LOG_)( Z (D( )IE(Q ))ml C(L{,,":Li)v(Lfvmf) <Y( f)(RtSTtS))mf>
Li,Lf Mo mi,my
1
L, L; L; (L ,mo)
(D( )) > wrr,n, @ (Z (D( a ))mi ClLimoL,, o))
LiLy mo \m; '
~(L; (men)
(D ) LEL: wr, Ly.L, D (Z (xg )) C(L ;ma)y(Ly, 0))
f Mo

“)
31 where D) (Ry,) = D) and DFo) (R;,) = DFo) denote Wigner-D matrices of degrees L; and

a2 L, based on rotation matrix Ry, respectively, @ denotes concatenation, and D& i)ng"') = 922“).

(Loymo)

433 Additionally, given my = 0, Clebsch-Gordan coefficients C’( Loma)y(Ly.0)

43¢ only when m; = +m,, which further simplifies Eq. 4:

mire) = (D(L°)) Z WL; Ly Lo (‘D (( i )> . C(%:,}Zl;)),(Lf,o) + (fgLi)), C((f innnzo) (Lf70)>

&)

are sparse and are non-zero

435 By re-ordering the summations and concatenation in Eq. 5, we have:

-1
L, ~(Li (Losmo) oy
(D( )) ;@ (acg ))m ;(wLi,Lf7L"C(meLO) (Ly, 0)) (xg ))
i Mo ° f

(L07m0)
> (wLivavLoC(Lq-,,—mo),(Lfm)

—m, £
L (6)
436 Instead of using learnable parameters for wy,, 1, .Lo» ©SCN proposes to parametrize wfn i 2 and
i ') a5 below:
—My .
(L Lo) _ Losmo) Lo,—mo) _
ZwL,,Lf L,C L“mo (L0) = ZwLHLf r,C Ll,fmo) (L1,0) form >=0
(N
~(L L,) —mo) (Lo,mo)
Weme ZwL LgiLo CL mo)y(Ly,0) = ZwL L Lo Oy o) (L0 form >0
Ly
438 The parametrization of w,(n Lo) and w(L“ °) enables removing the summation over L and further

439 simplifies the computation. By comblnlngDEq. 6 and Eq. 7, we have:

mils) = (D4) " N (uile*),

L; Mo
(i), ) () ot (s0) o
(yt(f Lo >) O — glhile) (gszi)> O + ap(Fie) (@gm) n for my > 0 °
(yt(sLi,Lo)) ° ) wquoi’Lo) <3~3£L)> ’ — ,
440 The formulation of yt(sLi’L“) coincides with performing SO(2) linear operations [18,72]. Addition-

441 ally, eSCN convolutions can further simplify the computation by considering only a subset of m,,
a42  components in Eq. 8, i.e., |m,| < Mpqz.

443 In summary, efficient SO(3) convolutions can be achieved by first rotating irreps features ngi) based
444 on relative position vectors 75 and then performing SO(2) linear operations on rotated features.
445 The key idea is that rotation simplifies the computation as in Eq. 4, 5, 7, and 8. Please refer to their
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work [18] for more details. We note that eSCN convolutions consider only simplifying the case of
taking tensor products between input irreps features and spherical harmonic projections of relative
position vectors. eSCN convolutions do not simplify general cases such as taking tensor products
between input irreps features and themselves [38] since the relative position vectors used to rotate
irreps features are not clearly defined.

B Details of Architecture

In this section, we define architectural hyper-parameters like maximum degrees and numbers of
channels in certain layers in EquiformerV2, which are used to specify the detailed architectures in
Sec. C.1. Besides, we note that eSCN [18] and this work mainly consider S E(3)-equivariance.

We denote embedding dimensions as de,,peq, Which defines the dimensions of most irreps features.
Specifically, the output irreps features of all modules except the output head in Figure la have
dimension d¢,pcq. For separable 52 activation as illustrated in Figure 2c, we denote the resolution
of point samples on a sphere as 12, which can depend on maximum degree L,,,., and denote the
unconstrained functions after projecting to point samples as F'.

For equivariant graph attention in Figure 1b, the input irreps features x; and x; have dimension

dembed- The dimension of the irreps feature fi(jL) is denoted as dg¢¢n_hidden- Equivariant graph
attention can have h parallel attention functions. For each attention function, we denote the dimension

of the scalar feature fi(]Q) as dgttn_alphe and denote the dimension of the value vector, which is in

the form of irreps features, as dy¢¢n_value- FOr the separable S2 activation used in equivariant graph
attention, the resolution of point samples is R, and we use a single SiLU activation for F'. We share
the layer normalization in attention re-normalization across all h attention functions but have different
h linear layers after that. The last linear layer projects the dimension back to dempeq- The two
intermediate SO(2) linear layers operate with maximum degree L, and maximum order M, ..

For feed forward networks (FFNs) in Figure 1d, we denote the dimension of the output irreps features
of the first linear layer as d f,,. For the separable S? activation used in FFNS, the resolution of point
samples is R, and F' consists of a two-layer MLP, with each linear layer followed by SiLU, and a
final linear layer. The linear layers have the same number of channels as dy fy,.

For radial functions, we denote the dimension of hidden scalar features as d.qq.. For experiments
on OC20, same as eSCN [18], we use Gaussian radial basis to represent relative distances and
additionally embed the atomic numbers at source nodes and target nodes with two scalar features of
dimension dcqge. The radial basis and the two embeddings of atomic numbers are fed to the radial
function to generate distance embeddings.

The maximum degree of irreps features is denoted as L, .. All irreps features have degrees from 0
t0 L4, and have C' channels for each degree. We denote the dimension as (L,y,q., C'). For example,
irreps feature x;,reps Of dimension (6, 128) has maximum degree 6 and 128 channels for each degree.
The dimension of scalar feature .44, can be expressed as (0, Cscaiar)-

Following Equiformer [17], we apply dropout [40] to attention weights and stochastic depth [41] to
outputs of equivariant graph attention and feed forward networks. However, we do not apply dropout
or stochastic depth to the output head.

C Details of Experiments on OC20

C.1 Training Details

Hyper-Parameters. We summarize the hyper-parameters for the base model setting on OC20
S2EF-2M dataset and the main results on OC20 S2EF-All and S2EF-All+MD datasets in Table 4.
For the ablation studies on OC20 S2EF-2M dataset, when trained for 20 or 30 epochs as in Table
1b, we increase the learning rate from 2 x 10™* to 4 x 10~*. When using L,,,, = 8 as in Table
lc, we increase the resolution of point samples R from 18 to 20. We vary L, and the widths for
speed-accuracy trade-offs in Figure 4. Specifically, we first decrease L4, from 6 to 4. Then, we
multiply / and the number of channels of (dembed, dattn_hidden, dffn) by 0.75 and 0.5. We train all
models for 30 epochs. The same strategy to scale down eSCN models is adopted for fair comparisons.
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505
506
507
508

Hyper-parameters S2EF-2M S2EF-All/S2EF-All+MD

Optimizer AdamW AdamW
Learning rate scheduling Cosine learning rate with ~ Cosine learning rate with
linear warmup linear warmup
Warmup epochs 0.1 0.01
Maximum learning rate 2x 107 4x1074
Batch size 64 256 for S2EF-All,
512 for S2EF-All+MD
Number of epochs 12 1
Weight decay 1x1073 1x1073
Dropout rate 0.1 0.1
Stochastic depth 0.05 0.1
Energy coefficient A 2 2 for S2EF-All,
2,4 for S2EF-All+MD
Force coefficient A\ g 100 100
Gradient clipping norm threshold 100 100
Model EMA decay 0.999 0.999
Cutoff radius (A) 12 12
Maximum number of neighbors 20 20
Number of radial basis 600 600
Dimension of hidden scalar features in radial functions degge (0, 128) (0,128)
Maximum degree L, q 6 6
Maximum order M, 2 3
Number of Transformer blocks 12 20
Embedding dimension demped (6,128) (6,128)
£ dimension dattn_nidden (6,64) (6,64)
Number of attention heads h 8 8
£ dimension duren_atpha (0,64) (0,64)
Value dimension dttn vatue (6,16) (6,16)
Hidden dimension in feed forward networks d s ¢, (6,128) (6,128)
Resolution of point samples R 18 18

Table 4: Hyper-parameters for the base model setting on OC20 S2EF-2M dataset and the main results on OC20
S2EF-All and S2EF-All+MD datasets.

Attention Training time Inference speed Number of

Training set re-normalization  Activation Normalization Ly, My (GPU-hours) (Samples / GPU sec.) parameters
X Gate LN 6 2 965 19.06 91.06M
v Gate LN 6 2 998 19.07 91.06M
v S? LN 6 2 1476 12.80 81.46M
v Sep. S? LN 6 2 1505 12.51 83.16M
S2EF-2M v Sep. S? SLN 6 2 1412 13.22 83.16M
v Sep. S? SLN 4 2 965 19.86 44.83M

v Sep. S? SLN 8 2 2709 7.86 134.28M
v Sep. S? SLN 6 3 1623 11.92 95.11M

v Sep. S? SLN 6 4 2706 7.98 102.14M

v Sep. S? SLN 6 6 3052 7.13 106.63M

S2EF-All v Sep. S? SLN 6 3 20499 6.08 153.60M
S2EF-All+MD (\g = 2) v Sep. S? SLN 6 3 32834 6.08 153.60M
S2EF-All+MD (\g = 4) v Sep. S? SLN 6 3 37692 6.08 153.60M

Table 5: Training time, inference speed and numbers of parameters of different models trained on OC20 S2EF-
2M, S2EF-All and S2EF-All+MD datasets. All numbers are measured on V100 GPUs with 32GB.

Training Time, Inference Speed and Numbers of Parameters. Table 5 summarizes the training
time, inference speed and numbers of parameters of models in Tables 1a (rows 1, 2, 3, 4, 5), Ic, 1d
and 2. We use 16 V100 GPUs with 32GB to train each individual model on S2EF-2M dataset, 64
GPUs for S2EF-All and 128 GPUs for S2EF-All+MD.

C.2 Details of Running Relaxations

A structural relaxation is a local optimization where atom positions are iteratively updated based
on forces to minimize the energy of the structure. We perform ML relaxations using the LBFGS
optimizer (quasi-Newton) implemented in the Open Catalyst Github repository [30]. The structural
relaxations for OC20 IS2RE and IS2RS tasks are allowed to run for 200 steps or until the maximum
predicted force per atom Fi, ., < 0.02 eV/A , and the relaxations for AdsorbML are allowed to run
for 300 steps or until F},,,, < 0.02 eV/A . These settings are chosen to be consistent with prior works.
We run relaxations on V100 GPUs with 32GB. The computational cost of running relaxations for
OC20 IS2RE and IS2RS tasks is 1011 GPU-hours, and that of running ML relaxations of AdsorbML
is 1075 GPU-hours.
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s09  C.3 Details of AdsorbML

510 We run the AdsorbML algorithm on the OC20-Dense dataset in accordance with the procedure laid
511 out in the paper [10], which is summarized here:

512 1. Run ML relaxations on all initial structures in the OC20-Dense dataset. There are around
513 1000 different adsorbate-surface combinations with about 90 adsorbate placements per
514 combination, and therefore we have roughly 90k structures in total.

515 2. Remove invalid ML relaxed structures based on physical constraints and rank the other ML,
516 relaxed structures in order of lowest to highest ML predicted energy.

517 3. Take the top k ML relaxed structures with the lowest ML predicted energies for each
518 adsorbate-surface combination and run DFT single-point calculations. The single-point
519 calculations are performed on the ML relaxed structures to improve the energy predictions
520 without running a full DFT relaxation and are run with VASP using the same setting as the
521 original AdsorbML experiments. As shown in Table 3, we vary k from 1 to 5.

522 4. Compute success and speedup metrics based on our lowest DFT single-point energy per
523 adsorbate-surface combination and the DFT labels provided in the OC20-Dense dataset.

s24  We visualize some examples of relaxed structures from eSCN [18], EquiformerV2 and DFT in
s25 Figure 5.
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Initial Structure

Figure 5: Qualitative examples of the initial configuration of an adsorbate on a catalyst surface (column 1), and
corresponding relaxed configurations obtained from eSCN [18] (column 2), EquiformerV2 (column 3), and DFT
(column 4). All examples are selected from the OC20-Dense dataset [10]. We show top-down views of each
structure, with dashed lines showing the boundary of the unit cell repeating in the = and y directions.
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