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A Additional Background363

We first provide relevant mathematical background on group theory and equivariance. We note that364

most of the content is adapted from Equiformer [17] and that these works [69,70] have more in-depth365

and pedagogical discussions. Then, we provide mathematical details of eSCN convolutions.366

A.1 Group Theory367

Definition of Groups. A group is an algebraic structure that consists of a set G and a binary368

operator ˝ : G ˆ G Ñ G. Typically denoted as G, groups satisfy the following four axioms:369

1. Closure: g ˝ h P G for all g, h P G.370

2. Identity: There exists an identity element e P G such that g ˝ e “ e ˝ g “ g for all g P G.371

3. Inverse: For each g P G, there exists an inverse element g´1 P G such that g ˝ g´1 “372

g´1 ˝ g “ e.373

4. Associativity: g ˝ h ˝ i “ pg ˝ hq ˝ i “ g ˝ ph ˝ iq for all g, h, i P G.374

In this work, we consider 3D Euclidean symmetry, and relevant groups are:375

1. The Euclidean group in three dimensions Ep3q: 3D rotation, translation and inversion.376

2. The special Euclidean group in three dimensions SEp3q: 3D rotation and translation.377

3. The orthogonal group in three dimensions Op3q: 3D rotation and inversion.378

4. The special orthogonal group in three dimensions SOp3q: 3D rotation.379

Since eSCN [18] and this work only consider equivariance to 3D rotation and invariance to 3D380

translation but not inversion, we mainly discuss SEp3q-equivariance in the main text and in appendix381

and note that more details of Ep3q-equivariance can be found in the work of Equiformer [17].382

Group Representations. Given a vector space X , the way a group G acts on X is given by383

the group representation DX . DX is parameterized by g P G, with DXpgq : X Ñ X . Group384

representations DX are invertible matrices, and group transformations, or group actions, take the385

form of matrix multiplications. This definition of group representations satisfies the requirements of386

groups, including associativity, DpgqDphq “ Dpg ˝ hq for all g, h P G. We say that the two group387

representations Dpgq and D1pgq are equivalent if there exists a change-of-basis N ˆ N matrix P388

such that P´1DpgqP “ D1pgq for all g P G. Dpgq is reducible if D1pgq is block diagonal for all389

g P G, meaning that D1pgq acts on multiple independent subspaces of the vector space. Otherwise,390

the representation Dpgq is said to be irreducible. Irreducible representations, or irreps, are a class of391

representations that are convenient for composing different group representations. Specifically, for392

the case of SOp3q, Wigner-D matrices are irreducible representations, and we can express any group393

representation of SOp3q as a direct sum (concatentation) of Wigner-D matrices [55, 69, 70]:394

Dpgq “ P´1

˜

à

i

DpLiqpgq

¸

P “ P´1

¨

˝

DpL0qpgq

DpL1qpgq

......

˛

‚P (2)

where DpLiqpgq are Wigner-D matrices of degree Li.395
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A.2 Equivariance396

A function f mapping between vector spaces X and Y is equivariant to a group of transformations G if397

for any input x P X , output y P Y and group element g P G, we have fpDXpgqxq “ DY pgqfpxq “398

DY pgqy, where DXpgq and DY pgq are transformation matrices or group representations parametrized399

by g in X and Y . Additionally, f is invariant when DY pgq is an identity matrix for any g P G.400

As neural networks comprise many composable operations, equivariant neural networks comprise401

many equivariant operations to maintain the equivariance of input, intermediate, and output features.402

Incorporating equivariance as a strong prior knowledge can help improve data efficiency and gen-403

eralization of neural networks [5, 9, 71]. In this work, we achieve equivariance to 3D rotation by404

operating on vector spaces of SOp3q irreps, incorporate invariance to 3D translation by acting on405

relative positions, but do not consider inversion.406

A.3 eSCN Convolution407

Message passing is used to update equivariant irreps features and is typically implemented as SOp3q408

convolutions. A traditional SOp3q convolution interacts input irrep features xpLiq
mi and spherical har-409

monic projections of relative positions Y pLf q
mf pr⃗tsq with an SOp3q tensor product with Clebsch-Gordan410

coefficients CpLo,moq

pLi,miq,pLf ,mf q
. Since tensor products are compute-intensive, eSCN convolutions [18]411

are proposed to reduce the complexity of tensor products when they are used in SOp3q convolutions.412

Rotating the input irreps features xpLiq
mi based on the relative position vectors r⃗ts simplifies the tensor413

products and enables reducing SOp3q convolutions to SOp2q linear operations. Below we provide414

the mathematical details of SOp3q convolutions built from tensor products and how rotation can415

reduce their computational complexity.416

Tensor products interact type-Li vector xpLiq and type-Lf vector f pLf q to produce type-Lo417

vector ypLoq with Clebsch-Gordan coefficients C
pLo,moq

pLi,miq,pLf ,mf q
. Clebsch-Gordan coefficients418

C
pLo,moq

pLi,miq,pLf ,mf q
are non-zero only when |Li ´ Lo| ď Lf ď |Li ` Lo|. Each non-trivial com-419

bination of Li b Lf Ñ Lo is called a path, and each path is independently equivariant and can be420

assigned a learnable weight wLi,Lf ,Lo
.421

We consider the message mts sent from source node s to target node t in an SOp3q convolution. The422

Lo-th degree of mts can be expressed as:423

m
pLoq

ts “
ÿ

Li,Lf

wLi,Lf ,Lo

´

xpLiq
s b

Lo

Li,Lf
Y pLf qpr̂tsq

¯

(3)

where xs is the irreps feature at source node s, xpLiq
s denotes the Li-th degree of xs, and r̂ts “ r⃗ts

|r⃗ts|
.424

The spherical harmonic projection of relative positions Y pLf qpr̂tsq becomes sparse if we rotate r̂ts425

with a rotation matrix Rts to align with the direction of L “ 0 and m “ 0, which corresponds to the426

z axis traditionally but the y axis in the conventions of e3nn [55]. Concretely, given Rtsr̂ts aligned427

with the y axis, Y pLf q
mf pRtsr̂tsq ‰ 0 only for mf “ 0. Without loss of equivariance, we re-scale428

Y
pLf q

0 pRtsr⃗tsq to be one. Therefore, by rotating x
pLiq
s and Y pLf q based on r̂ts, we can simplify Eq. 3429
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as follows:430

m
pLoq

ts “

´

DpLoqpRtsq

¯´1 ÿ

Li,Lf

wLi,Lf ,Lo

´

DpLiqpRtsqxpLiq
s b

Lo

Li,Lf
Y pLf qpRtsr̂tsq

¯

“

´

DpLoq
¯´1 ÿ

Li,Lf

wLi,Lf ,Lo

à

mo

˜

ÿ

mi,mf

´

DpLiqxpLiq
s

¯

mi

C
pLo,moq

pLi,miq,pLf ,mf q

´

Y pLf qpRtsr̂tsq

¯

mf

¸

“

´

DpLoq
¯´1 ÿ

Li,Lf

wLi,Lf ,Lo

à

mo

˜

ÿ

mi

´

DpLiqxpLiq
s

¯

mi

C
pLo,moq

pLi,miq,pLf ,0q

¸

“

´

DpLoq
¯´1 ÿ

Li,Lf

wLi,Lf ,Lo

à

mo

˜

ÿ

mi

´

x̃pLiq
s

¯

mi

C
pLo,moq

pLi,miq,pLf ,0q

¸

(4)
where DpLiqpRtsq “ DpLiq and DpLoqpRtsq “ DpLoq denote Wigner-D matrices of degrees Li and431

Lo based on rotation matrix Rts, respectively,
À

denotes concatenation, and DpLiqx
pLiq
s “ x̃

pLiq
s .432

Additionally, given mf “ 0, Clebsch-Gordan coefficients CpLo,moq

pLi,miq,pLf ,0q
are sparse and are non-zero433

only when mi “ ˘mo, which further simplifies Eq. 4:434

m
pLoq

ts “

´

DpLoq
¯´1 ÿ

Li,Lf

wLi,Lf ,Lo

à

mo

ˆ

´

x̃pLiq
s

¯

mo

C
pLo,moq

pLi,moq,pLf ,0q
`

´

x̃pLiq
s

¯

´mo

C
pLo,moq

pLi,´moq,pLf ,0q

˙

(5)
By re-ordering the summations and concatenation in Eq. 5, we have:435

´

DpLoq
¯´1 ÿ

Li

à

mo

¨

˝

´

x̃pLiq
s

¯

mo

ÿ

Lf

´

wLi,Lf ,Lo
C

pLo,moq

pLi,moq,pLf ,0q

¯

`

´

x̃pLiq
s

¯

´mo

ÿ

Lf

´

wLi,Lf ,Lo
C

pLo,moq

pLi,´moq,pLf ,0q

¯

˛

‚

(6)
Instead of using learnable parameters for wLi,Lf ,Lo

, eSCN proposes to parametrize w̃
pLi,Loq
mo and436

w̃
pLi,Loq

´mo
as below:437

w̃pLi,Loq
mo

“
ÿ

Lf

wLi,Lf ,Lo
C

pLo,moq

pLi,moq,pLf ,0q
“

ÿ

Lf

wLi,Lf ,Lo
C

pLo,´moq

pLi,´moq,pLf ,0q
for m ą“ 0

w̃
pLi,Loq

´mo
“

ÿ

Lf

wLi,Lf ,Lo
C

pLo,´moq

pLi,moq,pLf ,0q
“ ´

ÿ

Lf

wLi,Lf ,Lo
C

pLo,moq

pLi,´moq,pLf ,0q
for m ą 0

(7)

The parametrization of w̃pLi,Loq
mo and w̃

pLi,Loq

´mo
enables removing the summation over Lf and further438

simplifies the computation. By combining Eq. 6 and Eq. 7, we have:439

m
pLoq

ts “

´

DpLoq
¯´1 ÿ

Li

à

mo

´

y
pLi,Loq

ts

¯

mo

´

y
pLi,Loq

ts

¯

mo

“ w̃pLi,Loq
mo

´

x̃pLiq
s

¯

mo

´ w̃
pLi,Loq

´mo

´

x̃pLiq
s

¯

´mo

for mo ą 0
´

y
pLi,Loq

ts

¯

´mo

“ w̃
pLi,Loq

´mo

´

x̃pLiq
s

¯

mo

` w̃pLi,Loq
mo

´

x̃pLiq
s

¯

´mo

for mo ą 0
´

y
pLi,Loq

ts

¯

mo

“ w̃pLi,Loq
mo

´

x̃pLiq
s

¯

mo

for mo “ 0

(8)

The formulation of ypLi,Loq

ts coincides with performing SOp2q linear operations [18, 72]. Addition-440

ally, eSCN convolutions can further simplify the computation by considering only a subset of mo441

components in Eq. 8, i.e., |mo| ď Mmax.442

In summary, efficient SOp3q convolutions can be achieved by first rotating irreps features xpLiq
s based443

on relative position vectors r⃗ts and then performing SOp2q linear operations on rotated features.444

The key idea is that rotation simplifies the computation as in Eq. 4, 5, 7, and 8. Please refer to their445
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work [18] for more details. We note that eSCN convolutions consider only simplifying the case of446

taking tensor products between input irreps features and spherical harmonic projections of relative447

position vectors. eSCN convolutions do not simplify general cases such as taking tensor products448

between input irreps features and themselves [38] since the relative position vectors used to rotate449

irreps features are not clearly defined.450

B Details of Architecture451

In this section, we define architectural hyper-parameters like maximum degrees and numbers of452

channels in certain layers in EquiformerV2, which are used to specify the detailed architectures in453

Sec. C.1. Besides, we note that eSCN [18] and this work mainly consider SEp3q-equivariance.454

We denote embedding dimensions as dembed, which defines the dimensions of most irreps features.455

Specifically, the output irreps features of all modules except the output head in Figure 1a have456

dimension dembed. For separable S2 activation as illustrated in Figure 2c, we denote the resolution457

of point samples on a sphere as R, which can depend on maximum degree Lmax, and denote the458

unconstrained functions after projecting to point samples as F .459

For equivariant graph attention in Figure 1b, the input irreps features xi and xj have dimension460

dembed. The dimension of the irreps feature f
pLq

ij is denoted as dattn_hidden. Equivariant graph461

attention can have h parallel attention functions. For each attention function, we denote the dimension462

of the scalar feature f
p0q

ij as dattn_alpha and denote the dimension of the value vector, which is in463

the form of irreps features, as dattn_value. For the separable S2 activation used in equivariant graph464

attention, the resolution of point samples is R, and we use a single SiLU activation for F . We share465

the layer normalization in attention re-normalization across all h attention functions but have different466

h linear layers after that. The last linear layer projects the dimension back to dembed. The two467

intermediate SOp2q linear layers operate with maximum degree Lmax and maximum order Mmax.468

For feed forward networks (FFNs) in Figure 1d, we denote the dimension of the output irreps features469

of the first linear layer as dffn. For the separable S2 activation used in FFNs, the resolution of point470

samples is R, and F consists of a two-layer MLP, with each linear layer followed by SiLU, and a471

final linear layer. The linear layers have the same number of channels as dffn.472

For radial functions, we denote the dimension of hidden scalar features as dedge. For experiments473

on OC20, same as eSCN [18], we use Gaussian radial basis to represent relative distances and474

additionally embed the atomic numbers at source nodes and target nodes with two scalar features of475

dimension dedge. The radial basis and the two embeddings of atomic numbers are fed to the radial476

function to generate distance embeddings.477

The maximum degree of irreps features is denoted as Lmax. All irreps features have degrees from 0478

to Lmax and have C channels for each degree. We denote the dimension as pLmax, Cq. For example,479

irreps feature xirreps of dimension p6, 128q has maximum degree 6 and 128 channels for each degree.480

The dimension of scalar feature xscalar can be expressed as p0, Cscalarq.481

Following Equiformer [17], we apply dropout [40] to attention weights and stochastic depth [41] to482

outputs of equivariant graph attention and feed forward networks. However, we do not apply dropout483

or stochastic depth to the output head.484

C Details of Experiments on OC20485

C.1 Training Details486

Hyper-Parameters. We summarize the hyper-parameters for the base model setting on OC20487

S2EF-2M dataset and the main results on OC20 S2EF-All and S2EF-All+MD datasets in Table 4.488

For the ablation studies on OC20 S2EF-2M dataset, when trained for 20 or 30 epochs as in Table489

1b, we increase the learning rate from 2 ˆ 10´4 to 4 ˆ 10´4. When using Lmax “ 8 as in Table490

1c, we increase the resolution of point samples R from 18 to 20. We vary Lmax and the widths for491

speed-accuracy trade-offs in Figure 4. Specifically, we first decrease Lmax from 6 to 4. Then, we492

multiply h and the number of channels of pdembed, dattn_hidden, dffnq by 0.75 and 0.5. We train all493

models for 30 epochs. The same strategy to scale down eSCN models is adopted for fair comparisons.494
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Hyper-parameters S2EF-2M S2EF-All/S2EF-All+MD

Optimizer AdamW AdamW
Learning rate scheduling Cosine learning rate with Cosine learning rate with

linear warmup linear warmup
Warmup epochs 0.1 0.01
Maximum learning rate 2 ˆ 10´4 4 ˆ 10´4

Batch size 64 256 for S2EF-All,
512 for S2EF-All+MD

Number of epochs 12 1
Weight decay 1 ˆ 10´3 1 ˆ 10´3

Dropout rate 0.1 0.1
Stochastic depth 0.05 0.1
Energy coefficient λE 2 2 for S2EF-All,

2, 4 for S2EF-All+MD
Force coefficient λF 100 100
Gradient clipping norm threshold 100 100
Model EMA decay 0.999 0.999
Cutoff radius (Å) 12 12
Maximum number of neighbors 20 20
Number of radial basis 600 600
Dimension of hidden scalar features in radial functions dedge p0, 128q p0, 128q

Maximum degree Lmax 6 6
Maximum order Mmax 2 3
Number of Transformer blocks 12 20
Embedding dimension dembed p6, 128q p6, 128q

f
pLq

ij dimension dattn_hidden p6, 64q p6, 64q

Number of attention heads h 8 8

f
p0q

ij dimension dattn_alpha p0, 64q p0, 64q

Value dimension dattn_value p6, 16q p6, 16q

Hidden dimension in feed forward networks dffn p6, 128q p6, 128q

Resolution of point samples R 18 18

Table 4: Hyper-parameters for the base model setting on OC20 S2EF-2M dataset and the main results on OC20
S2EF-All and S2EF-All+MD datasets.

Attention Training time Inference speed Number of
Training set re-normalization Activation Normalization Lmax Mmax (GPU-hours) (Samples / GPU sec.) parameters

S2EF-2M

✗ Gate LN 6 2 965 19.06 91.06M
✓ Gate LN 6 2 998 19.07 91.06M
✓ S2 LN 6 2 1476 12.80 81.46M
✓ Sep. S2 LN 6 2 1505 12.51 83.16M
✓ Sep. S2 SLN 6 2 1412 13.22 83.16M
✓ Sep. S2 SLN 4 2 965 19.86 44.83M
✓ Sep. S2 SLN 8 2 2709 7.86 134.28M
✓ Sep. S2 SLN 6 3 1623 11.92 95.11M
✓ Sep. S2 SLN 6 4 2706 7.98 102.14M
✓ Sep. S2 SLN 6 6 3052 7.13 106.63M

S2EF-All ✓ Sep. S2 SLN 6 3 20499 6.08 153.60M

S2EF-All+MD (λE “ 2) ✓ Sep. S2 SLN 6 3 32834 6.08 153.60M
S2EF-All+MD (λE “ 4) ✓ Sep. S2 SLN 6 3 37692 6.08 153.60M

Table 5: Training time, inference speed and numbers of parameters of different models trained on OC20 S2EF-
2M, S2EF-All and S2EF-All+MD datasets. All numbers are measured on V100 GPUs with 32GB.

Training Time, Inference Speed and Numbers of Parameters. Table 5 summarizes the training495

time, inference speed and numbers of parameters of models in Tables 1a (rows 1, 2, 3, 4, 5), 1c, 1d496

and 2. We use 16 V100 GPUs with 32GB to train each individual model on S2EF-2M dataset, 64497

GPUs for S2EF-All and 128 GPUs for S2EF-All+MD.498

C.2 Details of Running Relaxations499

A structural relaxation is a local optimization where atom positions are iteratively updated based500

on forces to minimize the energy of the structure. We perform ML relaxations using the LBFGS501

optimizer (quasi-Newton) implemented in the Open Catalyst Github repository [30]. The structural502

relaxations for OC20 IS2RE and IS2RS tasks are allowed to run for 200 steps or until the maximum503

predicted force per atom Fmax ď 0.02 eV/Å , and the relaxations for AdsorbML are allowed to run504

for 300 steps or until Fmax ď 0.02 eV/Å . These settings are chosen to be consistent with prior works.505

We run relaxations on V100 GPUs with 32GB. The computational cost of running relaxations for506

OC20 IS2RE and IS2RS tasks is 1011 GPU-hours, and that of running ML relaxations of AdsorbML507

is 1075 GPU-hours.508
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C.3 Details of AdsorbML509

We run the AdsorbML algorithm on the OC20-Dense dataset in accordance with the procedure laid510

out in the paper [10], which is summarized here:511

1. Run ML relaxations on all initial structures in the OC20-Dense dataset. There are around512

1000 different adsorbate-surface combinations with about 90 adsorbate placements per513

combination, and therefore we have roughly 90k structures in total.514

2. Remove invalid ML relaxed structures based on physical constraints and rank the other ML515

relaxed structures in order of lowest to highest ML predicted energy.516

3. Take the top k ML relaxed structures with the lowest ML predicted energies for each517

adsorbate-surface combination and run DFT single-point calculations. The single-point518

calculations are performed on the ML relaxed structures to improve the energy predictions519

without running a full DFT relaxation and are run with VASP using the same setting as the520

original AdsorbML experiments. As shown in Table 3, we vary k from 1 to 5.521

4. Compute success and speedup metrics based on our lowest DFT single-point energy per522

adsorbate-surface combination and the DFT labels provided in the OC20-Dense dataset.523

We visualize some examples of relaxed structures from eSCN [18], EquiformerV2 and DFT in524

Figure 5.525

15



Figure 5: Qualitative examples of the initial configuration of an adsorbate on a catalyst surface (column 1), and
corresponding relaxed configurations obtained from eSCN [18] (column 2), EquiformerV2 (column 3), and DFT
(column 4). All examples are selected from the OC20-Dense dataset [10]. We show top-down views of each
structure, with dashed lines showing the boundary of the unit cell repeating in the x and y directions.
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