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Abstract

For different parameterizations (mappings from parameters to predictors), we study
the regularization cost in predictor space induced by l2 regularization on the param-
eters (weights). We focus on linear neural networks as parameterizations of linear
predictors. We identify the representation cost of certain sparse linear ConvNets
and residual networks. In order to get a better understanding of how the architec-
ture and parameterization affect the representation cost, we also study the reverse
problem, identifying which regularizers on linear predictors (e.g., lp quasi-norms,
group quasi-norms, the k-support-norm, elastic net) can be the representation cost
induced by simple l2 regularization, and designing the parameterizations that do
so.

1 Introduction

In a class of parameterized models, penalizing the l2 norm of the parameters induces regularization
on function space which can be interpreted as a complexity measure on the class of learned functions.
In this paper, we study how different parameterizations induce different complexity measures.

We consider parameterized mappings f : X × Rp −→ Rm, from input x ∈ X and parameters
w ∈ Rp to predictions f(x;w). We denote the predictor implemented with parameters w by
F (w) : X −→ Rm defined as F (w)(x) := f(x;w). Then image(F ) is the set of functions from X
to Rm which can be obtained from this class of parameterized models. We will use F to denote a set
of functions from X to Rm.

The l2 regularization on parameters, either explicitly or implicitly, is a common phenomenon. As an
example, in deep learning, explicit l2 regularization on parameters (a.k.a. weight decay) improves
generalization ([20, 37]). Implicit regularization of l2 norm of parameters appears when we use
gradient descent (GD) to train the model ([2, 35, 33, 19, 23, 32, 14, 25, 9, 18]). In particular, GD on
homogeneous neural networks with logistic loss implicitly regularizes l2 norm on weights [23, 32].

The representation cost ([15, 31, 27]) of a function g in image(F ) under the parametrization F is

RF (g) = min{∥w∥22 : F (w) = g}. (1)
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Consider learning a predictor F (w) with some loss function L(·) while controlling the l2 norm of
parameters w by minimizing

min
w∈Rp

L(F (w)) + λ∥w∥22 . (2)

This is clearly equivalent to learning a function g in image(F ) by controlling RF (g) defined in
Eq. (1):

min
g∈image(F )

L(g) + λRF (g). (3)

In other words, the representation cost under the parameterization F , RF (·), captures the regular-
ization on function space image(F ) induced by l2 regularization on parameter space. In this paper,
we are interested in understanding how different parameterizations, regularize the function space
differently. Since GD on homogeneous neural networks with logistic loss implicitly regularizes l2
norm on weights [23, 32], representation cost induced by l2 regularization in weight space captures
the implicit regularization in homogeneous models, but not necessarily in non-homogeneous models.
Thus, representation costs of predictors parameterized by homogeneous models are arguably more
related to implicit regularization, while representation costs of predictors parameterized by both
homogeneous and non-homogeneous models are related to explicit regularization. In this paper, we
first develop results for homogeneous neural networks. Then we reduce the non-homogeneous neural
network to the homogeneous ones by arguing that the asymptotic behavior of its representation cost
can be captured by the representation cost of some homogeneous subnetwork of the non-homogeneous
network.

One way to motivate the study of representation cost is by considering the popularity of the over-
parameterized models, in which the number of parameters is greater than the number of samples.
Surprisingly, it has been observed that in the overparameterized regime, interpolative predictor
generalizes well [7, 39, 16, 3]. One way to explain this is that although there are many predictors
which perfectly fit the training data, gradient based algorithms choose the one with the smallest
representation cost ([15, 23]). In these cases, representation cost operates as a regularization in
the function space which enables good generalization. Thus, understanding representation cost
helps us understand the generalization of the model. In particular, representation cost of predictors
induces an ordering on the space of predictors. Since representation cost is determined by the specific
parametrization, each parameterization induces an ordering on the function space. This can be
interpreted as an induced complexity measure of the predictor space, where penalizing the cost is the
same as minimizing the complexity.
Definition 1.1 (Induced complexity measure). Let F be a set of functions from X to Rm and F∗

be the set of all functions from F to R. We define the equivalence relation in F∗ such that h1 and
h2 ∈ F∗ (i.e., h1, h2 : F → R) are equivalent (h1 ∼= h2) if there exists a strictly increasing function
ψ : R −→ R h1 = ψ ◦ h2. Let F∗/ ∼= be the set of equivalence classes of F∗ under ∼=. 1

Given a parameterization F : Rp → F , let F be image(F ). In this case, for each value of
parameter w ∈ Rp, F (w) ∈ F is a mapping from X to Rm. Let the representation cost RF under
parameterization F be as in Eq. (1). We say that an equivalence class h̄ ∈ F∗/ ∼= is the induced
complexity measure of the parameterization F if for any representative (i.e., element) h in class h̄,
RF is a strictly increasing function of h.

We study the dependence of induced complexity measures on parameterizations from two perspectives:
First, given a parameterization F , we analyze its representation cost. Second, given a regularizer
on function space, we study when and how it can be the induced complexity measure of some
parametrizations. In this paper, we start answering these questions by focusing on linear predictors
parameterized by linear neural networks. Note that for linear networks with single outputs, the
function space being parameterized does not depend on the architecture. Thus, the change in
architecture only changes the induced complexity measure. This makes it appealing for highlighting
and understanding what the effect of changing the architecture is in changing the induced complexity
measure.

In the first part of the paper (Section 3), we identify the representation costs of various architectures.
Specifically, we look into fully connected networks and convolutional networks with multiple outputs.
In addition, we show how the representation cost of convolutional networks with restricted filter

1In other words, F∗/ ∼= is a partition of F∗ into classes with the following property: given a class
h̄ ∈ F∗/ ∼=, any two elements h1, h2 ∈ h̄ are equivalent (i.e. h1 = ψ ◦ h2).
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Architectures (of depth d) Induced Complexity Measures

Fully Connected Network with multiple outputs Schatten 2/d quasi-norm
Diagonal Network with multiple outputs Matrix l2/d,2 quasi-norm
Convolutional Network with multiple outputs Matrix l2/d,2 quasi-norm on Fourier domain
Residual Network An interpolation between two quasi-norms

Table 1: From Architecture to Induced Complexity Measure

Induced
Complexity Conditions Architectures
Measure

lp quasi-norms if and only if 2/p ∈ N Diagonal networks
k-support norms if and only if k ∈ [n] k-balanced networks (Fig. 1a)
lp,q group quasi-norms if 2/p, 2/q ∈ N and 2/p ≥ 2/q − 1 Group networks (Fig. 1)
Elastic nets None None
lp,q with None None
overlapping groups

Table 2: From Induced Complexity Measure to Architecture

width changes as their filter width changes. Then, we show that the representation cost of residual
networks interpolates between the representation costs of two of their component networks. Finally,
we give two characterizations of the representation costs of depth-two neural networks. The results
of this part are summarized in Table 1.

In the second part (Section 4), given a few regularizers, we study when and how they can be the
induced complexity measure of some architectures. Specifically, we show that lp quasi-norm can
be the induced complexity measure induced by l2 regularization on some linear neural networks if
and only if 2/p is an integer. Moreover, when 2/p is an integer, we characterize all the architectures
whose induced complexity measures are lp quasi-norms. In addition, we design architectures whose
induced complexity measures are k-support-norm and lp,q group quasi-norms. Then, we show that
elastic nets and lp,q quasi-norm with overlapping groups cannot be the induced complexity measure
of any linear neural network. On the contrary, we show that there exist homogeneous parametrizations
whose induced induced complexity measures are elastic nets and lp,q quasi-norm with overlapping
groups. The results of this part are summarized in Table 2. Finally, in the conclusion, we discuss
some interesting future directions.

Further related works: Some previous work focuses on the expressive power image(F ) of the
model [22, 29, 38, 21]. However, as discussed in [26, 24], some other capacity control, different from
network size, plays a role in deep learning. This motivates the study of representation cost and its
relation to parametrizations.

Representation cost has been studied before under various models. [15] showed that the representation
cost of a linear convolutional neural network of depth d is strictly increasing in the Schatten-2/d
quasi-norm on the Fourier domain, whereas the representation cost of a linear fully connected network
of depth d is strictly increasing in the l2 norm. [31] and [27] studied depth-two fully connected

(a) (b) (c) (d)

Figure 1: k-balanced and Group networks: architectures for lp,q quasi-norms. Figure 1b induces
l2,1 norm. Figure 1c induces l2/d2,2/d1

quasi-norm. Figure 1d induces l2/d1,2/(d1+1) quasi-norm. In
all plots, nodes in same color are in same group.
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network with infinite width and ReLU activation. They show that the representation cost of any
continuous function depends on the Laplacian of that function.

Parallel to our work, [18] studies the representation cost of linear convolutional neural network
with restricted filter width (a.k.a. kernel size) and multiple channels using anlaytical tools from
semidefinite programming. In spite of different approaches between our work and [18] the results on
CNN with restricted filter width are similar in two papers.

Another line of work studies the relationship between neural networks with l2 regularization on
weights and convex optimization problems [28, 12, 11, 30]. In [28, 12, 11, 30], the authors showed
that training a neural network with explicit l2 regularization on weights is equivalent to a convex
regularized optimization problem in some higher dimensional space. In contrast, motivated by the
literature on implicit regularization of gradient descent [2, 35, 33, 19, 23, 32, 14, 25, 9, 18], we
looked into the induced regularization of weight decay on function space. Some of the results in
[28, 12, 11, 30] are similar to the results in our work. For instance, the results on linear convolutional
neural network in [28, 12, 11, 30] suggest that explicit l2 regularization on weight space is related to
l1 regularization on the Fourier transform of the predictor. This result was also discovered in [15] and
is generalized to multiple output and restricted filter width (a.k.a. kernel size) case in our work and in
[18]. On the other hand, we considered other architectures beyond fully connected and convolutional
neural networks. For instance, we studied architectures that induce k-support norms and architectures
that induce lp,q group quasi-norms, which are not included in [28, 12, 11, 30].

As another related work, [36] studied the equivalence between l2 regularization on weights and some
sparsity-inducing regularization on the function space for various architectures. They considered the
architecture which induces l2/d,2 group quasi-norms on the function space, for any d ∈ N. We also
studied a similar question in section 4.1.2. However, we found architectures that induce lp,q group
quasi-norms for both the case p > q and the case p < q. In addition, we showed that in the case
p < q, lp,q quasi-norm can be induced by some linear neural network as induced complexity measure
if and only if 2/p, 2/q ∈ N and designed architectures that do so.

2 Setup

A parameterized mapping f : X ×Rp → Rm is homogeneous of degree L if f(x;λw) = λLf(x;w),
for all λ > 0. A feedforward neural network fN with weights (parameters) w = (W1, . . . ,Wd)
and activation function σ is defined as fN (x;w) = σ(Wdσ(. . .W2σ(W1x))). Note that when the
activation function σ is homogeneous (i.e. σ(λx) = λLσ(x) for some L > 0), the feedforward
neural network fN is also homogeneous. In particular, with ReLU activation (i.e. σ(x) = max(0, x))
or identity activation (i.e. σ(x) = x), fN is homogeneous.

A linear neural network is a neural network with identity activation function. When X = Rn and g is
a linear function, we identify g with the matrix β ∈ Rm×n such that g(x) = βx. In particular, in the
case of one-dimensional output space, we identify g with the vector β ∈ Rn such that g(x) = βTx.
In this paper, we mainly focus on linear neural networks. A more general definition of linear neural
networks in terms of a directed acyclic graphs will be useful in our work.

Definition 2.1. Let G = (V,E) be a weighted directed acyclic graph, with n sources v1, v2, . . . vn
(i.e. vertices with in-degree zero) and m sinks u1, u2, . . . , um (i.e. vertices with out-degree zero).
The weight of edge e ∈ E, is denoted by g(e). Given parameters w ∈ Rp, a function ψ : E −→ [p]
assigns parameters to edges such that g(e) = w[ψ(e)] for all e ∈ E.

The pair (G,ψ) gives a construction of a linear feedforward neural network N corresponding to
a linear predictor fN (·;w) : Rn → Rm as follows: Let ϕ(v) ∈ R be the output flow of the node
v ∈ V . Given x ∈ Rn, let ϕ(vi) = x[i] for all input nodes i ∈ [n]. Then, ϕ(v) for other nodes is
defined recursively such that the output flow of each node is a weighted sum of its input flow using
the weights of the graph: ϕ(v) :=

∑
u:(u,v)∈E g(u)ϕ(u). Then ϕ(u) for sink nodes u give the linear

predictor fN (x;w) = (ϕ(u1), ϕ(u2), . . . , ϕ(um)).

Let FN be the parametrization associated with fN defined as FN (w)(x) := fN (x;w).

The depth d of a linear feedforward neural network (G,ψ) is defined as the length of the longest
path from the source to the sink. We say that a linear feedforward neural network is homogeneous if
every path from the source to the sink have the same length. We say that a linear feedforward neural
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network is without shared weights if the map ψ is a bijection. We call v1, . . . , vn the input nodes,
u1, . . . , um the output nodes, and v ∈ V the nodes of the network N .

Without loss of generality, we assume that for all v ∈ V , there exist a directed path from v to some
output node uj and a directed path from some input node vi to v. Otherwise, removing v would not
change fN . For each v ∈ V , let

Sv = {i ∈ [n] : there exists a directed path from vi to v}. (4)

By assumption, for all v ∈ V , |Sv| ≥ 1.

Note that if a linear feedforward neural network N is homogeneous, then we can define its lth layer
Nl as the set of vertices whose distance to any input node vi is l. Note that this is well-defined since
the length length of any path from any input node to any output node is constant in homogeneous
linear feedforward neural networks.

Let N be a depth d homogeneous feedforward linear neural network without shared weights. Then,
the weights of the edges between the lth and l + 1th layer of N can be identified as a matrix Wl.
In this case, the parameters w is a sequence of matrices W1,W2, . . . ,Wd with some fixed sparsity
pattern, i.e. supp(Wl) = Sl for each l ∈ [d], where Sl is determined by N . The parameterized map
fN and the parametrization FN are given by

fN (x;w) := FN (w)(x) := (

d∏
l=1

Wd−l+1)x, (5)

for x ∈ Rn, where w = (W1,W2, . . . ,Wd). Note that Eq. (5) is an equivalent definition of fN and
FN when N is homogeneous and without shared weights.

In the rest of the paper, unless stated otherwise, we will use N to denote a single output depth d ho-
mogeneous feedforward linear neural network without shared weights. Note that fN is homogeneous
of degree d. Let N0 = [n] denote the input layer (we identify v1, . . . , vn with [n]) and Nd = {O}
denote the output layer. With slight abuse of notation, let FN (w) ∈ Rn be the vector corresponding
to the linear predictor generated by w on N . Let RN := RFN denote the representation cost (Eq. 1)
under FN . We say that h is the induced complexity measure of N if it is the induced complexity
measure of FN as defined in Def 1.1.

Notation: We will use β ∈ Rn to denote a column vector, and βi or β[i] to denote the i-th component
of β. We will use β̂ to denote the discrete Fourier transform of β. For groups G1, G2 . . . , Gk ⊆ [n],

we use the definition of the lp,q group quasi-norm, ∥β∥p,q =
(∑k

j=1

(∑
i∈Gj

|βi|q
)p/q)1/p

. Unless

stated otherwise,G1, G2 . . . , andGk form a partition of [n] := {1, 2, . . . , n}. We will use β ∈ Rm×n

to denote a matrix and β[j, k] to denote the element in the j-th row and k-th column of β.

3 Representation cost analysis

To understand the dependence of induced complexity measure on architectures, we analyze the
representation costs of some commonly used architectures. The authors in [15] studied single output
fully connected network, diagonal network, and convolutional neural network (CNN) with full filter
width. In this section, we first generalize their results to multiple output case. Then, we look into
the non-homogeneous residual neural network and observe that its representation cost interpolates
between the representation costs of two of its component networks. Finally, we characterize the
representation costs of depth-two neural network in two ways.

3.1 Multiple output networks

3.1.1 Linear fully connected network

In a linear fully connected neural network,

FFC(n1,n2,...,nd+1)(w) =

d∏
i=1

Wd+1−i,
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where w = (W1,W2, · · · ,Wd) is the weights of the network. For i ∈ [d], the matrix Wi is
in Rni+1×ni where ni ≥ min(m,n), n1 = n and nd+1 = m. Let RFC(n1,n2,...,nd+1) :=
RFFC(n1,n2,...,nd+1)

be the representation cost under FFC(n1,n2,...,nd+1) defined in Eq. (1).

Theorem 1. Suppose that ni ≥ min(m,n) for all i ∈ [d+ 1], where n1 = n and nd+1 = m. Then,
for any β ∈ Rm×n,

RFC(n1,n2,...,nd+1)(β) = d

r∑
i=1

σ
2/d
i

∼= ∥β∥SC
2/d,

where σ1, σ2, · · · , σr are the positive singular values of β and ∥β∥SC
2/d := (

∑r
i=1 σ

2/d
i )d/2 is the

Schatten 2/d-quasi-norm of β. In particular, with a single output,

RFC(n1,n2,...,nd+1)(β) = d∥β∥2/d2
∼= ∥β∥2.

The above result is similar to a result in [18]. They studied two layer multiple output convolutional
neural network with filter width (a.k.a kernel size) one, and showed that its induced complexity
measure is the nuclear norm.

3.1.2 Linear diagonal network

In a linear diagonal network,

FDNN (w) =Wd

d∏
i=2

diag (wd+1−i),

where w = (w1, w2, · · ·wd−1,Wd) is the parameters of a diagonal neural network. For i ∈ [d− 1],
wi ∈ Rn, and Wd ∈ Rm×n. So a diagonal network consists of some diagonal layers followed by
a fully connected layer. Let RDNN := RFDNN

be the representation cost under FDNN defined in
Eq. (1).

Theorem 2. For any β = (β(1), β(2), · · · , β(n)) ∈ Rm×n,

RDNN (β) = d

n∑
i=1

∥∥∥β(i)
∥∥∥2/d
2

∼= ∥β∥2/d,2,

where ∥β∥2/d,2 := (
∑n

i=1

∥∥β(i)
∥∥2/d
2

)d/2 is the matrix l2,2/d quasi-norm. In particular, with a single
output

RDNN (β) = d∥β∥2/d2/d
∼= ∥β∥2/d.

3.1.3 Linear convolutional neural network (CNN)

In a linear Convolutional neural network (CNN) with filter width q, the parameters w =
(w1, w2, · · ·wd−1,Wd), where wi ∈ Rq × {0}n−q and Wd ∈ Rm×n. Let hi ∈ Rn be the out-
puts of the nodes in the ith layer. For i ∈ [d− 1], the transformation from the ith layer to the i+ 1th
layer is given by hi+1[j] =

1√
n

∑n
k=1 wi+1[k]hi[(j + k − 1) mod n] =: (wi+1 ⊛ hi)[j]. The last

layer is fully connected and hd = Wdhd−1. Then, the linear map is given by fCNN(q)(w, x) =
FCNN (w)(x) =Wd(wd−1 ⊛ (wd−1 ⊛ (. . . w2 ⊛ (w1 ⊛ x) . . . ))). Equivalently,

FCNN(q)(w) =

d∏
i=1

Wd+1−i,

where for each i ∈ [d − 1], wi[0] := wi[n] and Wi[j, k] = wi[(k − j + 1) mod n]/
√
n is the

circulant matrix with respect to wi. Let RCNN(q)(β) := RFCNN(q)
(β) be the representation cost

under FCNN(q) defined in Eq. (1) filter width q.

Let F ∈ Cn×n be the discrete Fourier transform matrix defined by F[j, k] = 1√
n
ω
(j−1)(k−1)
n , where

ωn = e2πi/n. For β ∈ Rm×n, let β̂ := βF.
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Theorem 3. For any β ∈ Rm×n, let β̂ := βF and β̂(i) be the i-th column of β̂. Then,

RCNN(n)(β) = d

n∑
i=1

∥∥∥β̂(i)
∥∥∥2/d
2

∼=
∥∥∥β̂∥∥∥

2/d,2
,

where
∥∥∥β̂∥∥∥

2/d,2
:= (

∑n
i=1

∥∥∥β̂(i)
∥∥∥2/d
2

)d/2 is the matrix l2,2/d quasi-norm. In particular, with a single

output

RCNN(n)(β) = d
∥∥∥β̂∥∥∥2/d

2/d

∼=
∥∥∥β̂∥∥∥

2/d
.

The same result for d = 2 was also discovered in [18].

Results on linear CNN with restricted filter width q < n and some variations of CNN such as CNN
with sum pooling and CNN with multiple channels can be found in the supplementary materials.

3.2 Linear non-homogeneous residual neural networks

Let N be a linear homogeneous feedforward neural network without shared weights. Suppose that
each hidden layer of N contains n nodes. Let d be the depth of N . Let I1, I2, . . . , Ik ⊆ [d] such that
|Ij | = dj for each j ∈ [k]. For each j ∈ [k], let Ij = {j1, j2, . . . , jdj}, where j1 < j2 < · · · < jdj .
For each w = (W1,W2, . . . ,Wd) and j ∈ [k], let

FNj
(w) :=

dj∏
i=1

Wj(dj−i+1)
and FNResNet

(w) :=

k∑
j=1

FNj
(w). (6)

be the parameterization for a residual neural network (ResNet). Let RResNet := RFNResNet
be the

representation cost under FNResNet
, and Rj := RFNj

be the representation cost under FNj
for each

j ∈ [k].

Theorem 4. Suppose that d1 < d2 < · · · < dk. Then, RResNet(λβ)/R1(λβ) −→ 1 as λ→ 0, and
RResNet(λβ)/Rk(λβ) −→ 1 as λ→ ∞.

Note that the model considered here includes sum of homogeneous models without shared weights,
which is studied in [32]. A concrete example can be found in the supplementary materials.

3.3 Depth two neural networks

In this section, we characterize the representation costs of depth two homogeneous feedforward
neural networks in two ways. We will use these two characterizations to find architectures that induce
k-support norms [6] and l2,1 norms as induced complexity measures.

Let d = 2. Note that the definition given in Eq. (4) becomes Sh = {i ∈ N0 : (i, h) ∈ E}, for each
h ∈ N1 =: NH .

Lemma 5. For a depth-two linear homogeneous feedforward neural network N without shared
weights, RN (β) = 2min{

∑
h∈NH

∥vh∥2 : supp(vh) ⊆ Sh,
∑

h∈NH
vh = β}.

In the above lemma, each vector vh corresponds to the linear predictor generated by the part of the
network which includes the hidden node h and its neighbors. Lemma 5 implies that RN (·) is a norm.
Let R∗

N (·) be its dual norm. Now, we give a characterization of R∗
N (·).

Lemma 6. For a depth-two linear homogeneous feedforward neural network N without shared
weights, R∗

N (β) = 1
2 max{(

∑
i∈Sh

β2
i )

1/2 : h ∈ NH}.

By Lemma 6, if there exists h1, h2 ∈ NH such that h1 ̸= h2 and Sh1 ⊆ Sh2 , then removing h1 from
N would not change the representation cost since

∑
i∈Sh1

β2
i ≤

∑
i∈Sh2

β2
i .
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4 Parameterization design

In order to further understand the dependence of induced complexity measure on architectures,
we study when and how regularizers can be induced as the induced complexity measure by some
architectures.

In this section, we study a few regularizers such as lp quasi-norms, lp,q group quasi-norms with and
without overlapping between groups, k−support norms, and elastic nets.

4.1 Architecture design

First, we design architectures that induce lp quasi-norms, lp,q quasi-norms without overlapping
groups, and k−support norms as induced complexity measures respectively.

4.1.1 lp quasi-norms

In this section, we study architectures that induce lp quasi-norm, which is defined as ∥β∥p =

(
∑n

i=1 |βi|p)1/p, where β ∈ Rn.
Theorem 7. There exists a linear homogeneous feedforward neural network N without shared
weights that induces lp quasi-norm if and only if 2/p ∈ N. In particular, diagonal network of depth
2/p induces lp quasi-norm.

It turns out that we can capture all the architectures that induce lp quasi-norms using a simple
combinatorial measure called mixing depths. Roughly speaking, for any S ⊆ [n], the mixing depth
MN (S) is the index of the first layer that contains a node v such that S ⊆ Sv , where Sv is defined in
Eq. (4).

A linear homogeneous feedforward neural network N without shared weights induces lp quasi-norm
if and only if MN (S) = 2/p, for all S ⊆ [n], |S| ≥ 2. The details can be found in supplementary
materials on mixing depths and proofs are in supplementary materials for lp quasi-norms.

4.1.2 lp,q group quasi-norms

Similar to the previous sections, we want to know if and when lp,q group quasi-norm is the in-
duced complexity measure of N . Remember the definition of of lp,q quasi-norm, ∥β∥p,q =(∑k

j=1

(∑
i∈Gj

|βi|q
)p/q)1/p

, where G1, G2 . . . Gk form a partition of [n].

Unlike the results for lp quasi-norms, we do not find all the values of p and q such that lp,q group
quasi-norms without overlapping groups can be induced by some homogeneous feedforward linear
neural networks without shared weights.
Theorem 8. If there exists a linear homogeneous feedforward neural network N without shared
weights that induces lp,q group quasi-norms, then 2/p, 2/q ∈ N. On the other hand, if 2/p, 2/q ∈ N
and 2/p ≥ 2/q − 1, then there exists a linear homogeneous feedforward neural network N without
shared weights that induces lp,q group quasi-norms.

Next, we will design group networks that induce lp,q group quasi-norms. The design of group
networks uses insights from subnetworks. Roughly speaking, a subnetwork is a restriction of the
original network to some input nodes. The induced complexity measure of a subnetwork is tightly
related to that of the original network. This relationship, together with the results in Section 4.1.1
inform how certain subnetworks of a group network look like, which indicates certain properties of
the group network. The details can be found in supplementary materials.

Group networks consists of some diagonal layers followed by a grouping layer and then followed by
a diagonal network (Section 3.1.2). Two examples of such networks are in Figures 1c and 1d. The
grouping layer is the first layer that mixes information from different input nodes. Depending on
whether p < q or p > q, 2 we define two types of grouping layers:
Definition 4.1 (Type I and II Grouping Layers). For each i ∈ [d], Ni is a type I grouping layer if
Nj is diagonal for all j < i, |Ni| = k, where k is the number of groups, and for each j ∈ [k], there
exists u ∈ Ni such that Su = Gj .

2When p = q, lp,q quasi-norm becomes lp quasi-norm which we already studied.
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For each i ∈ [d], Ni is a type II grouping layer if Nj is diagonal for all j < i, |Ni| =
∏k

j=1 |Gj |,
where k is the number of groups, and for each h ∈

∏k
j=1Gj , there exists u ∈ Ni such that Su = h.

Next, we compute the representation costs of networks with these two types of grouping layers.

For d1, d2 ∈ N with d2 > d1, let N 1;d1,d2 be the architecture with d1 − 1 diagonal layers, followed
by a type I grouping layer (Def 4.1), and then followed by a diagonal network of depth d2 − d1
(Section 3.1.2). See Figure 1c for an example of this kind of group network.

Theorem 9. Let G1, G2 . . . Gk be a partition of [n]. Let βGj be the projection of β on Gj . Then for

d2 > d1, RN 1;d1,d2 (β) = d2
∑k

j=1

∥∥βGj

∥∥2/d2

2/d1
= d2∥β∥2/d2

2/d2,2/d1

∼= ∥β∥2/d2,2/d1
.

The same architecture when d1 = 1 is also discovered in [36]. They also showed that in the group
network N 1;1,d2 , l2 regularization on weights translate to l2/d2,2 regularization in the function space.
Our result is stronger than the results in [36] in two ways. First, we found the architecture N 1;d1,d2 ,
which induces l2/d2,2/d1

quasi-norms for all d1, d2 ∈ [n], while they only did it for d1 = 1. Second,
we proved that these are all the values of p, q such that lp,q group quasi-norms can be induced as
induced complexity measures for some linear neural network, when p < q.

For d1, d2 ∈ N with d2 > d1, let N 2;d1,d2 denote the architecture consisting of d1 − 1 diagonal
layers, followed by a type II grouping layer (Def 4.1), and then followed by a diagonal network of
depth d2 − d1 (Section 3.1.2). Figure 1d is an example of N 2;d1,d2 .

In particular, when d1 = 1 and d2 = 2 (as in Figure 1b), N 2;1,2 induces l2,1 norm. This can be
proved by the dual characterization of representation cost of depth-two networks in Lemma 6 and the
fact that ∥β∥2,1 = ∥β∥∗2,∞.

Theorem 10. When d2 = d1 + 1, RN 2;d1,d2 (β) = d2∥β∥2/d2

2/d1,2/d2

∼= ∥β∥2/d1,2/d2
.

This theorem implies that N 2;d1,d2 induces l2/d1,2/d2
quasi-norm when d2 = d1 + 1. Surprisingly,

N 2;d1,d2 does not induce l2/d1,2/d2
quasi-norm when d2 > d1 + 1. The details are in supplementary

materials.

4.1.3 The k-support norms

In [6], the k-support norm is defined as ∥β∥spk = min{
∑

I∈Gk
∥vI∥2 : supp(vI) ⊆ I,

∑
I∈Gk

vI =

β}, for k ∈ [n], where Gk is the set of subsets of [n] of size at most k.

To design an architecture which induces k-support-norm, we introduce the k-balanced networks. A
two layer neural network is a k-balanced network, if it contains

(
n
k

)
nodes in the hidden layer such

that for each subset I ⊆ [n] of size k, there is a node in the hidden layer which connects to input
nodes in I . See Figure 1a for an example with n = 3 and k = 2.

Theorem 11. For any k ∈ [n], there exists a homogeneous feedforward depth two linear neural
network without shared weights that induces k-support norm as induced complexity measure. In
particular, k-balanced network induces k-support norm.

The proof of the above theorem is an application of Lemma 5 which characterizes the representation
cost of depth-two networks.

4.2 Limitations of homogeneous neural networks

Theorem 8 and Theorem 11 give architectures that induce lp,q quasi-norms and k-support norms.
Then, it is natural to consider two regularizers related to k-support norms and lp,q quasi-norms.
Elastic nets 3 is defined as ∥β∥EN = ∥β∥1 + α∥β∥2, and lp,q quasi-norms with overlapping groups
is defined as in Section 4.1.2 except that G1, G2 . . . Gk might overlap. Contrary to the results of
k-support norm and lp,q quasi-norms, elastic nets and lp,q quasi-norms with overlapping groups are
not induced complexity measure of any architecture N without shared weights. The detail can be
found in supplementary materials.

3Elastic nets and k-support norms are both interpolations between l1 and l2 norms.
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Given these negative results, it is natural to look at non-homogeneous residual networks. We use
the same definition of residual networks as in Section 3.2. Theorem 4 characterizes the asymptotic
behavior of the representation costs of residual networks. The proof of the following theorem uses
Theorem 4.

Theorem 12. Suppose that d1 < d2 < · · · < dk. Let h : Rn −→ R be a homogeneous function. If
FNResNet

induces h as induced complexity measure, then FN1
also induces h as induced complexity

measure.

This theorem implies that the negative results on elastic nets, lp,q quasi-norm with overlapping groups,
and lp quasi-norms when 2/p ̸∈ N still hold even in the case of non-homogeneous residual networks.
As a next step looking beyond homogeneous networks, we look into general form of homogeneous
parameterizations which might not be associated with any networks. Surprisingly, homogeneous
parameterizations can indeed induce elastic nets and lp,q quasi-norms with overlapping groups for all
p, q > 0, as induced complexity measure. The details are in supplementary materials.

5 Conclusion

In this paper, we take the first steps in studying the dependency of induced complexity measure on
the choice of parametrization. We do so by analyzing the induced complexity measures of some
well-known architectures and designing architectures that induce some common regularizers on linear
predictors. These directions are important for two reasons. First, it helps us understand why certain
architectures generalize. Second, if we have a desired regularizer in mind, this helps us design an
architecture which induces this regularizer as induced complexity measure.

For the first reason, many of the representation costs we study, when used as regularizers in learning
problems, have good generalization properties. This includes lp,q group quasi-norms, especially in
the context of multi-task or multi-class learning [13, 17], k-support norm [6], elastic net [10, 40],
nuclear norm [4, 34, 1, 5], and lp quasi-norms for p ≤ 1 in order to promote sparsity [8]. Thus, this
existing understanding and analysis, together with the results in our work, explain for the benefit of
using the corresponding architectures.

For the second reason, we do not mean designing an architecture from scratch based on a fully
specified regularizer (as we do in section 4). Instead, we believe that building out our understanding
in this regard can help us with making architectural choices about complex architectures. In these
setups, we do not understand the exact representation cost, and cannot write it down and use it
explicitly; but we might want to change representation cost or nudge it in particular directions through
some modification of the architecture.

Answering these two questions of design and analysis in a broad sense is an important step in
understanding generalization and improving our current models. The limitation of our work includes
the fact that we are considering only a rather specific set of architectures, and in particular only
linear models. So our study is mostly meant to build tools and understanding and set the stage for
understanding more complex non-linear models. But non-linear models might behave very differently,
and so we should be cautious about how many of our insights carry over.

To move beyond, there are still many unanswered questions for the linear models. For instance, for
p, q ∈ N such that 2/p < 2/q − 1, does there exist an architecture that induce lp,q quasi-norm?

Next step would be looking beyond linear predictors. For example, the question of analyzing
representation cost for neural networks with non-linear activation functions such as ReLU is an open
problem for most architectures. The other possible direction is studying the same questions (analysis
and design) for functions with multiple outputs.
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A Supplementary materials in Section 3.1: multiple output networks

A.1 Fully connected networks with multiple outputs

We give a proof of Theorem 1.

Theorem 1. Suppose that ni ≥ min(m,n) for all i ∈ [d+ 1], where n1 = n and nd+1 = m. Then,
for any β ∈ Rm×n,

RFC(n1,n2,...,nd+1)(β) = d

r∑
i=1

σ
2/d
i

∼= ∥β∥SC
2/d,

where σ1, σ2, · · · , σr are the positive singular values of β and ∥β∥SC
2/d := (

∑r
i=1 σ

2/d
i )d/2 is the

Schatten 2/d-quasi-norm of β. In particular, with a single output,

RFC(n1,n2,...,nd+1)(β) = d∥β∥2/d2
∼= ∥β∥2.

Recall that we assumed that ni ≥ min(m,n) for all i.

We first prove a special case when ni = m = n for all i ∈ [d+ 1].

Special case of Theorem 1. The idea of the proof is as follows. If we have a minimum cost represen-
tation

∏d
i=1Wd+1−i of β, then the matrices Wi are aligned in the sense that we can pick a singular

value decomposition Wi = UiΣiV
T
i for each i such that Ui = Vi+1 for all i. As a result, singular

values of the product
∏d

i=1Wd+1−i equal the product of the singular values of Wis. In addition, the
singular values of Wi equal the singular values of Wj for all i, j. These observations immediately
give the representation cost of β. To prove this, we will choose a singular value decomposition
Wi = UiΣiV

T
i for each Wi such that Ui = Vi+1, and Σi = Σi+1. We prove this in two steps.

First, we will prove the case d = 2. We will show that if W2W1 is a minimum cost representation
of β, then the singular values of W2 and W1 are the same. In addition, given any singular value
decomposition (SVD) of W2 = U2Σ2V

T
2 , there exists a SVD of W1 = U1Σ1V

T
1 such that U1 = V2.

Second, we will use this observation to prove the general depth case. We will show that if∏d
i=1Wd+1−i is a minimum cost representation of β, then any two adjacent matrices Wi+1 and Wi,

form a minimum cost representation of their product matrix Wi+1Wi. Then, by the result in d = 2
case, given any SVD of Wi+1 = Ui+1Σi+1V

T
i+1, there exists a SVD of Wi = UiΣiV

T
i such that

Ui = Vi+1. We will use this observation to pick a SVD for each Wi. Using this, we will show that
the singular values of β are the products of the corresponding singular values of the Wis and this
immediately gives the representation cost of β.

Depth two case: Let β be a square matrix in Rn×n. Let β = UΣV T be the SVD of β. We begin
with the case d = 2. Suppose that β = W2W1, where W2,W1 ∈ Rn×n such that RFC(β) =

∥W2∥2F + ∥W1∥2F , i.e., W2W1 is a minimum cost representation of β. Let

A2 = UTW2, and A1 =W1V. (7)

Then A2A1 = Σ, ∥A2∥F = ∥W2∥F and ∥A1∥F = ∥W1∥F . Thus, RFC(β) = ∥W2∥2F + ∥W1∥2F =

∥A2∥2F + ∥A1∥2F and

RFC(β) = ∥A2∥2F + ∥A1∥2F
= Tr

(
A2A

T
2

)
+Tr

(
AT

1 A1

)
(a)

≥ 2
√

Tr
(
A2AT

2

)
Tr
(
AT

1 A1

)
(b)

≥ 2Tr(A2A1)

= 2Tr(Σ)

= 2

r∑
i=1

σi,

(8)
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where in (a) we used AM-GM inequality and in (b) we used Cauchy inequality. For the equality to
hold, it must be the case that ∥A2∥F = ∥A1∥F (AM-GM in (a)) and A2 = λAT

1 for some λ ∈ R
(Cauchy in (b)). Thus,

A2 = AT
1 , or A2 = −AT

1 . (9)

Let W2 = U2Σ2V
T
2 be a SVD of W2. Then, by Eq. (7) and Eq. (9), A1 = ±AT

2 = ±(UTW2)
T =

±(UTU2Σ2V
T
2 )T = V2Σ2(±UT

2 U). By Eq. (7), W1 = A1V
T = V2Σ2(±V UTU2)

T is a SVD of
W1. Thus, the singular values of W2 and W1 are the same.

General depth case: Now, we turn to the general depth case. Let β =
∏d

i=1Wd+1−i such that
RFC(β) =

∑d
i=1 ∥Wi∥2F . Let Ei = Wi+1Wi. Then RFC(Ei) = ∥Wi+1∥2F + ∥Wi∥2F , since

otherwise there is a representation of β with a smaller cost by changing Wi+1 and Wi to some other
matrices whose product is still Ei and keep other Wj the same.

Next, we pick a SVD for each Wi as follows. Let Wd = UdΣdV
T
d be an arbitrary SVD of Wd.

By the argument in the previous paragraph (by considering β = Ud = WdWd−1), there exists a
SVD Wd−1 = Ud−1Σd−1V

T
d−1 = VdΣdV

T
d−1, for some Vd−1 ∈ Rn×n. Then, we apply the same

argument to Wd−2 and so on. At the end, we would get a SVD Wi = UiΣiV
T
i for each Wi such that

Ui = Vi+1, and Σi = Σi+1. Thus,

β =

d∏
i=1

Wd+1−i = UdΣ
d
dV

T
1 . (10)

Let σ′
1, . . . , σ

′
r be the singular values of Σd. By Eq. (10), the singular values of β are:

σj = σ′d
j (11)

for all j. Thus,

RFC(β) =

d∑
i=1

∥Wi∥2F =

d∑
i=1

(

r∑
j=1

σ′2
j ) = d

r∑
j=1

σ
2/d
j . (12)

Now, we give a proof of Theorem 1 for the general case (ni is not a constant).

Proof of Theorem 1. We will first prove thatRFC(β) ≥ d
∑r

j=1 σ
2/d
j and then show thatRFC(β) ≤

d
∑r

j=1 σ
2/d
j .

To prove RFC(β) ≥ d
∑r

j=1 σ
2/d
j , we will consider a super-network of the original fully connected

network. This super-network have constant widths (the number of nodes in each layer is the same)
and thus we can compute the representation cost of any matrix in this network using results we just
proved. We will then show that the representation cost of some matrix β̃ in this super-network is
always a lower bound for the representation cost of β in the original network.

To prove RFC(β) ≤ d
∑r

j=1 σ
2/d
j , we will consider a subnetwork of the original network and give a

representation
∏d

i=1Wd+1−i of β in this subnetwork, whose cost is d
∑r

j=1 σ
2/d
j .

Lower bound: Let M = max{m,n, n1, n2, . . . , nd+1} be the maximum width of the network. We
consider a super-network of the original fully connected network by adding nodes to each layer
(including the input and output layers) such that each layer have exactly M nodes and then add edges
to make the network fully connected. Let N denote this network. Let β̃ ∈ RM×M be defined as

β̃ =

(
β 0
0 0

)
. (13)

Let RN (β̃) be the representation cost of β̃ under N . For any given weights w on the original fully
connected network such that FFC(w) = β and ∥w∥22 = RFC(β), we can get a weights w′ on N by
putting zeros to the edges not in the original networks. Then, FN (w) = β̃ and ∥w′∥22 = ∥w∥22. Thus,

RFC(β) ≥ RN (β̃). (14)
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By the proof of the special case of Theorem 1, we have

RN (β̃) = d

r∑
j=1

σ̃
2/d
j , (15)

where σ̃j are the singular values of β̃. However, the non-zero singular values of β and β̃ are the
same. To see this, let β = UΣV T be a singular value decomposition of β. Then,

β̃ =

(
β 0
0 0

)
=

(
UΣV T 0

0 0

)
=

(
U 0
0 I

)(
Σ 0
0 0

)(
V T 0
0 I

)
(16)

is a singular value decomposition of β̃. Thus, by Eq. (14) and Eq. (15),

RFC(β) ≥ d

r∑
j=1

σ
2/d
j . (17)

Upper bound: Let r = rank(β). Clearly, r ≤ min(m,n). We extract a subnetwork N ′ from the
original fully connected network as follows. We remove all but r nodes in each hidden layer (do not
include input and out layers). Let N ′ be the resulting network. Let RN ′(β) be the representation
cost of β in N ′. Since N ′ is a subnetwork of the original fully connected network, we have

RFC(β) ≤ RN ′(β). (18)

(Since m ̸= n, the proof is not finished yet.) Let β = Ũ Σ̃Ṽ T be a reduced singular value decomposi-
tion of β, where Σ̃ ∈ Rr×r, Ũ ∈ Rm×r, and Ṽ ∈ Rn×r. Now, take Wd = Ũ Σ̃1/d,W1 = Σ̃1/dṼ T

and Wi = Σ̃1/d for all i ̸∈ {1, d}. Then, β =
∏d

i=1Wd+1−i and
∑d

i=1 ∥Wi∥2F = d
∑r

j=1 σ
2/d
j .

Thus,

RFC(β) ≤ RN ′(β) ≤ d

r∑
j=1

σ
2/d
j . (19)

By Eq. (17) and Eq. (19), RFC(β) = d
∑r

j=1 σ
2/d
j .

A.2 Diagonal networks with multiple outputs

We give a proof for Theorem 2.

Theorem 2. For any β = (β(1), β(2), · · · , β(n)) ∈ Rm×n,

RDNN (β) = d

n∑
i=1

∥∥∥β(i)
∥∥∥2/d
2

∼= ∥β∥2/d,2,

where ∥β∥2/d,2 := (
∑n

i=1

∥∥β(i)
∥∥2/d
2

)d/2 is the matrix l2,2/d quasi-norm. In particular, with a single
output

RDNN (β) = d∥β∥2/d2/d
∼= ∥β∥2/d.

Proof. Let w = (w1, . . . , wd−1,Wd) be the parameters of a diagonal neural network such that

FDNN (w) =Wd

d∏
i=2

diagwd−i+1 = β.

Let V =
∏d

i=2 diagwd−i+1. For each k ∈ [n], let vk = V [k, k]. Then we want to minimize∑
i∈[d−1] wi[k]

2 subject to
∏

i∈[d−1] wi[k] = vk, for each k ∈ [n]. By AM-GM inequality, the
minimum is (d− 1)|vk|2/(d−1).

Thus, it suffices to minimize
n∑

k=1

(d− 1)|vk|2/(d−1) + ∥Wd∥2F
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subject to WdV = β. Let aij =Wd[i, j] and aj be the jth column of Wd. Let βij = β[i, j] and βj
be the jth column of β. Then the problem becomes minimize

∑
k∈[n]((d− 1)|vk|2/(d−1) + ∥ak∥22)

subject to vkak = βk for all k ∈ [n]. Without loss of generality, we can assume that vk > 0 for
all k. This breaks up into n separate minimization problems and it suffices to solve one of them.
Fix a k ∈ [n]. It suffice to minimize (d − 1)v

2/(d−1)
k +

∑
i∈[m] a

2
ik subject to vkaik = βik for all

i ∈ [m]. Let y =
∑

i∈[m] β
2
ik. Let f(x) = (d− 1)x2/(d−1)+ y/x2. Then f(x) ≥ dy1/d by AM-GM

inequality, where we write the first term (d− 1)x2/(d−1) as (d− 1) terms and then apply AM-GM to
the whole d terms. This bound can be achieved by x∗ = y(d−1)/2d. Then the minimum for the whole
problem is d

∑
k∈[n] ∥βk∥

2/d
2 .

A.3 Convolutional networks with multiple outputs

Recall that for each wi ∈ Rn, the circulant matrix Wi with respect to wi is defined as

Wi =
1√
n


wi[1] wi[2] · · · wi[n]
wi[n] wi[1] · · · wi[n− 1]

...
...

...
wi[2] wi[3] · · · wi[1]

 . (20)

The main idea of the approach is to reduce the convolutional network case to the diagonal network case.
To do this, we observe that all the circulant weight matrices Wi are simultaneously diagonalizable
by the discrete Fourier transform matrix. Then after a change of basis, the problem is similar to
the diagonal network case. Let F ∈ Cn×n be the discrete Fourier transform matrix defined by
F[j, k] = 1√

n
ω
(j−1)(k−1)
n , where ωn = e2πi/n. Note that F∗ = F−1. Then, the Fourier transform of

the column vector c is Fc and the Fourier transform of the row vector βT is βTF.

Let
di = Fwi, (21)

for each i ∈ [d− 1]. Then for each i ∈ [d− 1],

Wi = FDiF
∗, (22)

where
Di = diag(di) = F∗WiF. (23)

Then
β =WdFDd−1Dd−2 · · ·D1F

∗. (24)
Let

β̂ = βF and Ŵd =WdF. (25)
Then

β̂ = Ŵd

d−1∏
i=1

Dd−i. (26)

Since F is unitary,
∥Di∥F = ∥Wi∥F and

∥∥∥Ŵd

∥∥∥
F
= ∥Wd∥F . (27)

Thus,

∥w∥22 =

d−1∑
i=1

∥wi∥2 + ∥Wd∥2F =

d−1∑
i=1

∥Wi∥2F +
∥∥∥Ŵd

∥∥∥2
F
=

d−1∑
i=1

∥Di∥2F +
∥∥∥Ŵd

∥∥∥2
F
. (28)

Note that the above transformation can also be viewed as shifting from "time domain" to "frequency
domain". This makes convolution becomes multiplication, by the convolution theorem. This idea will
be used both in the full filter width case q = n and in the restricted filter width case q < n. As we
shall see, the filter width somehow represents the "degree of freedom". In the full filter width case,
the situation is very similar to the diagonal case since we can choose the coefficients wi freely. In the
restricted filter width case, however, we lose much freedom due to the sparsity control on wi, which
makes our approach harder to work as the lower bound by AM-GM inequality cannot be attained
anymore.
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Lemma 13. For x = (x0, . . . , xN−1) ∈ RN , the DFT x̂ = (x̂0, . . . , x̂N−1) satisfies x̂k = x̂∗−kmodN .
Inversely, if for x ∈ CN we have xk = x∗−kmodN , then the inverse Fourier transform of x is real.

Proof. First, let x = (x0, . . . , xN−1) ∈ Rn. Let x̂ = Fx = (x̂0, . . . , x̂N−1). Then

x̂k =
1√
N

N−1∑
j=0

ωjk
N xj

= (
1√
N

N−1∑
j=0

ω−jk
N xj)

∗

= x̂∗−kmodN .

(29)

Now suppose that x ∈ CN such that
xk = x∗−kmodN (30)

Let x′ = F∗x = (x′0, . . . , x
′
N−1) be the inverse Fourier transform of x. Without loss of generality,

assume that N is odd. The case that N is even can be done in exactly the same way. Note that by
(30), we have

x0 ∈ R. (31)

Then

x′k =
1√
N

N−1∑
j=0

ω−jk
N xj

=
√
Nx0 +

1√
N

N−1
2∑

j=1

(ω−jk
N xj + ωjk

N xN−j)

(30)
=

√
Nx0 +

1√
N

N−1
2∑

j=1

(ω−jk
N xj + (ω−jk

N xj)
∗)

=
√
Nx0 +

2√
N

N−1
2∑

j=1

Re(ω−jk
N xj)

(31)
∈ R.

(32)

Now, we give a proof of Theorem 3

Theorem 3. For any β ∈ Rm×n, let β̂ := βF and β̂(i) be the i-th column of β̂. Then,

RCNN(n)(β) = d

n∑
i=1

∥∥∥β̂(i)
∥∥∥2/d
2

∼=
∥∥∥β̂∥∥∥

2/d,2
,

where
∥∥∥β̂∥∥∥

2/d,2
:= (

∑n
i=1

∥∥∥β̂(i)
∥∥∥2/d
2

)d/2 is the matrix l2,2/d quasi-norm. In particular, with a single

output

RCNN(n)(β) = d
∥∥∥β̂∥∥∥2/d

2/d

∼=
∥∥∥β̂∥∥∥

2/d
.

Proof. Let dp[j] = Dp[j, j] = Fwp. Let Ŵd = (Ŵd
(1)
, . . . , Ŵd

(n)
). Since β̂ = ŴdD,

β̂j = d[j]Ŵd
(j)
, (33)
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for all j ∈ [n]. Thus, ∥∥∥Ŵd
(j)
∥∥∥2
2
=
∥∥∥β̂j∥∥∥2

2
/|d[j]|2. (34)

Then

∥wn∥22 =

d−1∑
i=1

∥Di∥2F +
∥∥∥Ŵd

∥∥∥2
F

=

d−1∑
i=1

n∑
j=1

|di[j]|2 +
n∑

j=1

∥∥∥Ŵd
(j)
∥∥∥2
2

=

d−1∑
i=1

n∑
j=1

|di[j]|2 +
n∑

j=1

∥∥∥β̂j∥∥∥2
2
/|d[j]|2

=

n∑
j=1

(

d−1∑
i=1

|di[j]|2 +
∥∥∥β̂j∥∥∥2

2
/

d−1∏
i=1

|di[j]|2)

≥ d

n∑
j=1

∥∥∥β̂j∥∥∥ 2
d

2

=

n∑
i=1

d
∥∥∥β̂i∥∥∥ 2

d

2
,

(35)

where the second to last step follows by AM-GM inequality. Now we show that the AM-GM
inequality can be attained by some di, whose inverse Fourier transform is real. For the AM-GM
inequality to be attained, it suffices to let

d1[j] = · · · = dd−1[j] =
∥∥∥β̂j∥∥∥1/d

2
, (36)

for all j ∈ [n]. Now let wi = F∗di for each i ∈ [d−1]. Note that the rows of β̂ are Fourier transforms
of the rows of β, which is real. Then by lemma 13, we have

β̂j [k] = β̂n−j+2[k]
∗, (37)

and thus
|β̂j [k]|2 = |β̂n−j+2[k]|2, (38)

for all j ∈ [n− 1], k ∈ [m]. Thus, ∥∥∥β̂j∥∥∥2
2
=
∥∥∥β̂n−j+2

∥∥∥2
2
, (39)

for all j ∈ [n− 1]. By Eq. (39) and lemma 13, wi is real for all i ∈ [d− 1]. Thus, the bound can be
attained.

B Supplementary materials : CNN with restricted filter width

In this section, we consider CNN with restricted filter width q such that q|n. Unlike results in previous
sections, results in this section do not give a complete characterization of the induced complexity
measure of CNN with restricted filter width. Instead, we will give some results which lead to an
example that sheds light on the induced complexity measure of CNN with restricted filter width.

The lemmas in this section (or some highly similar variants) were also discovered in [18]. In addition,
they also studied the multiple channel CNN. We put some results on multiple channel CNN in the
supplementary materials B.4. Their results on multiple channel CNN is stronger than ours. We show
that the representation cost of multiple channel CNN does not depend on the number of channels
when the filter width q = 1 or n. They show that the same holds for any q ∈ [n].

For simplicity, we will consider single output m = 1 and depth two d = 2 case of CNN with
restricted filter width. The extension to multiple output case is straightforward and similar to what
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we did in Section 3.1. The extension to general depth case is also similar to what we did before. In
addition, we will assume that

q|n. (40)

Since m = 1, we will use β in place of β in this section. Also we will use RCNN(q)(β) to denote
the representation cost of a vector β ∈ Rn in a convolutional neural network of filter width q. Let
β̂ = Fb be the discrete Fourier transform of β.

B.1 Filter width one case q = 1

We begin with the case q = 1, where the convolutional layer is simply a scaling (a multiple of the
identity matrix).

Lemma 14. For β ∈ Rn,

RCNN(1)(β) = 2
√
n∥β∥2 = 2

√
n
∥∥∥β̂∥∥∥

2

∼=
∥∥∥β̂∥∥∥

2
= ∥β∥2. (41)

The above result shows that the induced complexity measure of CNN with filter width one is l2 norm
(or equivalently, l2 norm on the Fourier domain). This is very different from the induced complexity
measure of CNN with full filter width (i.e. q = n), which is l1 norm on the Fourier domain. Thus,
the induced complexity measure of CNN with restricted filter width is in general an interpolation
between l2 and l1 norms on the Fourier domain.

Proof. When q = 1, we identify w1 with w1[1]. Let λ = w1[1]. Let w2 ∈ Rn be the weights in the
second layer. Then we have λw2/

√
n = β. Thus,

RCNN(1)(β) = min{λ2 + ∥w2∥22 : λw2 =
√
nβ} = min(λ2 + n∥β∥22/λ

2)
(a)
= 2

√
n∥β∥2, (42)

where we used AM-GM inequality in (a). Since F is unitary, ∥β∥2 =
∥∥∥β̂∥∥∥

2
.

Note that we clearly have RCNN(q)(β) ≤ RCNN(1)(β) = 2
√
n∥β∥2 = 2

√
n
∥∥∥β̂∥∥∥

2
for all q since

we can always set some weights to be zero.

Next, we turn to the general filter width case (i.e. q ∈ [n]).

B.2 General case 1 ≤ q ≤ n

First, we give a lemma.

Lemma 15. For β ∈ Rn,

RCNN(q)(β) = min
w∈Rq×{0}n−q

q∑
i=1

w[i]2+

n∑
j=1

n|β̂j |2∑q
i=1 w[i]

2 +
∑q−1

k=1 2
∑

i≤q−k w[i]w[i+ k] cos 2π(j−1)k
n

,

(43)
where β̂j denotes the jth entry of the Fourier transform of β.

Proof. Let w = (w1, w2) be the weights such that

FCNN(q)(w) = w2W1 = β, (44)

where W1 is the circulant matrix with respect to w1. Then by Eq. (26),

β̂ = ŵ2D, (45)

where D = diag(ŵ1) = diag(Fw1) and F is the Discrete Fourier Transform matrix. Then

ŵ2[j] =
β̂j
ŵ1[j]

. (46)
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Note that

|ŵ1[j]|2 = (Fw1[j])(Fw1[j])
∗

=
1

n
(

q∑
i=1

ω(j−1)(i−1)
n w1[i])(

q∑
i=1

ω(j−1)(i−1)
n w1[i])

∗

=
1

n
(

q∑
i=1

ω(j−1)(i−1)
n w1[i])(

q∑
i=1

ω−(j−1)(i−1)
n w1[i])

=
1

n
(

q∑
i=1

w1[i]
2 +

∑
s>t

(ω(j−1)(s−1))
n ω−(j−1)(t−1)

n + ω(j−1)(t−1))
n ω−(j−1)(s−1)

n )w1[s]w1[t])

=
1

n
(

q∑
i=1

w1[i]
2 +

∑
s>t

(ω(j−1)(s−t))
n + ω−(j−1)(s−t))

n )w1[s]w1[t])

=
1

n
(

q∑
i=1

w1[i]
2 + 2

∑
s>t

cos
2π(s− t)(j − 1)

n
w1[s]w1[t])

=
1

n
(

q∑
i=1

w1[i]
2 +

q−1∑
k=1

2
∑

i≤q−k

w1[i]w1[i+ k] cos
2π(j − 1)k

n
).

(47)

Then,

∥w∥22 =

q∑
i=1

w1[i]
2+

n∑
j=1

|ŵ2[j]|2 =

q∑
i=1

w1[i]
2+

n∑
j=1

n|β̂j |2∑q
i=1 w1[i]2 +

∑q−1
k=1 2

∑
i≤q−k w1[i]w1[i+ k] cos 2π(j−1)k

n

.

(48)
Now, minimizing over w1 gives the desired result.

B.2.1 Key lower bound of the representation cost

Now we give a lower bound for the general case.

Lemma 16. For single output, depth-two CNN with filter width q such that q|n,

RCNN(q)(β) ≥ 2

√
n

q

√√√√n/q∑
t=1

(
∑
j∈St

|β̂j |)2, (49)

where St = {t+ n
q v : v ∈ {0, 1, . . . , q − 1}}.

To prove this lower bound, we first do a change of variable (note that x and y are not input and output
of the network):

y0 =

q∑
i=1

w[i]2

xk =
2
∑

i≤q−k w[i]w[i+ k]∑q
i=1 w[i]

2
, k ∈ [q − 1].

(50)

Let
y = (y0, x1, . . . , xq−1), x = (x1, . . . , xq−1). (51)

Note that the coordinates of y are not independent. However, this is enough to get a lower bound. Let

Y = {(y0, x1, . . . , xq−1) : c ∈ Rq × {0}n−q},
X = {(x1, . . . , xq−1) : c ∈ Rq × {0}n−q}

(52)
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be the feasible region for y, x. Then by Lemma 15, we have

RCNN(q)(β) = min
c∈Rq×{0}n−q

q∑
i=1

w[i]2 +

n∑
j=1

n|β̂j |2∑q
i=1 w[i]

2 +
∑q−1

k=1 2
∑

i≤q−k w[i]w[i+ k] cos 2π(j−1)k
n

= min
y∈Y

y0 +

n∑
j=1

n|β̂j |2

y0 + y0
∑q−1

k=1 xk cos
2π(j−1)k

n

(a)
= 2

√
nmin

x∈X

√√√√ n∑
j=1

|β̂j |2

1 +
∑q−1

k=1 xk cos
2π(j−1)k

n

= 2
√
n
√

min
x∈X

f(x)

≥ 2
√
n
√

min
x∈Rq−1

f(x),

(53)

where (a) follows by AM-GM inequality and the fact that scale c by t does not change x but scales
y0 by t2, and we define

f(x) =

n∑
j=1

|β̂j |2

1 +
∑q−1

k=1 xk cos
2π(j−1)k

n

. (54)

We prove a simple lemma.
Lemma 17. For any u,w ∈ [0, 2π) such that u ̸= 0 and qu = 2πk for some k ∈ N,

q−1∑
v=0

cos(w + vu) = 0. (55)

Proof.
q−1∑
v=0

cos(w + vu) = Re(

q−1∑
v=0

ei(w+vu))

= Re(

q−1∑
v=0

eiw(eiu)v)

= Re(
eiw − eiweiqu

1− eiu
)

= Re(
eiw − eiwei2πk

1− eiu
)

= Re(
eiw − eiw

1− eiu
)

= 0.

Now, we give a proof of Lemma 16.
Lemma 16. For single output, depth-two CNN with filter width q such that q|n,

RCNN(q)(β) ≥ 2

√
n

q

√√√√n/q∑
t=1

(
∑
j∈St

|β̂j |)2, (49)

where St = {t+ n
q v : v ∈ {0, 1, . . . , q − 1}}.

Proof. By (53) and (54), it suffices to show that

qf(x) ≥
n/q∑
t=1

(
∑
j∈St

|β̂j |)2. (56)
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By lemma 17, we have

∑
j∈St

cos
2π(j − 1)k

n
=

q−1∑
v=0

cos

(
2π(t− 1)k

n
+

2πkv

q

)
= 0, (57)

for all k. Thus,∑
j∈St

(1 +

q−1∑
k=1

xk cos
2π(j − 1)k

n
) = |St|+

q−1∑
k=1

xk
∑
j∈St

cos
2π(j − 1)k

n

= q +

q−1∑
k=1

xk0

= q.

(58)

Now we have

qf(x) = q

n/q∑
t=1

(
∑
j∈St

|β̂j |2

1 +
∑q−1

k=1 xk cos
2π(j−1)k

n

)

=

n/q∑
t=1

(
∑
j∈St

(1 +

q−1∑
k=1

xk cos
2π(j − 1)k

n
))(
∑
j∈St

|β̂j |2

1 +
∑q−1

k=1 xk cos
2π(j−1)k

n

)

(a)

≥
n/q∑
t=1

(
∑
j∈St

|β̂j |)2,

(59)

where (a) follows from Cauchy’s inequality.

Next we show that the bound in Lemma 16 is tight up to a multiplicative factor of
√
q.

Lemma 18. For β ∈ Rn and q|n,

2

√
n

q

√√√√n/q∑
t=1

(
∑
j∈St

|β̂j |)2 ≤ RCNN(q)(β) ≤ 2
√
n

√√√√n/q∑
t=1

(
∑
j∈St

|β̂j |)2. (60)

In addition,
1
√
q
RCNN(1)(β) ≤ RCNN(q)(β) ≤ RCNN(1)(β). (61)

Proof.

RCNN(q)(β) ≥ 2

√
n

q

√√√√n/q∑
t=1

(
∑
j∈St

|β̂j |)2

≥ 2

√
n

q

√√√√n/q∑
t=1

(
∑
j∈St

|β̂j |2)

= 2

√
n

q

√√√√ n∑
j=1

|β̂j |2

= RCNN(1)(β)/
√
q

≥ RCNN(q)(β)/
√
q.

(62)

Now, we show that both the lower and the upper bound in Theorem 16 can be attained.
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Example Let
β = (1, 1, . . . , 1)/

√
n, β′ = (1, 0, . . . , 0). (63)

Then,
RCNN(q)(β) = RCNN(1)(β)/

√
q, RCNN(q)(β

′) = RCNN(1)(β
′). (64)

Proof. We begin with the lower bound. Let

β = (1, 1, . . . , 1)/
√
n. (65)

Then
β̂ = (1, 0, . . . , 0). (66)

Then by Lemma 14, we have

RCNN(1)(β) = 2
√
n∥β∥2 = 2

√
n. (67)

Then we have,
q∑

i=1

w[i]2 +

n∑
j=1

n|β̂j |2∑q
i=1 w[i]

2 +
∑q−1

k=1 2
∑

i≤q−k w[i]w[i+ k] cos 2π(j−1)k
n

=

q∑
i=1

w[i]2 +
n

(
∑q

i=1 w[i])
2

=
1

q
(

q∑
i=1

12)(

q∑
i=1

w[i]2) +
n

(
∑q

i=1 w[i])
2

(a)

≥ 1

q
(

q∑
i=1

w[i])2 +
n

(
∑q

i=1 w[i])
2

(b)

≥2

√
n

q
,

(68)

where (a) follows from Cauchy’s inequality and (b) follows from AM-GM inequality. The bound is
attained when

w[1] = w[2] = · · · = w[q] =
n1/4

q3/4
. (69)

Then by Lemma 15,

RCNN(q)(β) = 2

√
n

q
= RCNN(1)(β)/

√
q. (70)

Note that we did not use the fact that q|n in the above calculation. Thus, (70) holds for all q and n.
For the upper bound, we take

β′ = (1, 0, . . . , 0). (71)

Then β̂′ = (1, 1, . . . , 1)/
√
n. Thus,

RCNN(n)(β
′) = 2

∥∥∥β̂′
∥∥∥
1
= 2

√
n = 2

√
n∥β′∥2 = RCNN(1)(β

′), (72)

where the last step follows from Lemma 14. Thus,

RCNN(q)(β
′) = RCNN(1)(β

′) = 2
√
n, (73)

since RCNN(n)(β
′) ≤ RCNN(q)(β

′) ≤ RCNN(1)(β
′).

B.2.2 Periodic and antiperiodic linear predictors

Now, we compute the representation costs of some special vectors. We say that β ∈ Rn is q-periodic
if βi+q = βi for all i, and q-antiperiodic if βi+q = −βi for all i.
Lemma 19. For q|n, if either β is q-periodic or n is even, q is odd, and β is is q-antiperiodic, then

RCNN(q)(β) = 2

√
n

q

∥∥∥β̂∥∥∥
1

∼=
∥∥∥β̂∥∥∥

1
.
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We give a proof of Theorem 19 by considering the periodic and antiperiodic cases separately.

Recall that

St = {t+ n

q
v : v ∈ {0, 1, . . . , q − 1}}, (74)

for each t ∈ [n/q]. We say that a vector β is supported on St if β[i] ̸= 0 only if i ∈ St. Let Fn be the
n× n discrete Fourier transform matrix. Let F = Fn.

Periodic case

We begin with the periodic case.

Theorem 20. For any β ∈ Rn that is q-periodic,

RCNN(q)(β) = 2

√
n

q

∥∥∥β̂∥∥∥
1
. (75)

Before giving the proof, we first recall a lemma and give a characterization of q-periodic vectors. We
will then use this characterization to show that the representation cost of q-periodic vectors can attain
the lower bound in Theorem 16.

Lemma 21. For x = (x0, . . . , xN−1) ∈ RN , the DFT x̂ = (x̂0, . . . , x̂N−1) satisfies x̂k = x̂∗−kmodN .
Inversely, if for x ∈ CN we have xk = x∗−kmodN , then the inverse Fourier transform of x is real.

Lemma 22. Let β ∈ Rn. Then β̂ is supported on S1 if and only if β is q-periodic, where S1 is
defined in Eq. (74).

Proof. For simplicity, let

s =
2πi

q
, w =

2πi

n
(76)

Suppose that β̂ is supported on S1. Then for any k ≤ n− q, we have

βk+q = (F−1β̂)k+q

=
1√
n

q−1∑
v=0

β̂1+vn/qe
−(k+q−1)vs

=
1√
n

q−1∑
v=0

β̂1+vn/qe
−(k−1)vse−qvs

=
1√
n

q−1∑
v=0

β̂1+vn/qe
−(k−1)vs

= (F−1β̂)k
= βk.

(77)

Thus, β is q-periodic.
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Now suppose that β is q-periodic. Then for any j ̸∈ S1, we have

β̂j = (Fβ)j

=
1√
n

q∑
t=1

n/q−1∑
v=0

βt+qve
(j−1)(t−1+qv)w

=
1√
n

q∑
t=1

n/q−1∑
v=0

βte
(j−1)(t−1+qv)w

=
1√
n

q∑
t=1

βt

n/q−1∑
v=0

e(j−1)(t−1+qv)w

=
1√
n

q∑
t=1

βt

n/q−1∑
v=0

e(j−1)(t−1)we(j−1)vqw

=
1√
n

q∑
t=1

βte
(j−1)(t−1)w

n/q−1∑
v=0

e(j−1)vqw

=
1√
n

q∑
t=1

βte
(j−1)(t−1)w 1− e(j−1)nw

1− e(j−1)qw

=
1√
n

q∑
t=1

βte
(j−1)(t−1)w 1− 1

1− e(j−1)qw

= 0.

(78)

Thus, β̂ is supported on S1.

Next, we give some discussion of when the lower bound in Theorem 16 can be attained, which is

central to the proof of Theorem (20). By Eq. (59), RCNN(q)(β) = 2
√

n
q

√∑n/q
t=1(

∑
j∈St

|β̂j |)2

if and only if the Cauchy inequality ((a) in Eq. (59)) is achieved with equality. By Eq. (53), this
happens if and only if there exists weights (in the convolutional layer) w ∈ Rq × {0}n−q and
λ1, . . . , λn/q ∈ R such that for all i ∈ [n/q], for all j ∈ Si,

|ŵj |4 = λi|β̂j |2, (79)

where Si is defined in Eq. (74). Note that in AM-GM inequality in (a) of Eq. (53) can always be
attained by scaling the weights w by some constant without changing the ratios between the |ŵj |s.
Thus, after satisfying Eq. (79), we can always change w to µw by some appropriate µ ∈ R so that
(a) in Eq. (53) holds and Eq. (79) still holds with a different choice of λis.

By Lemma 22, if β is q-periodic, then supp(β) ⊆ S1. Thus, the condition in Eq (79) becomes, there
exists λ1 ∈ R and weights w ∈ Rq × {0}n−q such that for all j ∈ S1

|ŵj |4 = λ1|β̂j |2. (80)

Since w ∈ Rq × {0}n−q, we only care about the first q columns of F in order to compute ŵ. Let
F′ ∈ Rn×q be the submatrix of F consisting of the first q columns of F. By Eq. (80), we only need

information of ŵj for j ∈ S1 to determine whether RCNN(q)(β) = 2
√

n
q

√∑n/q
t=1(

∑
j∈St

|β̂j |)2.
Let

F̃ = F′[S1] (81)
be the q × q submatrix of F′ consisting of the q rows of F′ whose indices are specified by S1. Then,
we observe that

F̃ =

√
q

n
Fq (82)

is some scaling of the q × q discrete Fourier transform matrix.

Now we give the proof of the theorem.
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Proof of Theorem (20). By lemma (22), β̂ is supported on S1. Then

2

√
n

q

∥∥∥β̂∥∥∥
1
= 2

√
n

q

√√√√n/q∑
t=1

(
∑
j∈St

|β̂j |)2. (83)

Thus, it suffices to show that the lower bound in Theorem 16 can be attained. Let w ∈ Rn be the
weights in the convolutional layer. Let

u = w[1 : q] (84)

be the first q entries of w. Since supp(w) ⊆ [q],

ŵ = Fw = F′u, (85)

where F′ is the submatrix of F which consists of the first q columns of F. Let

γ = β̂[S1] ∈ Rq (86)

be the subvector of β̂ whose indices are specified by S1. Let

ŵ′ = ŵ[S1] (87)

be the subvector of ŵ whose indices are specified by S1. Recall that F̃ is the submatrix of F′ which
consists of the q rows of F′ whose induces are specified by S1. By Eq. (85), Eq. (87), and Eq. (82),

ŵ′ = F̃u =

√
q

n
Fqu =

√
q

n
û, (88)

where û is the Fourier transform of u.

By Eq.(80), the lower bound in Theorem 16 is attained if and only if there exists λ1 ∈ R and weights
c ∈ Rq × {0}n−q such that for all j ∈ S1

|ŵj |4 = λ1|β̂j |2. (89)

By Eq. (86) and Eq. (87), Eq. (89) is equivalent to

|ŵ′[i]|4 = λ1|γ[i]|2. (90)

for all i ∈ [q]. By Eq. (88), it suffices to show that there exists u ∈ Rq and λ ∈ R such that

û[i] = λ
√
|γ[i]| (91)

for all i ∈ [q]. By lemma 13,
|β̂j | = |β̂n−j+2| (92)

for all j. Thus,√
|γ[i]| =

√
|β̂(i−1)n/q+1| =

√
|β̂(q−i+1)n/q+1| =

√
|γ[q − i+ 2]|. (93)

Let λ ∈ R+ be arbitrary. Let γ′[i] = λ
√
|γ[i]|. Let u = F−1

q γ′. Then by lemma 13, we have

u ∈ Rq. (94)

Thus, the lower bound can be attained.

Antiperiodic case Now we consider the antiperiodic case. We assume that n is even and q is odd.
For simplicity let

w =
2πi

n
. (95)

Let r ∈ [n/q] be such that
n

2
+ 1 ∈ Sr. (96)

For each j ∈ [n], let
j′ = (j − n

2
) + n1j≤n

2
. (97)
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Then we have

F[j, k] =
1√
n
e(j−1)(k−1)w

=
1√
n
e(j

′+n/2−1)(k−1)w

=
1√
n
en(k−1)w/2e(j

′−1)(k−1)w

=
1√
n
(−1)k−1e(j

′−1)(k−1)w

= (−1)k−1F[j′, k].

(98)

Let

P =



en/2+1

en/2+2

...
en
e1
e2
...

en/2


(99)

is a permutation matrix. Let F′′ ∈ Rn×q be the submatrix of PF consisting of the first q columns of
PF. Let

F̃′ = F′′[Sr] (100)

be the q × q submatrix of F′′ consisting of the q rows of F′ whose indices are specified by Sr. Then
by (98), we have

F̃′ = (−1)n/2
√
q

n
Fq. (101)

Now we state the result.

Theorem 23. Let n be even and q be odd. For any β ∈ Rn that is q-antiperiodic,

RCNN(q)(β) = 2

√
n

q

∥∥∥β̂∥∥∥
1
. (102)

Before giving the proof, we first give a characterization of q-antiperiodic vectors. We will then use
this characterization to show that the representation cost of q-antiperiodic vectors can attain the lower
bound in Theorem 16.

Lemma 24. Let n be even and q be odd. Then β ∈ Rn is q-antiperiodic if and only if β̂ is supported
on Sr, where Sr is defined in Eq. (74) and Eq. (96).

Proof. For simplicity, let

s =
2πi

q
, w =

2πi

n
(103)
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Suppose that β̂ is supported on Sr. Then for any k ≤ n− q, we have

βk+q = (F−1β̂)k+q

=
1√
n

q−1∑
v=0

β̂r+vn/qe
−(k+q−1)(r−1+vn/q)w

=
1√
n

q−1∑
v=0

β̂r+vn/qe
−(k−1)(r−1+vn/q)we−q(r−1)w−vnw

=
1√
n

q−1∑
v=0

β̂r+vn/qe
−(k−1)(r−1+vn/q)we−q(r−1)w

=
1√
n

q−1∑
v=0

β̂r+vn/qe
−(k−1)(r−1+vn/q)we−qπi

=
1√
n

q−1∑
v=0

β̂r+vn/qe
−(k−1)(r−1+vn/q)w(−1)

= −(F−1β̂)k
= −βk.

(104)

Thus, β is q-antiperiodic.

Now suppose that β is q-antiperiodic. Then for any j ̸∈ Sr, we have

β̂j = (Fβ)j

=
1√
n

q∑
t=1

n/q−1∑
v=0

βt+qve
(j−1)(t−1+qv)w

=
1√
n

q∑
t=1

n/q−1∑
v=0

(−1)vβte
(j−1)(t−1+qv)w

=
1√
n

q∑
t=1

βt

n/q−1∑
v=0

(−1)ve(j−1)(t−1+qv)w

=
1√
n

q∑
t=1

βt

n/q−1∑
v=0

(−1)ve(j−1)(t−1)we(j−1)vqw

=
1√
n

q∑
t=1

βte
(j−1)(t−1)w

n/q−1∑
v=0

(−1)ve(j−1)vqw

=
1√
n

q∑
t=1

βte
(j−1)(t−1)w 1− (−1)n/qe(j−1)nw

1 + e(j−1)qw

=
1√
n

q∑
t=1

βte
(j−1)(t−1)w 1− 1

1 + e(j−1)qw

= 0.

(105)

Thus, β̂ is supported on Sr.

Now we give the proof of the theorem, which is similar to the proof in the periodic case.

Proof of Theorem (23). By lemma (22), β̂ is supported on Sr. Then

2

√
n

q

∥∥∥β̂∥∥∥
1
= 2

√
n

q

√√√√n/q∑
t=1

(
∑
j∈St

|β̂j |)2. (106)
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Thus, it suffices to show that the lower bound in Theorem 16 can be attained. Let w ∈ Rn be the
weights in the convolutional layer. Let

u = w[1 : q] (107)

be the first q entries of w. Let
γ = (P β̂)[S1] ∈ Rq (108)

be a permutation of the nonzero entries of β̂. Let

ŵ′ = (Pŵ)[S1] (109)

be the subvector of Pŵ whose indices are specified by S1. Now we have

ŵ′ = F̃′u = (−1)n/2
√
q

n
Fqu = (−1)n/2

√
q

n
û, (110)

where û is the Fourier transform of u. Note that in order for (a) in (59) to be attained with equality, it
suffices to show that for any λ > 0 there exists u ∈ Rq such that

û[i] = λ
√
|γ[i]| (111)

for all i ∈ [q]. By lemma 13,
|β̂j | = |β̂n−j+2| (112)

for all j. In other words,
|β̂j | = |β̂k| (113)

if j + k = n+ 2. Let f : [n] −→ [n] be defined by

f(i) = i− n

2
+ n1i≤n

2
. (114)

Then note that if j + k = n+ 2 and j ̸= k, then

f(j) + f(k) = j − n

2
+ k − n

2
+ n = j + k = n+ 2. (115)

Thus,
P β̂j = β̂f(j) = β̂f(n−j+2) = P β̂n−j+2. (116)

Thus, √
|γ[i]| =

√
|P β̂(i−1)n/q+1| =

√
|P β̂(q−i+1)n/q+1| =

√
|γ[q − i+ 2]|. (117)

Let γ′[i] = λ
√
|γ[i]|. Let u = F−1

q γ′. Then by lemma 13, we have

u ∈ Rq. (118)

Thus, the lower bound can be attained.

B.2.3 Induced complexity measure of CNN with restricted filter width

In this section, we give some examples to show how the induced complexity measure of CNN with
restricted filter width changes with the filter width.

Since CNN with larger filter width contains CNN with smaller filter width as a subnetwork, the
representation cost RCNN(q)(β) is monotonically decreasing in q for all β ∈ Rn. Given a predictor
β ∈ Rn such that RCNN(1)(β) > RCNN(n)(β), one might expect that RCNN(q)(β) is strictly
decreasing in q. However, this is not always the case as the following example shows.

Example Consider q2|n. Let ej ∈ Rn be the jth standard basis vector and

β(2) =

n/q2−1∑
j=0

e1+jq2 .

Then, for all 1 ≤ q1 ≤ q2,

RCNN(1)(β
(2)) = RCNN(q1)(β

(2)) =
2n
√
q2
, and RCNN(n)(β

(2)) = 2
√
n. (119)
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Now, we give a proof of Eq. (119).

Proof of Eq. (119). Let

St(q2) = {t+ v
n

q2
: v ∈ {0, 1, . . . , q2 − 1}}, (120)

for each t ∈ [n/q2]. For simplicity, let

s =
2πiq2
n

, w =
2πi

n
. (121)

For each j ̸∈ S1[q2],

β̂(2)[j] =
1√
n

n/q2−1∑
t=0

etq2(j−1)w

=
1√
n

n/q2−1∑
t=0

ets(j−1)

=
1√
n

1− es(j−1)n/q2

1− es(j−1)

= 0.

(122)

For j ∈ S1[q2],

β̂(2)[j] =
1√
n

n/q2−1∑
t=0

etq2(j−1)w

=
1√
n

n/q2−1∑
t=0

ets(j−1)

=
1√
n

n/q2−1∑
t=0

1

=

√
n

q2
.

(123)

Thus,

β̂(2) =

√
n

q2

q2−1∑
i=0

e1+in/q2 . (124)

So β̂(2) has the same structure as β(2) but with a different period. Thus,∥∥∥β̂(2)
∥∥∥
1
=

√
n,

∥∥∥β̂(2)
∥∥∥
2
=

√
n

q2
, (125)

and

RCNN(1)(β
(2)) = 2

√
n
∥∥∥β̂(2)

∥∥∥
2
=

2n
√
q2
,

RCNN(q2)(β
(2)) ≥ 2

√
n

q2

√√√√√n/q2∑
t=1

(
∑

j∈St(q2)

|β̂j |)2 =
2n
√
q2
.

(126)

Since 1 ≤ q1 ≤ q2,

RCNN(q1)(β
(2)) = RCNN(q2)(β

(2)) =
2n
√
q2
. (127)
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By Eq. (125), the l1 norm of the Fourier transform of β(2) is independent of the periodicity q2. Thus,
we immediately get ∥∥∥β̂(1)

∥∥∥
1
= (1− ϵ)

∥∥∥β̂(2)
∥∥∥
1
= (1− ϵ)

√
n, (128)

since β(1)/(1− ϵ) only differs from β(2) in the periodicity.

Next, we look into the representation costs of two predictors β(1) and β(2) to see how the induced
complexity measure of CNN changes with q.

Example Consider q1|q2, q2|n. Let ej ∈ Rn be the jth standard basis vector and ϵ > 0 be a constant
such that

(1− ϵ)
√
q2 >

√
q1. (129)

Let

β(1) = (1− ϵ)

n/q1−1∑
j=0

e1+jq1 and β(2) =

n/q2−1∑
j=0

e1+jq2 .

Then

RCNN(q1)(β
(1)) > RCNN(q1)(β

(2)) but RCNN(q2)(β
(1)) < RCNN(q2)(β

(2)). (130)

Proof of Eq. (130). By Lemma 19, Eq. (119), Eq. (129), and Eq. (128), we have

RCNN(q1)(β
(1)) =

2(1− ϵ)n
√
q1

, RCNN(q2)(β
(1)) =

2(1− ϵ)n
√
q2

,

RCNN(q1)(β
(2)) =

2n
√
q2
, RCNN(q2)(β

(2)) =
2n
√
q2
.

(131)

Thus,

RCNN(q1)(β
(1)) > RCNN(q1)(β

(2))

RCNN(q2)(β
(1)) < RCNN(q2)(β

(2)).
(132)

Next, we use Eq. (130) to construct a data set and look into the minimum representation cost
interpolation of the data. We design our data so that this interpolation changes with q.

Example We consider a generalized linear regression model. Let q1|q2, q2|n. Let

K = S1(n/q1)− S1(n/q2), k = |K|, (133)

where

S1(q) =

{
1 + j

n

q
: j ∈ {0, 1, . . . , q − 1}

}
. (134)

For instance, when n = 12, q1 = 2, and q2 = 4, S1(n/q1) = {1, 3, 5, 7, 9, 11} and S1(n/q2) =
{1, 5, 9}. Recall that

β(1) = (1− ϵ)

n/q1−1∑
j=0

e1+jq1 , β(2) =

n/q2−1∑
j=0

e1+jq2 , (135)

where ej ∈ Rn is the jth standard basis vector. Thus, S1(n/q1) and S1(n/q2) are the supports of
β(1) and β(2) respectively. Let β ∈ Rn, x ∈ R3n. Let x = (x1, x2, x3) where x1, x2, x3 ∈ Rn.
Consider the model

ϕ(β, x) = βTx1 + (β2 − (1− ϵ)β)Tx2 + (β2 − (2− ϵ)β + 1− ϵ)Tx3, (136)
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where β2 denote the entry-wise squaring of β. We will construct a sample such that the vectors β
that achieve zero loss are β(1) and β(2). To achieve this, it suffice to have the following conditions:

β[j] = 0 ∀j ̸∈ S1(n/q1)

β[j] ∈ {1, 1− ϵ} ∀j ∈ S1(n/q2)

β[j] ∈ {0, 1− ϵ} ∀j ∈ K

β[j] = β[j + q2] ∀j ∈ S1(n/q2)∑
j∈S1(n/q2)

β[j] +
q1ϵ

(q2 − q1)(1− ϵ)

∑
j∈K

β[j] =
n

q2
.

(137)

The only interesting condition is the last one. Note that if we don’t have the last condition, then it
might be the case that we have some vector which chooses 1 for its coordinates in S1(n/q2) and 1− ϵ
for its coordinates in K. We don’t want this to happen. With the last condition, for any vector β such
that β[j] = 1 for j ∈ S1(n/q2),

∑
j∈S1(n/q2)

β[j] is already n/q2. Thus, all the remaining entries
have to be 0. Also, for any vector β such that β[j] = 1 − ϵ for j ∈ S1(n/q2),

∑
j∈S1(n/q2)

β[j] is
less than n/q2 and β[j] has to be 1− ϵ for all j ∈ K in order to satisfy the last condition.

Now we give the construction for the sample which forces β to satisfy the conditions (137). We will
use ((x1, x2, x3), y) to denote an element in the sample S. Let

T1 = {((ej , 0, 0), 0) : j ̸∈ S1(n/q1)},
T2 = {((0, 0, ej), 0) : j ∈ S1(n/q2)},
T3 = {((0, ej , 0), 0) : j ∈ K},
T4 = {((ej − ej+q2 , 0, 0), 0) : j ∈ S1(n/q2)},

T5 =

{
(

∑
j∈S1(n/q2)

ej +
q1ϵ

(q2 − q1)(1− ϵ)

∑
j∈K

ej , 0, 0), n/q2)

}
.

(138)

Let

S =

5⋃
t=1

Tt (139)

be the sample. Let
W = {β ∈ Rn : ϕ(β, x) = y ∀(x, y) ∈ S} (140)

be the set of interpolating solutions. Then

W = {β(1), β(2)}. (141)

For each q|n, let

V (q) = {β′ ∈ W : RCNN(q)(β
′) = min

β∈W
RCNN(q)(β)}. (142)

By equation (130), we see that

V (q1) = {β(2)}, V (q2) = {β(1)}. (143)

B.3 CNN with sum pooling

In a convolutional neural network with sum pooling, we put an extra sum pooling layer before the
fully connected layer. The sum pooling layer corresponds to a circulant matrix A with respect to
a vector a = (1, 1, . . . , 1, 0, 0, . . . , 0) ∈ Rn, which is supported on the first k entries, where k is
the width of the pooling region. Recall that a circulant matrix C with respect to a vector c ∈ Rn

is defined as C = 1√
n


c[1] c[2] · · · c[n]
c[n] c[1] · · · c[n− 1]

...
...

...
c[2] c[3] · · · c[1]

. As before, let w = (w1, w2, · · ·wd−1,Wd)

be the parameters of a convolutional neural network, where wi ∈ Rq × {0}n−q for i ∈ [d − 1]
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and Wd ∈ Rm×n. For each i ∈ [d − 1], let Wi be the circulant matrix with respect to wi. In a
convolutional neural network with sum pooling,

FSCNN(q,k)(w) =WdA

d−1∏
i=1

Wd+1−i. (144)

For any matrix β ∈ Rm×n and q ∈ [n], letRSCNN(q,k)(β) := RFSCNN(q,k)
(β) be the representation

cost of β in a convolutional neural network with sum pooling of filter width q and pooling width k.
As what we did for CNN without sum pooling, we can use the discrete Fourier transform matrix F to
diagonalize A and Wis. Similar to Eq. (26),

β̂ = ŴdD

d−1∏
i=1

Dd+1−i, (145)

where D = diag(â) and Di = diag(ŵi). Now we consider the cases q = n,m = 1 and q = 1,m =
1. We use β in place of β in these cases.

B.3.1 Full filter width case: q = n,m = 1

Theorem 25. For any β ∈ Rn,

RSCNN(n,k)(β) = d

n∑
i=1

(
|β̂i|
|âi|

)2/d, (146)

where β̂ and â are the Fourier transforms of β and a respectively and

|âj |2 =
1− cos(2πk(j − 1)/n)

1− cos(2π(j − 1)/n)
. (147)

Proof. As before, we know that the optimal weights wj would be identical by the same reason as
before. Then we can assume that

w1 = w2 = · · · = wd−1 = c (148)

for some c. By (145), we have
β̂i = Ŵd[i]âiĉ[i]

d−1. (149)
Thus,

Ŵd[i] =
β̂i

âiĉ[i]d−1
. (150)

Thus,

RSCNN(n,k)(β) = min
ĉ

n∑
i=1

((d− 1)|ĉ[i]|2 + |β̂i|2

|âi|2|ĉ[i]|2(d−1)
)

=

n∑
i=1

min
ĉ[i]

((d− 1)|ĉ[i]|2 + |β̂i|2

|âi|2|ĉ[i]|2(d−1)
)

(a)
= d

n∑
i=1

(
|β̂i|
|âi|

)2/d,

(151)

where (a) follows from AM-GM inequality. Note that

âj =

k−1∑
t=0

ω(j−1)t =
1− ω(j−1)k

1− ωj−1
, (152)

where ω := e2πi/n. Since

|1− ωp|2 = (1− cos p(2π/n))2 + sin2 p(2π/n) = 2− 2 cos p(2π/n), (153)

we have

|âj |2 =
1− cos(2πk(j − 1)/n)

1− cos(2π(j − 1)/n)
. (154)
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B.3.2 Filter width one case: q = 1,m = 1

Theorem 26. For any β ∈ Rn,

RSCNN(1,k)(β) = dn(d−1)/d(

n∑
i=1

|β̂i|2

|âi|2
)1/d, (155)

where β̂ and â are the Fourier transforms of β and a respectively and

|âj |2 =
1− cos(2πk(j − 1)/n)

1− cos(2π(j − 1)/n)
. (156)

Note that the induced complexity measure in this case is some weighted l2 norm.

Proof. As before, we know that the optimal weights wj would be identical by the same reason as
before. Then we can assume that

w1 = w2 = · · · = wd−1 = c (157)
for some c. By (145), we have

β̂i = Ŵd[i]âiĉ[i]
d−1. (158)

Since q = 1, we know that

ĉ[1] = ĉ[2] = · · · = ĉ[n] =
1√
n
c[1]. (159)

Thus,

β̂i = Ŵd[i]âi(
1√
n
c[1])d−1. (160)

Thus,

Ŵd[i] =
β̂i

âi(
1√
n
c[1])d−1

. (161)

Thus,

RSCNN(1,k)(β) = min
c[1]

((d− 1)c[1]2 +

n∑
i=1

nd−1|β̂i|2

|âi|2c[1]2(d−1)

(a)
= dn(d−1)/d(

n∑
i=1

|β̂i|2

|âi|2
)1/d,

(162)

where (a) follows from AM-GM inequality. Note that

âj =

k−1∑
t=0

ω(j−1)t =
1− ω(j−1)k

1− ωj−1
, (163)

where ω := e2πi/n. Since
|1− ωp|2 = (1− cos p(2π/n))2 + sin2 p(2π/n) = 2− 2 cos p(2π/n), (164)

we have

|âj |2 =
1− cos(2πk(j − 1)/n)

1− cos(2π(j − 1)/n)
. (165)

B.4 CNN with multiple channels

In a convolutional neural network with nc channels,

FMCNN(q)(W ) =

nc∑
i=1

FCNN(q)(wi), (166)

where W = (w1, . . . , wnc) are the parameters of the nc parallel convolutional neural networks. For
any β ∈ Rn, let RMCNN(q)(β) := RFMCNN(q)

(β) be the representation cost of β under FMCNN(q).
Surprisingly, CNN with multiple channels have the same representation cost as CNN (with one
channel), when q = n or q = 1.
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B.4.1 Full filter width case: q = n

We first consider the case q = n.

Theorem 27. For β ∈ Rn,

RMCNN(n)(β) = d

n∑
j=1

|β̂j |2/d = RCNN(n)(β). (167)

Proof. Let w∗ ∈ Rn be such that

∥w∗∥22 = RCNN(n)(β), and FCNN(n)(w
∗) = β. (168)

Then, taking W ∗ = (w∗, 0, . . . , 0), we have

∥W ∗∥22 = RCNN(n)(β), and FMCNN(n)(W
∗) = β. (169)

Thus,

RMCNN(n)(β) ≤ ∥W ∗∥22 = RCNN(n)(β). (170)

Let W̃ = (w̃1, . . . , w̃nc
) be such that∥∥∥W̃∥∥∥2

2
= RMCNN(n)(β). (171)

For each i ∈ [nc], let

pi = FCNN(n)(w̃i). (172)

Then

β =

nc∑
i=1

pi. (173)

Thus, Then

β̂ =

nc∑
i=1

p̂i. (174)

When d = 2, we have

RMCNN(n)(β) =
∥∥∥W̃∥∥∥2

2

=

nc∑
i=1

∥w̃i∥22

≥
nc∑
i=1

RCNN(n)(pi)

=

nc∑
i=1

2∥p̂i∥1

≥ 2
∥∥∥β̂∥∥∥,

(175)
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where the last step follows from (174) and triangle inequality.
Now suppose that d > 2. Then we have

RMCNN(n)(β) =
∥∥∥W̃∥∥∥2

2

=

nc∑
i=1

∥w̃i∥22

≥
nc∑
i=1

RCNN(n)(pi)

=

nc∑
i=1

d

n∑
j=1

|p̂i[j]|2/d

(a)

≥ d

n∑
j=1

|
nc∑
i=1

p̂i[j]|2/d

= d

n∑
j=1

|β̂j |2/d.

(176)

To see (a), it suffices to show that for each j,
nc∑
i=1

|p̂i[j]|2/d ≥ |
nc∑
i=1

p̂i[j]|2/d. (177)

By triangle inequality, it suffices to show that
nc∑
i=1

|p̂i[j]|2/d ≥ (

nc∑
i=1

|p̂i[j]|)2/d, (178)

which is equivalent to

(

nc∑
i=1

|p̂i[j]|2/d)d/2 ≥
nc∑
i=1

|p̂i[j]|. (179)

This follows directly from Taylor’s theorem and the fact that d > 2.

B.4.2 Filter width one case: q = 1

Now we consider the case q = 1.
Theorem 28. For β ∈ Rn,

RMCNN(1)(β) = dn(d−1)/d∥β∥2/d2 = RCNN(1)(β). (180)

Proof. The proof is exactly the same as in the q = n case. It follows from triangle inequality and the
fact that

t∑
i=1

|ai|c ≥ (

t∑
i=1

|ai|)c (181)

when c < 1.

B.5 An architecture similar to CNN

In this section, we consider the representation cost of an architecture similar to CNN, whose induced
complexity measure is l1,2 norm on Fourier domain. For simplicity we consider depth two neural
network with single output. Let q be a hyper-parameter, which is analogous to the filter width in
CNN. We assume that q|n. Let w = (w2, w1) be the parameters of this architecture, where w2 ∈ Rn

and w1 ∈ (R× {0}n/q−1)q . Let W1 be the circulant matrix with respect to w1. In this architecture,

FLCNN(q)(w) = wT
2 W1. (182)

For β ∈ Rn, let RLCNN(q)(β) := RFLCNN(q)
(β) be the representation cost of β under FLCNN(q).
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Theorem 29. For β ∈ Rn,

RLCNN(q)(β) = 2

√
n

q

q∑
t=1

√∑
j∈St

|β̂j |2, (183)

where St = {t+ kq : k = 0, 1, . . . , n/q − 1}, and β̂ is the Fourier transform of β.

So the induced complexity measure of this architecture is l1,2 norm on Fourier domain.

Before giving the proof, we first make some observations which reduce this problem to the CNN case.
Let Fn ∈ Cn×n be the n×n discrete Fourier transform matrix defined by Fn[j, k] =

1√
n
ω
(j−1)(k−1)
n ,

where ωn = e2πi/n. Let F′ be the submatrix of Fn obtained by taking the 1, 1+n/q, 1+2n/q, . . . , 1+
(q − 1)n/qth columns of Fn. Then we have

F′ =

√
q

n


Fq

Fq

...
Fq

 , (184)

where Fq is the q × q discrete Fourier transform matrix. In other words, F′ is a stack of smaller
discrete Fourier transform matrices up to some scaling. Now let u ∈ Rq be the subvector of c
obtained by taking the 1, 1+ n/q, 1+ 2n/q, . . . , 1+ (q− 1)n/qth entries of w1. Since supp(w1) ⊆
{1 + vn/q : v = 0, 1, . . . , q − 1},

ŵ1 := Fnw1 = F′u =

√
q

n


Fqu
Fqu

...
Fqu

 =

√
q

n


û
û
...
û

 , (185)

where û = Fqu is the Fourier transform of u.

Similar to Eq. (26), if βT = wT
2 C, then β̂T = ŵT

2 D, where D = diag ŵ1. Then, we have

β̂ = Dŵ2. (186)

Thus, for all j ∈ [n],

ŵ2[j] =
β̂j
ŵ1[j]

(187)

Note that
∥w∥22 = ∥w2∥22 + ∥w1∥22 = ∥ŵ2∥22 + ∥u∥22 = ∥ŵ2∥22 + ∥û∥22, (188)

since u is the subvector of w1 by taking the entries in supp(w1).

Proof of Theorem 29. By Eq. (187) and Eq. (188),

RLCNN(q)(β) = min
u

q∑
t=1

|ût|2 +
n∑

j=1

|β̂j |2

|ŵ1[j]|2

(a)
= min

u

q∑
t=1

|ût|2 +
n

q

q∑
t=1

∑
j∈St

|β̂j |2

|ût|2

= min
u

q∑
t=1

(|ût|2 +
n

q

∑
j∈St

|β̂j |2

|ût|2
)

(b)
= 2

√
n

q

q∑
t=1

√∑
j∈St

|β̂j |2,

(189)

where (a) follows from Eq. (185), and (b) follows from AM-GM inequality.
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C Supplementary materials for residual networks

C.1 Proofs of general results of residual networks

We give the proofs of Theorem 4 and Theorem 12.
Theorem 4. Suppose that d1 < d2 < · · · < dk. Then, RResNet(λβ)/R1(λβ) −→ 1 as λ→ 0, and
RResNet(λβ)/Rk(λβ) −→ 1 as λ→ ∞.

Proof. λ→ 0 Case:λ→ 0 Case:λ→ 0 Case: We will first show that

RResNet(β) ≤ R1(β), (190)

for all β ∈ Rn. To see this, let w ∈ Rp be the weights such that

FN1(w) = β, and ∥w∥22 = R1(β). (191)

Since w achieves the minimum representation cost with respect to N1, for any edge in NResNet but
not in N1, its weight has to be 0. Since dj > d1 for all j > 1, each Nj has at least two adjacent
layers whose edges in between are assigned zero weights. Thus, FNj

(w) = 0 for all j > 1. Thus,
FNResNet

(w) = β. Thus, Eq. (190) holds.

Then, fix β ∈ Rn. We will show that

lim inf
λ→0

RResNet(λβ)

R1(λβ)
≥ 1. (192)

Let f : R+ −→ R be defined as
f(λ) = RResNet(λβ). (193)

The restriction to λ ≥ 0 does not compromise our statement since λβ = (−λ)(−β) (for λ < 0 we
just apply the argument to −λ and −β). Let wλ ∈ Rp be weights such that

FNResNet
(wλ) = λβ, and ∥wλ∥22 = RResNet(λβ). (194)

Let E be the set of edges in NResNet. For each e ∈ E, let wλ(e) be the weights on e in wλ. Then,

wλ(e)
2 ≤ RResNet(λβ)

(a)

≤ R1(λβ)
(c)
= λ2/d1R1(β), (195)

where (a) follows from Eq. (190) and (c) follows from Lemma 37. Thus,

|wλ(e)| = O(λ1/d1) as λ→ 0. (196)

Since Nj is of depth dj > d1 for all j > 1,∥∥FNj
(wλ)

∥∥
2
= O(λdj/d1) = o(λ) as λ→ 0. (197)

Thus, ∥∥∥∥∥∥
k∑

j=2

FNj
(wλ))

∥∥∥∥∥∥
2

= o(λ) as λ→ 0. (198)

Note that

FN1
(wλ) = λβ −

k∑
j=2

FNj
(wλ). (199)

Thus,

RResNet(λβ) = ∥wλ∥22

≥ R1(λβ −
k∑

j=2

FNj
(wλ))

= λ2/d1R1(β − (

k∑
j=2

FNj
(wλ))/λ)

(a)
= λ2/d1R1(β − o(1)),

(200)
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where (a) follows from Eq. (198). Thus,

RResNet(λβ)

R1(λβ)
≥ λ2/d1R1(β − o(1))

λ2/d1R1(β)
=
R1(β − o(1))

R1(β)
. (201)

Taking lim inf on both sides of Eq. (201), we get

lim inf
λ→0

RResNet(λβ)

R1(λβ)
≥ lim inf

λ→0

R1(β − o(1))

R1(β)
= 1, (202)

where in the last step we used Lemma 43. By equations (190) and (202),

RResNet(λβ)

R1(λβ)
−→ 1, as λ→ 0. (203)

λ→ ∞ Case:λ→ ∞ Case:λ→ ∞ Case: Fix β ∈ Rn. We will first show that

lim sup
λ→∞

RResNet(λβ)

Rk(λβ)
≤ 1. (204)

First, we assume that βi ̸= 0 for all i ∈ [n]. Let w ∈ Rp be the weights such that

FNk
(w) = β, and ∥w∥22 = Rk(β). (205)

Let w(λ) be the weights obtained from w by multiplying all the weights by λ1/dk . Then,

FNk
(w(λ)) = λβ, and

∥∥∥w(λ)
∥∥∥2
2
= λ2/dk∥w∥22 = λ2/dkRk(β) = Rk(λβ), (206)

by Lemma 37. Since the weights w(λ) on each edge is O(λ1/dk) and the depth of Nj is dj < dk,∥∥∥FNj
(w(λ))

∥∥∥
2
= O(λdj/dk) = o(λ), as λ→ ∞, (207)

for all j < k. Thus,
k−1∑
j=1

∥∥∥FNj (w
(λ))
∥∥∥
2
= O(λ(dk−1)/dk) = o(λ), as λ→ ∞. (208)

Thus, there exists M > 0 such that

λ|βi| >
k−1∑
j=1

|FNj
(w(λ))[i]| ∀i ∈ [n], (209)

for all λ > M . Since we will let λ→ ∞, we can assume that λ is always greater than M .

If there exists t ∈ [d] such that Nk skips the tth layer, then the weights w much be zero on the tth
layer. Hence, w(λ) is also zero on the tth layer. Thus, any subnetwork Nj that does not skip the tth
layer much satisfy FNj

(w(λ)) = 0. Thus, to simplify the notation, we might assume without loss of
generality that Nk does not skip any layer.

Let S1 = {j ∈ [k] : 1 ∈ Ij} be the indices of subnetworks that do not skip the first layer. By the last
paragraph, k ∈ S1. Let S2 = [k]− S1 be the indices of subnetworks that skip the first layer.

Let s1, s2, . . . sn be some real numbers to be decided later. Let w̃(λ)(s1, s2, . . . sn) be the weights
obtained from w(λ) by multiplying the weights of the edges connected to the ith input node by 1 + si
for all i ∈ [n]. Since w̃(λ)(s1, s2, . . . sn) differs from w(λ) only in the first layer, for all i ∈ [n],

FNj
(w̃(λ)(s1, s2, . . . sn))[i] = (1 + si)FNj

(w(λ))[i] (210)

for all j ∈ S1 and
FNj

(w̃(λ)(s1, s2, . . . sn))[i] = FNj
(w(λ))[i] (211)

for all j ∈ S2. By the above equations, for all i ∈ [n],

FN (w̃(λ)(s1, s2, . . . sn))[i] = (1 + si)
∑
j∈S1

FNj
(w(λ))[i] +

∑
j∈S2

FNj
(w(λ))[i]. (212)

40



By equation (209), FN (w(λ))[i] and λβi have the same sign for all i ∈ [n]. By equations (208) and
(212), for all i ∈ [n],

FN (w̃(λ)(s1, s2, . . . sn))[i] = (1+si)(λβi+o(λ))+o(λ) = λ[(1+si)(βi+o(1))+o(1)], as λ→ ∞.
(213)

By equation (213), if we solve for FN (w̃(λ)(s1, s2, . . . sn))[i] = λβi, then we get

si =
o(1)

βi + o(1)
= o(1), as λ→ ∞. (214)

By equation (214), for each i ∈ [n], there exists si = o(1), such that

FNResNet
(w̃(λ)(s1, s2, . . . sn)) = λβ. (215)

Thus,

RResNet(λβ) ≤
∥∥∥w̃(λ)(s1, s2, . . . sn)

∥∥∥2
2
≤ (1 + max

i∈[n]
|si|)2

∥∥∥w(λ)
∥∥∥2
2
= (1 + o(1))Rk(λβ), (216)

where the last step follows from Eq. (206) and the fact that s2i = o(1) and |si| = o(1) for all i ∈ [n].
Thus,

lim sup
λ→∞

RResNet(λβ)

Rk(λβ)
≤ lim sup

λ→∞

(1 + o(1))Rk(λβ)

Rk(λβ)
= lim sup

λ→∞
1 + o(1) = 1. (217)

Now, we drop the condition βi ̸= 0 for all i ∈ [n]. Let 0 < ϵ < 1. Let w ∈ Rp be the weights such
that

FNk
(w) = β, and ∥w∥22 = Rk(β). (218)

Let w(ϵ) be the weights obtained from w by adding ϵ to the weights on each edge. Let β(ϵ) =
FNk

(w(ϵ)). Then, there exists a constant C > 0, such that for all i ∈ [n],

|β(ϵ)i − βi| < Cϵ. (219)

Without loss of generality, assume that β(ϵ)i ̸= 0 for all i ∈ [n]. Let w(λ)(ϵ) be the weights obtained
from w(ϵ) by multiplying all the weights by λ1/dk . Let w(λ) be the weights obtained from w by
multiplying all the weights by λ1/dk . Then,

FNk
(w(λ)) = λβ, and

∥∥∥w(λ)
∥∥∥2
2
= λ2/dk∥w∥22 = λ2/dkRk(β) = Rk(λβ), (220)

by Lemma 37.

By the same argument as in the previous case, we get something similar to Eq (213)

FN (w̃(λ)(ϵ)(s1, s2, . . . sn))[i] = (1+si)(λβ(ϵ)i+o(λ))+o(λ) = λ[(1+si)(β(ϵ)i+o(1))+o(1)], as λ→ ∞.
(221)

Now, we solve for FN (w̃(λ)(ϵ)(s1, s2, . . . sn))[i] = λβi. By Equations (221) and (219), we get for
all i ∈ [n],

|si| = |βi − β(ϵ)i + o(1)

β(ϵ)i
| ≤ |Cϵ+ o(1)

β(ϵ)i
| ≤ C ′ϵ+ o(1), (222)

for some constant C ′ > 0.

By equation (222), for each i ∈ [n], there exists si, such that |si| ≤ C ′ϵ+ o(1) and

FNResNet
(w̃(λ)(s1, s2, . . . sn)) = λβ. (223)

Thus,

RResNet(λβ) ≤
∥∥∥w̃(λ)(ϵ)(s1, s2, . . . sn)

∥∥∥2
2

≤ (1 + max
i∈[n]

|si|)2
∥∥∥w(λ)(ϵ)

∥∥∥2
2

≤ (1 + max
i∈[n]

|si|)2(
∥∥∥w(λ)

∥∥∥2
2
+ C ′′λ2/dkϵ)

= (1 + o(1))(Rk(λβ) + C ′′λ2/dkϵ),

(224)
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for some C ′′ > 0, where the last step follows from Eq. (220) and the fact that s2i = o(1) and
|si| = o(1) for all i ∈ [n]. Thus,

lim sup
λ→∞

RResNet(λβ)

Rk(λβ)
≤ lim sup

λ→∞

(1 + o(1))(Rk(λβ) + C ′′λ2/dkϵ))

Rk(λβ)

= lim sup
λ→∞

(1 + o(1) +
C ′′λ2/dkϵ

λ2/dkRk(β)
)

= 1 + C ′′′ϵ,

(225)

for some C ′′′ > 0. Since ϵ ∈ (0, 1) is arbitrary, we get

lim sup
λ→∞

RResNet(λβ)

Rk(λβ)
≤ 1. (226)

On the other hand, we will show that

lim inf
λ→∞

RResNet(λβ)

Rk(λβ)
≥ 1. (227)

As before, let β ∈ Rn be fixed and let f : R+ −→ R be defined as

f(λ) = RResNet(λβ). (228)

Let wλ ∈ Rp be weights such that

FNResNet
(wλ) = λβ, and ∥wλ∥22 = RResNet(λβ). (229)

Let E be the set of edges in NResNet. For each e ∈ E, let wλ(e) be the weights on e in wλ. Then,

wλ(e)
2 ≤ RResNet(λβ)

(a)

≤ (1 + o(1))Rk(λβ)
(c)
= (1 + o(1))λ2/dkRk(β), (230)

where (a) follows from Eq. (224) and (c) follows from Lemma 37. Thus,

|wλ(e)| = O(λ1/dk) as λ→ ∞. (231)

Since Nj is of depth dj < dk for all j < k,∥∥FNj
(wλ)

∥∥
2
= O(λdj/dk) = o(λ) as λ→ ∞, (232)

for all j < k. Thus, ∥∥∥∥∥∥
k−1∑
j=1

FNj (wλ))

∥∥∥∥∥∥
2

= o(λ) as λ→ ∞. (233)

Note that

FNk
(wλ) = λβ −

k−1∑
j=1

FNj
(wλ). (234)

Thus,

RResNet(λβ) = ∥wλ∥22

≥ Rk(λβ −
k−1∑
j=1

FNj (wλ))

= λ2/dkRk(β − (

k−1∑
j=1

FNj
(wλ))/λ)

(a)
= λ2/dkRk(β − o(1)),

(235)

where (a) follows from Eq. (233). Thus,

RResNet(λβ)

Rk(λβ)
≥ λ2/dkRk(β − o(1))

λ2/dkRk(β)
=
Rk(β − o(1))

Rk(β)
. (236)
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Taking lim inf on both sides of Eq. (236), we get

lim inf
λ→∞

RResNet(λβ)

Rk(λβ)
≥ lim inf

λ→∞

Rk(β − o(1))

Rk(β)
= 1, (237)

where in the last step we used Lemma 43. By equations (204) and (237),

RResNet(λβ)

Rk(λβ)
−→ 1, as λ→ ∞. (238)

Theorem 12. Suppose that d1 < d2 < · · · < dk. Let h : Rn −→ R be a homogeneous function. If
FNResNet

induces h as induced complexity measure, then FN1 also induces h as induced complexity
measure.

Proof. Suppose that NResNet induces h as induced complexity measure. Let e1 = (1, 0, . . . , 0)T ∈
Rn and β′ ∈ Rn be any vector such that h(e1) = h(β′). Since h is homogeneous, h(λe1) = h(λβ′)
for all λ > 0. Since NResNet induces h as induced complexity measure and h(λe1) = h(λβ′),

RResNet(λe1) = RResNet(λβ
′) (239)

for all λ > 0. By Theorem 4,

lim
λ→0

RResNet(λe1)

R1(λe1)
= 1, and lim

λ→0

RResNet(λβ
′)

R1(λβ′)
= 1. (240)

By equations (239) and (240),

lim
λ→0

R1(λβ
′)

R1(λe1)
= 1. (241)

By Lemma 37 and Eq. (241),

1 = lim
λ→0

R1(λβ
′)

R1(λe1)
= lim

λ→0

λ2/d1R1(β
′)

λ2/d1R1(e1)
= lim

λ→0

R1(β
′)

R1(e1)
=
R1(β

′)

R1(e1)
. (242)

Let L be the degree of homogeneity of h. Since induced complexity measure is invariant up to
monotonic transformations, we may assume without loss of generality that h(e1) = 1. Then, for any
β ∈ Rn,

R1(β) = R1(h(β)
1/Lβ/h(β)1/L)

(a)
= h(β)2/Ld1R1(β/h(β)

1/L)

(c)
= h(β)2/Ld1R1(e1)

(d)
= d1h(β)

2/Ld1 ,

(243)

where (a) follows from Lemma 37, (c) follows from Eq. (242), and (d) follows from Lemma 46.
Thus, N1 induces h as induced complexity measure.

C.2 A simple ResNet

Now, we give an example of a simple ResNet. In this simple ResNet,

FSResNet(w) = w2 + diagw1w2, (244)

where w = (w1, w2) is the weights of the network. For i ∈ [2], wi ∈ Rn. Let RSResNet :=
RFSResNet

be the representation cost under FSResNet defined in Eq. (1).

In this simple ResNet, there are two component networks N1 and N2, with I1 = {1} and I2 = {1, 2}.
In this case, the first subnetwork N1 skips the first diagonal layer, while the second subnetwork
N2 goes through both layers. Note that N1 induces l2 norm while N2 induces l1 norm. In light of
Theorem 4, we should expect that the representation cost RSResNet interpolates between l2 norm
and l1 norm.

Theorem 30. For β ∈ Rn, RSResNet(β) =
∑n

i=1(r(βi)
2 +

β2
i

(r(βi)+1)2 ), where r(γ) is the unique
positive real root of the equation x(x+ 1)3 = γ2.
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Proof. Since β = w2 + diag(w1)w2, we have

βi = w2[i](w1[i] + 1). (245)

Thus,

w2[i] =
βi

w1[i] + 1
. (246)

Let f(x, γ) = x2 + γ2/(x+ 1)2. Note that

RSResNet(β) = min
x1,...,xn

n∑
i=1

f(xi, βi) =

n∑
i=1

min
xi

f(xi, βi). (247)

Thus, in order to compute RSResNet(β), it suffices to find the minimum of f(x, γ) with respect to x.
Taking the derivative with respect to x and set it to 0, we get

2x− 2γ2

(x+ 1)3
= 0, (248)

which implies
x(x+ 1)3 = γ2. (249)

Since

f ′′(x) = 2 +
6γ2

(x+ 1)4
> 0, (250)

there is a unique minimum for f . For each γ ∈ R, let

r(γ) = argmin f(x). (251)

Then we claim that
r(γ) ≥ 0. (252)

Suppose that r(γ) < 0. Then

f(−r(γ), γ) = r(γ)2 +
γ2

(|r(γ)|+ 1)2

< r(γ)2 +
γ2

(r(γ) + 1)2

= f(r(γ), γ),

(253)

which contradicts the definition of r(γ). Then r(γ) is a positive root to Eq. (249). We claim that
Eq. (249) could only have one positive real roots. Suppose that Eq. (249) have two distinct real roots
x1 > x2 > 0. Let

q(x) = x(x+ 1)3. (254)
Then

q(x1) = q(x2) = γ2. (255)
However,

q′(x) = 4x3 + 9x2 + 6x+ 1 > 0, (256)
when x > 0. Thus,

q(x1) > q(x2), (257)
which is a contradiction. Thus, r(γ) is the unique positive real root of Eq. (249). Let g(γ) =
minx f(x, γ). Then we have

g(γ) = f(r(γ), γ) = r(γ)2 +
γ2

(r(γ) + 1)2
. (258)

Then the result follows since RSResNet(β) =
∑n

i=1 g(βi).

We give some plots to show the behavior of g(γ) := r(γ)2 + γ2

(r(γ)+1)2 in Figure 2, which shows
that the representation cost RSResNet transits from l2 norm to l1 norm. This is in accordance with
Theorem 4.
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(a) γ = 0 to 0.099 (b) γ = 10000 to 10100 (c) γ = 0 to 2

Figure 2: Representation Cost of a simple ResNet

D Supplementary materials of depth two neural networks

In this section, we study the representation cost of two layer neural networks N . In particular, we
will show that RN is always a norm and will characterize RN through both its primal and dual norms.
From the primal characterization, we will find architectures that induce k−support norms as induced
complexity measure. From the dual characterization, we will find architectures that induce l2,1 norm
as induced complexity measure.

D.1 Primal characterization of representation costs of depth two networks

Note that a two layer linear homogeneous feedforward neural network N can be represented by a
graph G = (V,E) with vertex set V = NI ∪NH ∪ {O}, where |NI | = n denotes the nodes in the
input layer, NH denotes the nodes in the hidden layer, and O denote the single output node. Two
vertices are adjacent in G if and only if the corresponding nodes are connected by an edge in N .
Since N has only one node in the output layer, we may assume without loss of generality that all
nodes in the hidden layer are connected to the node in the output layer. Now for each h ∈ NH , let

Sh = {i ∈ NI : (i, h) ∈ E} (259)

denote the set of nodes in the input layer that are adjacent to h. Note that this definition agrees with
the one given in neural networks of general depth in equation (4). Let w be the weights on the neural
network N . We define FN (w) ∈ Rn to be the vector corresponding to the linear predictor generated
by w. For any β ∈ Rn, we define

RN (β) = min{∥w∥22 : FN (w) = β} (260)

to be the representation cost of β. Now, we give a characterization of the representation cost.

Lemma 5. For a depth-two linear homogeneous feedforward neural network N without shared
weights, RN (β) = 2min{

∑
h∈NH

∥vh∥2 : supp(vh) ⊆ Sh,
∑

h∈NH
vh = β}.

In the above lemma, as we shall see in the proof, each vh denote the vector corresponding to the
linear predictor generated by part of the network N .

Proof. Let w be the weights of this neural network. We partition this network as follows. For each
h ∈ NH , let wh be the weights obtained from w by keeping the weights of w for all the edges that
are adjacent to the node h (including the one between h and the output node O) and put all the rest of
the weights to 0. Let

vh = FN (wh). (261)

Then we have

FN (w) =
∑

h∈NH

vh, supp(vh) ⊆ Sh, and ∥w∥22 =
∑

h∈NH

∥wh∥22. (262)
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Let w1, . . . , w|Sh| be the weights in wh corresponding to edges between nodes in the input layer and
h. Let λh be the weights on the edge between h and the output node O. Then

min{∥wh∥22 : FN (wh) = vh} = min

{
λ2h +

|Sh|∑
i=1

w2
i : λhwi = vh[i], ∀i ∈ [n]

}

= min

{
λ2h +

|Sh|∑
i=1

vh[i]
2/λ2h : λh > 0

}
(a)
= 2∥vh∥2,

(263)

where (a) follows from AM-GM inequality and the fact that supp(vh) ⊆ Sh. Thus,

RN (β) = min{∥w∥22 : FN (w) = β}

= min

{ ∑
h∈NH

∥wh∥22 :
∑

h∈NH

FN (wh) = β

}
(b)
= min

{ ∑
h∈NH

min{∥wh∥22 : FN (wh) = vh} : supp(vh) ⊆ Sh,
∑

h∈NH

vh = β

}
(c)
= min

{ ∑
h∈NH

2∥vh∥2 : supp(vh) ⊆ Sh,
∑

h∈NH

vh = β

}

= 2min

{ ∑
h∈NH

∥vh∥2 : supp(vh) ⊆ Sh,
∑

h∈NH

vh = β

}
,

(264)

where (b) follows from the fact that whs have disjoint support, and (c) follows from Eq. (263).

Note that the above result implies that RN (·) is a norm. Next, we study its dual norm. For simplicity,
let ∥·∥N = RN (·)/2 and ∥·∥∗N denote the dual norm of ∥·∥N . Then, the dual norm ofRN (·) satisfies:

R∗
N (·) = 1

2
∥·∥∗N . (265)

D.2 Dual characterization of representation costs of depth two networks

Lemma 6. For a depth-two linear homogeneous feedforward neural network N without shared
weights, R∗

N (β) = 1
2 max{(

∑
i∈Sh

β2
i )

1/2 : h ∈ NH}.

Proof. By definition of dual norm,

∥β∥∗N = max{(⟨a, β⟩ : ∥a∥N ≤ 1}. (266)

First, we pick a ∈ Rn such that ∥a∥N ≤ 1. Thus, there exists vh’s such that∑
h∈NH

vh = a, supp(vh) ⊆ Sh,
∑

h∈NH

∥vh∥2 ≤ 1. (267)

Thus,

⟨a, β⟩ (267)
=

∑
h∈NH

⟨vh, β⟩
(a)

≤
∑

h∈NH

∥vh∥2

(∑
i∈Sh

β2
i

)1/2
(267)
≤ max

{(∑
i∈Sh

β2
i

)1/2

: h ∈ NH

}
,

(268)
where we used Cauchy’s inequality and supp(vh) ⊆ Sh (267) in (a). By equations (266) and (268),

∥β∥∗N ≤ max

{(∑
i∈Sh

β2
i

)1/2

: h ∈ NH

}
. (269)
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For the other direction, let h∗ ∈ Nh be such that( ∑
i∈Sh∗

β2
i

)1/2

= max

{(∑
i∈Sh

β2
i

)1/2

: h ∈ NH

}
. (270)

Then, let a∗ ∈ Rn be such that

a∗[i] =
1i∈Sh∗βi√∑

i∈Sh∗ β
2
i

. (271)

By Lemma 5,
∥a∥N ≤ 1, (272)

since supp(a) ⊆ Sh∗ and ∥a∥2 = 1. By equations (266) and (270),

∥β∥∗N ≥ ⟨a∗, β⟩ =

( ∑
i∈Sh∗

β2
i

)1/2

= max

{(∑
i∈Sh

β2
i

)1/2

: h ∈ NH

}
. (273)

Thus,

R∗
N (β) =

1

2
∥β∥∗N =

1

2
max

{(∑
i∈Sh

β2
i

)1/2

: h ∈ NH

}
. (274)

By the above result, if there exists h1, h2 ∈ NH such that h1 ̸= h2 and Sh1
⊆ Sh2

, then removing
h1 from N would not change the representation cost since∑

i∈Sh1

β2
i ≤

∑
i∈Sh2

β2
i (275)

for all β ∈ Rn. Thus, we might assume without loss of generality that

Sh1
̸⊆ Sh2

∀h1 ̸= h2, h1, h2 ∈ NH . (276)

Moreover, the above result shows that the norms that can be induced by two layer neural networks
as induced complexity measure are precisely the dual norms of l∞,2 group norms with possibly,
overlapping between groups.

Now, we will give some applications of the primal and dual characterizations of the representation
cost RN (β) of two layer neural networks.

D.3 k-support norms

In this section, we give an architecture of a two layer linear neural network which induces the
k-support norm as induced complexity measure. For β ∈ Rn and k ∈ [n], define the k-support norm
as

∥β∥spk = min

{ ∑
I∈Gk

∥vI∥2 : supp(vI) ⊆ I,
∑
I∈Gk

vI = β

}
, (277)

where Gk denotes the set of subsets of [n] of size at most k. Now we define the architecture. For each
I ∈ Gk, I ̸= ∅, there is a node uI in the hidden layer which is connected to the ith node in the input
layer if and only if i ∈ I . The output layer has one node which is connected to all nodes in the hidden
layer. Note that in the definition of k-support norm, we could define Gk to be the set of subsets of [n]
of size exactly k by the remarks after Lemma 6.

Letw ∈ RN be the weights of the networks, whereN is the total number of edges. Let Fksp(w) ∈ Rn

be the predictor obtained by weights w on this network. Let

Rksp(β) = min{∥w∥22 : Fksp(w) = β} (278)

denote the representation cost of β ∈ Rn for the architecture defined above. By Lemma 5, we
immediately get the following result.
Theorem 31. For any β ∈ Rn,

Rksp(β) = 2∥β∥spk . (279)
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We prove a result that is stronger than Theorem 11.
Theorem 32. For any k ∈ [n], there exists a homogeneous feedforward depth two linear neural
network without shared weights that induces k-support norm as induced complexity measure. Fur-
thermore, a homogeneous feedforward linear depth two neural network N without shared weights
induces k-support norm if and only if the mixing depths of subsets S satisfy

MN (S) =

{
1 if |S| ≤ k;

2 if |S| > k.
(280)

In particular, k-balanced network induces k-support norm.

Proof. The “if” part is a direct consequence of Theorem 31 and the remarks after Lemma 6.

For the “only if” part, suppose that N induces k-support norm. By Eq. 277, for any β ∈ Rn such that
| supp(β)| = k, ∥β∥spk = ∥β∥2. This implies that for S := supp(β), the subnetwork NS induces l2
norm by Lemma 44. Thus, by Theorem 35, MNS

(S) = 1, which implies that there exists v ∈ N1

such that S ⊆ Sv . Thus,
MN (S) = 1 if |S| ≤ k. (281)

For the other case, suppose that there exist S′ ⊆ [n] and u ∈ N1 such that |S′| = k + 1 and S′ ⊆ Su.
Then, for any β′ ∈ Rn such that supp(β′) = S′,

RN (β′) = 2∥β′∥2, (282)

by Lemma 46. Now, take β ∈ Rn such that | supp(β)| = k and ∥β∥2 = ∥β′∥2. By Eq. 281, Eq. 282
and Lemma 46, we have

RN (β) = 2∥β∥2 = 2∥β′∥2 = RN (β′). (283)

Since N induces k-support norm,

∥β′∥spk = ∥β∥spk = ∥β∥2 = ∥β′∥2. (284)

However, since | supp(β′)| > k, ∥β′∥spk > ∥β′∥2 by definition of k-support norm in Eq. 277, and
triangle inequality. This is a contradiction. Thus,

MN (S) = 2 if |S| > k. (285)

For the last claim, if N is a k-balanced network, then

MN (S) =

{
1 if |S| ≤ k;

2 if |S| > k.
(286)

Thus, N induces k-support norm by arguments above.

D.4 l2,1 norms

This section introduces the architecture with l2,1 group norm as the induced complexity measure. Let
G1, . . . , Gk be a partition of [n]. Let

C =

k∏
j=1

Gj = G1 ×G2 × · · · ×Gk (287)

be the Cartesian product of the k groups. This architecture has a node uh for each h ∈ C such that uh
is connected to the ith input node if and only if

i ∈ Sh := {h[j] : j ∈ [k]}, (288)

where h[j] denote the element in the jth entry of h. Then we connect all the nodes in the hidden layer
to the output node. See Figure 1b for an example.

Let w ∈ Rp be the weights of the networks, where p = (k + 1)
∏k

j=1 |Gj | is the total number of
edges. Let N2,1 be the architecture defined above. Let RN2,1

:= RFN2,1
be the representation cost

under FN2,1
as defined in Eq (1). By Lemma 6, we immediately get the following result.
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Corollary 33. For any β ∈ Rn,

R∗
N2,1

(β) =
1

2
max

{(∑
i∈Sh

β2
i

)1/2

: h ∈ C

}
. (289)

Now, we state the result.
Theorem 34. RN2,1

(β) = 2∥β∥2,1.

Proof. It suffices to show that

R∗
N2,1

(β) =
1

2
∥β∥2,∞ =

1

2

√√√√ k∑
j=1

(
max
i∈Gj

|βi|

)2

. (290)

By Corollary 33,

R∗
N2,1

(β) =
1

2
max

{(∑
i∈Sh

β2
i

)1/2

: h ∈ C

}
=

1

2
max

{(
k∑

j=1

β2
ij

)1/2

: ij ∈ Gj

}
. (291)

For each j ∈ [k], let i∗j ∈ Gj be such that

|βi∗j | = max
i∈Gj

|βi|. (292)

Now, in order to maximize
∑k

j=1 β
2
ij

, we would choose ij = i∗j for each j ∈ [k]. Thus,

max

{(
k∑

j=1

β2
ij

)1/2

: ij ∈ Gj

}
=

(
k∑

j=1

β2
i∗j

)1/2

=

√√√√ k∑
j=1

(
max
i∈Gj

|βi|

)2

. (293)

Thus,

R∗
N2,1

(β) =
1

2

√√√√ k∑
j=1

(
max
i∈Gj

|βi|

)2

. (294)

Since the dual of the dual norm is the primal norm,
RN2,1

(β) = (R∗
N2,1

)∗(β) = 2∥β∥∗2,∞ = 2∥β∥2,1. (295)

Intuition of Optimal Weights

Now, we consider a special case to show some intuitions of how the weights on the network would
attain minimum representation costs and properties of the representation which attains the minimum
cost.

Example Let n = 4, G1 = {1, 4}, G2 = {2, 3}. We give a plot of this architecture:
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Let N denote the above architecture. Recall that

RN (β) = 2min

{ ∑
h∈NH

∥vh∥2 : supp(vh) ⊆ Sh,
∑

h∈NH

vh = β

}
. (296)

In our case, let NH = {1, 2, 3, 4} and

S1 = {1, 2}, S2 = {1, 3}, S3 = {2, 4}, S4 = {3, 4}. (297)

Let {vi : i ∈ [4]} be such that

4∑
i=1

vi = β, supp(vi) ⊆ Si, ∀i ∈ [4]. (298)

Then, we have

∥β∥2,1 :=
√
(|β1|+ |β4|)2 + (|β2|+ |β3|)2)

=
√

(|v1[1] + v2[1]|+ |v3[4] + v4[4]|)2 + (|v1[2] + v3[2]|+ |v2[3] + v4[3]|)2)

≤
√
(|v1[1]|+ |v2[1]|+ |v3[4]|+ |v4[4]|)2 + (|v1[2]|+ |v3[2]|+ |v2[3]|+ |v4[3]|)2).

(299)

Now, note that

(|v1[1]|+ |v2[1]|+ |v3[4]|+ |v4[4]|)2 =

(
∥v1∥

1
2
2

|v1[1]|

∥v1∥
1
2
2

+ ∥v2∥
1
2
2

|v2[1]|

∥v2∥
1
2
2

+ ∥v3∥
1
2
2

|v3[4]|

∥v3∥
1
2
2

+ ∥v4∥
1
2
2

|v4[4]|

∥v4∥
1
2
2

)2

(a)

≤

(
4∑

i=1

∥vi∥2

)(
v1[1]

2

∥v1∥2
+
v2[1]

2

∥v2∥2
+
v3[4]

2

∥v3∥2
+
v4[4]

2

∥v4∥2

)
,

(300)

where in (a) we used Cauchy’s inequality. Similarly,

(|v1[2]|+ |v2[3]|+ |v3[2]|+ |v4[3]|)2 =

(
∥v1∥

1
2
2

|v1[2]|

∥v1∥
1
2
2

+ ∥v2∥
1
2
2

|v2[3]|

∥v2∥
1
2
2

+ ∥v3∥
1
2
2

|v3[2]|

∥v3∥
1
2
2

+ ∥v4∥
1
2
2

|v4[3]|

∥v4∥
1
2
2

)2

(b)

≤

(
4∑

i=1

∥vi∥2

)(
v1[2]

2

∥v1∥2
+
v2[3]

2

∥v2∥2
+
v3[2]

2

∥v3∥2
+
v4[3]

2

∥v4∥2

)
,

(301)

where in (b) we used Cauchy’s inequality. Now, by equation (299), we have

∥β∥2,1 ≤
√
(|v1[1]|+ |v2[1]|+ |v3[4]|+ |v4[4]|)2 + (|v1[2]|+ |v3[2]|+ |v2[3]|+ |v4[3]|)2)

≤

√√√√( 4∑
i=1

∥vi∥2

)(
v1[1]2 + v1[2]2

∥v1∥2
+
v2[1]2 + v2[3]2

∥v2∥2
+
v3[4]2 + v3[2]2

∥v3∥2
+
v4[4]2 + v4[3]2

∥v4∥2

)

=

√√√√( 4∑
i=1

∥vi∥2

)2

=

4∑
i=1

∥vi∥2.

(302)

Thus,
RN (β) ≥ 2∥β∥2,1. (303)
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For this lower bound to be attained, the vectors vi should satisfy

sign(v1[1]) = sign(v2[1]) = sign(β1)

sign(v3[4]) = sign(v4[4]) = sign(β4)

sign(v1[2]) = sign(v3[2]) = sign(β2)

sign(v2[3]) = sign(v4[3]) = sign(β3),

(304)

and
|v1[1]|
|v1[2]|

=
|v2[1]|
|v2[3]|

=
|v3[4]|
|v3[2]|

=
|v4[4]|
|v4[3]|

. (305)

The first requirement ensures that the triangle inequality (in (299)) would hold with equality. The
second requirement ensures that Cauchy’s inequality (in (a), (b) in (300) and (301)) would hold with
equality.

The more interesting requirement is the second one, which says that for each node in the hidden layer,
the ratio of the weight it distributes to the first group to the weight it distributes to the second group is
some constant which is the same for all nodes in the hidden layer. The same holds for more general
l2,1 architectures. Specifically, let G1, . . . , Gk be a partition of [n]. For each h ∈

∏k
j=1Gj , let vh

be the vector corresponding to the hidden node that corresponds to h. Let p(vh) be the projection
of vh on the coordinates in {h[j] : j ∈ [k]}. Then there exists a vector u ∈ Rk such that for each
h ∈

∏k
j=1Gj , there exists λh ∈ R, such that

|p(vh)| = λhu, (306)

where the absolute value | · | is applied component-wise.

Intuitively, this means that each node in the hidden layer distributes weights to different groups “in
the same way”(i.e there is a fixed ratio that is shared across all hidden nodes, of how to distribute
weights to input nodes in different groups).

E Supplementary materials: mixing depths and basic properties of
representation cost and induced complexity measure

We will use the following results in [15] many times:

RFC(β) = d∥β∥2/d2 , RDNN (β) = d∥β∥2/d2/d, (307)

where FC and DNN are fully connected network and diagonal network of depth d, respectively. In
this section, we only consider networks without shared weights.

E.1 Mixing Depths

We begin with the formal definition of mixing depths.

Definition E.1 (Mixing Depths). For any S ⊆ [n], the mixing depth of S with respect to N is
defined as:

MN (S) := min{i ∈ N : there exists v ∈ Ni such that S ⊆ Sv}, (308)

where Ni is the set of nodes in the i-th hidden layer of N , and Sv is defined in Eq. (4).

The notion of mixing depths capture how fast information from a subset of nodes in the input layers
is mixed together. Note that MN ({s}) = 1 for all s ∈ [n]. Thus, we only consider mixing depths of
sets of size at least two.

The following theorem identifies architectures that induce lp quasi-norms as architectures with
uniform mixing depths.

Theorem 35. A linear homogeneous feedforward neural network N without shared weights induces
lp quasi-norm if and only if MN (S) = 2/p, for all S ⊆ [n], |S| ≥ 2.
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Note that the above theorem implies Theorem 7 since mixing depths are always integers and a
diagonal network has uniform mixing depths.

Roughly speaking, architectures with small mixing depths usually have small representation costs,
and vice versa. The following theorem is a motivating example of this intuition.

Theorem 36. For all linear homogeneous feedforward neural networks N without shared weights
and of depth d,

RFC(β) = d∥β∥2/d2 ≤ RN (β) ≤ d∥β∥2/d2/d = RDNN (β). (309)

Furthermore, the lower bound is achieved for all β ∈ Rn if and only if the mixing depths MN (S) = 1
for all S ⊆ [n], and the upper bound is achieved for all β ∈ Rn if and only if the mixing depths
MN (S) = d for all S ⊆ [n] such that |S| ≥ 2.

Note that for a fixed set of input and output nodes, fully connected networks have the smallest possible
mixing depths while diagonal networks have the largest possible mixing depths. The result above
shows that architectures with smallest mixing depths have the smallest representation costs while
architectures with the largest mixing depths have the largest representation costs.

E.2 Basic properties of representation cost

We give some basic properties of representation cost for homogeneous feedforward architectures N .
First, we show that the representation cost function RN (β) is homogeneous.

Lemma 37. Let N be a homogeneous feedforward neural network without shared weights and of
depth d. Then for any λ > 0,

RN (λβ) = λ2/dRN (β), (310)

for all β ∈ Rn.

Proof. Let w be weights on N such that

FN (w) = β, and ∥w∥22 = RN (β). (311)

Then,

FN (λ1/dw) = λβ, and
∥∥∥λ1/dw∥∥∥2

2
= λ2/d∥w∥22, (312)

since d is the depth of N . Thus,

RN (λβ) ≤ λ2/dRN (β). (313)

On the other hand, substituting 1/λ to λ and λβ to β, we get the other direction

RN (β) ≤ RN (λβ)

λ2/d
. (314)

The result follows from equations (313) and (314).

Note that the same result holds with the same proof if we put ReLU activation (or any other
homogeneous activation) on N .

Then, we show that for any weights w that attains the minimum representation cost, its magnitude is
"uniform" across layers in a sense we define below.

Lemma 38. Let N be a homogeneous feedforward neural network without shared weights and of
depth d. Let β ∈ Rn. Let w = (w1, . . . , wd) be the weights on N , where wi denotes the weights on
from the i− 1th layer Ni−1 to the ith layer Ni such that

FN (w) = β, and ∥w∥22 = RN (β). (315)

Then

∥wi∥22 =
RN (β)

d
, (316)

for all i ∈ [d].
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Proof. It suffices to show that ∥wi∥22 = ∥wi+1∥22 for all i ∈ [d]. Let v ∈ Ni be an arbitrary node. Let
Ev

i−1 be the set of edges from Ni−1 to Ni that have v as one of their endpoints. Let Ev
i be the set of

edges from Ni to Ni+1 that have v as one of their endpoints. For any edge e, let we be the weights
on it. Then we claim that ∑

e∈Ev
i−1

w2
e =

∑
e∈Ev

i

w2
e . (317)

Suppose Eq. (317) does not hold. Then, by AM-GM inequality,( ∑
e∈Ev

i−1

w2
e

)
+

( ∑
e∈Ev

i

w2
e

)
> 2

√√√√( ∑
e∈Ev

i−1

w2
e

)( ∑
e∈Ev

i

w2
e

)
. (318)

However, we could then scale the weights we by λ for all e ∈ Ev
i−1 and scale the weights we by 1/λ

for all e ∈ Ev
i so that Eq. (317) holds. Let w′ be the weights after this modification. Then

FN (w′) = β, and ∥w′∥22 < ∥w∥22 = RN (β), (319)

which is a contradiction. Thus, Eq. (317) holds. Since v ∈ Ni is arbitrary,

∥wi∥22 =
∑
v∈Ni

∑
e∈Ev

i−1

w2
e =

∑
v∈Ni

∑
e∈Ev

i

w2
e = ∥wi+1∥22. (320)

Since RN (β) =
∑d

i=1 ∥wi∥22 = d∥w1∥22,

∥wi∥22 = ∥w1∥22 =
RN (β)

d
, (321)

for all i ∈ [d].

Note that the same result holds with the same proof if we put ReLU activation (or any other
homogeneous activation) on N .

Then, we show that the representation cost RN (β) only depends on |β|, where the absolute value | · |
is applied component-wise. Furthermore, RN (β) is strictly increasing in |βi| for all i ∈ [n].

Lemma 39. Let N be a homogeneous feedforward neural network without shared weights and of
depth d. For any β ∈ N ,

RN (β) = RN (|β|), (322)

where the absolute value | · | is applied component-wise. Furthermore, RN (β) is strictly increasing
in |βi| for all i ∈ [n].

Proof. Let β, β′ ∈ Rn such that |βi| = |β′
i| for all i ∈ [n]. We will show that

RN (β) = RN (β′). (323)

Let w be weights on N such that

FN (w) = β, and ∥w∥22 = RN (β). (324)

Then we modify the weights w as follows. For each edge (between the input layer N0 and the first
layer N1) in N that is connected to the ith input node, we scale its weight by sign(βiβ

′
i). We do this

modification for each i ∈ [n]. Let w′ denote the resulting weight. Then

FN (w′) = β′, and ∥w′∥22 = ∥w∥22 = RN (β). (325)

Thus,
RN (β′) ≤ RN (β). (326)

Switching the role of β and β′, we get

RN (β) ≤ RN (β′). (327)

Then, Eq. (323) follows from equations (326) and (327). In particular, Eq. (323) holds for β′ = |β|.
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For the second claim, fix an i ∈ [n]. Let β′′ ∈ Rn such that |β′′
j | = |βj | for all j ̸= i and |β′′

i | < |βi|.
By the first claim we just proved, we may assume that both β and β′′ have non-negative entries
(β, β′′ ∈ Rn

+). Then we modify the weights w as follows. For each edge (between the input layer N0

and the first layer N1) in N that is connected to the ith input node, we scale its weight by β′′
i /βi. We

do this modification only for the single index i. Let w′′ denote the resulting weight. Then

FN (w′′) = β′′, and ∥w′′∥22 < ∥w∥22 = RN (β). (328)

Thus,
RN (β′′) < RN (β). (329)

Thus, RN (β) is strictly increasing in |βi| for all i ∈ [n].

In light of this result, we can always assume that β ∈ Rn
+ when considering representation cost of

homogeneous feedforward neural networks. In addition, if we are given two vectors β, β′ ∈ Rn such
that |βi| ≤ |β′

i| for all i ∈ [n], then RN (β) ≤ RN (β′).

Next, we show that we can assume that the weights w are always non-negative.
Lemma 40. Let N be a homogeneous feedforward neural network without shared weights and of
depth d. Let β ∈ Rn

+. Then there exists non-negative weights w such that

FN (w) = β, and ∥w∥22 = RN (β). (330)

Proof. Let w be weights on N such that

FN (w) = β, and ∥w∥22 = RN (β). (331)

We will show that |w| also satisfies Eq. (331), where |w| is obtained from w by taking absolute values
of the weights. First, note that ∥w∥22 = ∥|w|∥22. Thus,

RN (FN (|w|)) ≤ ∥|w|∥22 = ∥w∥22 = RN (β). (332)

On the other hand, note that
FN (|w|)[i] ≥ FN (w)[i] = βi, (333)

for all i ∈ [n]. Thus, by Lemma 39,

RN (FN (|w|)) ≥ RN (β). (334)

By equations (332) and (334), we have

RN (FN (|w|)) = RN (β). (335)

Since RN (β) is strictly increasing in |βi| as stated in Lemma 39, we must have

FN (|w|) = β (336)

by equations (333) and (335).

In light of Lemma 39 and Lemma 40, it suffices to consider non-negative vectors and non-negative
weights when studying representation cost of homogeneous feedforward neural networks.

Then, we consider the following question: “if we perturb the vector β a little bit, how does its
representation cost change?”.
Lemma 41. Let N be a homogeneous feedforward neural network without shared weights and of
depth d. Let β, v ∈ Rn such that

∥v∥2 ≤ δ < 1, (337)
for some δ ∈ R. Then,

RN (β + v) ≤ RN (β) + 2
√
nRN (β)δ1/d + |E|δ2/d, (338)

where E is the set of edges in the neural network N . In addition, if there exists some constant C > 0
such that

RN (β′) ≤ C, (339)
for all β′ ∈ B1(β) := {β′ ∈ Rn : ∥β′ − β∥2 ≤ 1}, then

|RN (β + v)−RN (β)| ≤ 2
√
nCδ1/d + |E|δ2/d. (340)
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Proof. By Lemma 39, we can assume that βi ≥ 0 for all i ∈ [n]. Since we want to get an upper bound
onRN (β+v), we might assume that vi ≥ 0 for all i ∈ [n], by Lemma 39 (since |βi+vi| ≤ βi+ |vi|).
Let w be weights on N such that

FN (w) = β, and ∥w∥22 = RN (β). (341)

By Lemma 40, we can assume that the weights w are non-negative. We modify the weights w by
adding δ1/d to the weights of each edges in N . Letw′ denote the resulting weights. Let β′ = FN (w′).
Since N is of depth d and all the weights are non-negative,

β′
i ≥ βi + δ ≥ (β + v)[i], (342)

for all i ∈ [n]. Thus, by Lemma 39,

RN (β + v) ≤ RN (β′) ≤ ∥w′∥22. (343)

Let e be an edge in N . Let we and w′
e be its weights before and after the modification. Then, note

that
w′2

e = (we + δ1/d)2 = w2
e + 2weδ

1/d + δ2/d. (344)

Then,

∥w′∥22 =
∑
e∈E

w′2
e

=
∑
e∈E

(w2
e + 2weδ

1/d + δ2/d)

(a)

≤ RN (β) + 2
√
nRN (β)δ1/d + |E|δ2/d,

(345)

where we used Cauchy’s inequality (or l1 norm is bounded by
√
n times l2 norm) in (a). By equations

(345) and (343),
RN (β + v) ≤ RN (β) + 2

√
nRN (β)δ1/d + |E|δ2/d. (346)

Then, if there exists C > 0 such that
RN (β′) ≤ C, (347)

for all β′ ∈ B1(β) := {β′ ∈ Rn : ∥β′ − β∥2 ≤ 1}, then by Eq. (346), we have

RN (β + v)−RN (β) ≤ 2
√
nCδ1/d + |E|δ2/d. (348)

Substituting β + v for β and −v for v, we have

RN (β)−RN (β + v) ≤ 2
√
nCδ1/d + |E|δ2/d. (349)

By equations (348) and (349),

|RN (β + v)−RN (β)| ≤ 2
√
nCδ1/d + |E|δ2/d. (350)

In light of Lemma 41, it is useful to have an upper bound on the representation cost RN (β) that
works for all architectures N . Intuitively, an architecture N gives rise to high representation cost
RN (·) if there are very few edges in it. On the other hand, for any valid architecture, there has to be a
path from each input node to the output node. Thus, diagonal network seems to be the "sparsest"
architecture that satisfies this condition. Indeed, as we shall see, the representation cost of a diagonal
network RDNN (β) = d∥β∥2/d2/d (as shown in [15]) is an upper bound for the representation cost of
any architecture of the same depth.

Lemma 42. Let N be a homogeneous feedforward neural network without shared weights and of
depth d. For any β ∈ Rn,

RN (β) ≤ d∥β∥2/d2/d. (351)

Furthermore, the upper bound is achieved for all β ∈ Rn if and only if the mixing depthsMN (S) = d
for all S ⊆ [n], |S| ≥ 2.
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Proof. By Lemma 39, it suffices to consider β ∈ Rn
+. For each i ∈ [n], let Pi be a path from the ith

input node to the output node. For each edge e ∈
⋃n

i=1 Pi, assign it the weights max{β1/d
i : e ∈ Pi}.

For any edge not in
⋃n

i=1 Pi, assign it weight 0. Let w denote the resulting weights. Then

∥w∥22 ≤
n∑

i=1

|Pi|β2/d
i = d∥β∥2/d2/d, (352)

where |Pi| = d is the length of Pi and

FN (w)[i] ≥ (β
1/d
i )d = βi. (353)

Thus, by Lemma 39,
RN (β) ≤ RN (FN (w)) ≤ ∥w∥22 ≤ d∥β∥2/d2/d. (354)

Note that the condition MN (S) = d for all S ⊆ [n], |S| ≥ 2 is equivalent to N being essentially
diagonal. Suppose that N is not essentially diagonal. Then we could choose for each i ∈ [n], a
path Pi from the ith input node to the output node such that P1, . . . , Pn are not edge disjoint. Then,
Eq. (352) is strict inequality as long as supp(β) = [n]. For such β,

RN (β) < d∥β∥2/d2/d. (355)

Now, suppose that N is essentially diagonal. We partition the network N as follows. For each
i ∈ N0, let

Vi = {v ∈ V : there exists a directed path from i to v}. (356)
Let

Ei = {e ∈ E : both endpoints of e lie in Vi}. (357)
Let Ni be the architecture corresponding to the directed graph (Vi, Ei). Since N is essentially
diagonal,

Ei ∩ Ej = ∅, (358)
for all i ̸= j. Thus,

RN (β)
(s)
=

n∑
i=1

RNi(βi)
(a)
=

n∑
i=1

RFC(βi) =

n∑
i=1

d|βi|2/d = d∥β∥2/d2/d, (359)

where in (s) we used the fact that the networks Ni are disjoint except at the output node and⋃
i∈N0

Ei = E, and in (a) we used Corollary 47(on the second layer of Ni) to reduce each Ni to a
directed path, which is a fully connected network with one node in each layer.

Next, we show that the representation cost function RN (β) is continuous.
Lemma 43. Let N be a homogeneous feedforward neural network without shared weights and of
depth d. Then, the representation cost function RN (β) is continuous.

Proof. Let β ∈ Rn. Let C = d(∥β∥2/d2/d + n). Then, by Lemma 42,

RN (β′) ≤ d∥β′∥2/d2/d ≤ d

n∑
i=1

(|βi|+ 1)2/d ≤ d

n∑
i=1

(|βi|2/d + 1) = C, (360)

for all β′ ∈ B1(β) := {β′ ∈ Rn : ∥β′ − β∥2 ≤ 1}. Let (β(t))t∈N be a sequence in Rn converging
to β. Without loss of generality, assume that β(t) ∈ B1(β) for all t ∈ N. By Lemma 41,

|RN (β(t))−RN (β)| ≤ 2
√
nCδ

1/d
t + |E|δ2/dt , (361)

where δt =
∥∥β(t) − β

∥∥
2
. Taking lim sup on both sides of Eq. (361), we get

lim sup
t→∞

|RN (β(t))−RN (β)| ≤ lim sup
t→∞

2
√
nCδ

1/d
t + |E|δ2/dt = 0, (362)
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since δt → 0 as t→ ∞. Since |RN (β(t))−RN (β)| ≥ 0, Eq. (362) implies that

lim
t→∞

|RN (β(t))−RN (β)| = 0. (363)

Thus,
lim
t→∞

RN (β(t)) = RN (β). (364)

Thus, RN (β) is continuous.

E.3 Reference function

A common technique we will use to prove that some certain architecture N does not induce a certain
quasi-norm ∥·∥ as induced complexity measure is as follows. We first find a function f : Rn −→ R
such that f(β) depends only on ∥β∥. Then, we find β′, β′′ ∈ Rn such that

∥β′∥ = ∥β′′∥, RN (β′) = f(β′), and RN (β′′) ̸= f(β′′). (365)

Now, if N induces ∥·∥ as induced complexity measure, then RN (β′) = ψ(∥β′∥) = ψ(∥β′′∥) =
RN (β′′). On the other hand, RN (β′) = f(β′) = f(β′′) ̸= RN (β′′) by Eq. (365) and the fact that
f(β) depends only on ∥β∥. Thus, N does not induce ∥·∥ as induced complexity measure. We will
call such a function f a reference function, since we compare the representation cost RN to it in
order to get a contradiction.

E.4 Subnetwork

Another common technique we will use is to consider a subnetwork NS of N corresponding to a
certain subset S ⊆ [n] of the input nodes. We obtain NS from N in two steps. First, we remove all
input nodes in N except for those in S ⊆ [n]. Then, we remove all nodes that are isolated(cannot be
reached by any input node in S via a directed path). Now, we give the formal definition.

Definition E.2 (Subnetwork). For S ⊆ [n], the restriction of N to S is called NS . The subnetwork
NS is obtained from N by first removing all input nodes in N except for those in S ⊆ [n] and then
removing all hidden nodes that are isolated from the remaining input nodes.

Alternatively, NS is the subnetwork of N corresponding to the subgraph generated by nodes v ∈ V
such that

Sv ∩ S ̸= ∅. (366)

The induced complexity measure of the subnetwork is tightly related to that of the original network.

Lemma 44. Let N be an architecture. Let NS be the subnetwork of N with respect to the input
nodes in S ⊆ [n] (Def E.2). Then for any β ∈ Rn such that supp(β) ⊆ S,

RNS
(βS) = RN (β), (367)

where βS is the projection of β on coordinates in S. Furthermore, if N induces some quasi-norm
h(·) as induced complexity measure, then NS induces hS(·) as induced complexity measure, where
hS(·) : R|S| −→ R is defined as

hS(β
′) = h(β), (368)

where β is the lifting of β′ defined as: βi = β′
i for i ∈ S and βi = 0 otherwise.

Proof. Let w′ be the weights on NS such that FNS
(w′) = βS and RNS

(βS) = ∥w′∥22. Then, we
extend w′ to weights on N by putting 0 weights on new edges. Let w denote the resulting weights.
Then,

FN (w) = β, and ∥w∥22 = ∥w′∥22 = RNS
(βS). (369)

Thus,
RN (β) ≤ ∥w∥22 = RNS

(βS). (370)

For the other direction, let w̃ be the weights on N such that FN (w̃) = β and RN (β) = ∥w̃∥22. Since
supp(β) ⊆ S, any edge in N that is not in NS would not contribute to nonzero entries of β. Thus,
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setting the weights of these edges to 0 would not affect FN (w̃). Since RN (β) = ∥w̃∥22, the weights
on these edges must already be 0 in w̃. Thus,

∥w̃∥22 = ∥w̃S∥22, and FNS
(w̃S) = βS (371)

where βS is the projection of β on the coordinates in S and w̃S is restriction of w̃ to the edges of NS .
Thus,

RNS
(βS) ≤ ∥w̃S∥22 = ∥w̃∥22 = RN (β). (372)

Thus,
RNS

(βS) = RN (β). (373)

Since N induces h(·) as induced complexity measure, there exists a strictly increasing function
ψ : R −→ R such that

RN (β) = ψ(h(β)), (374)
for all β ∈ Rn by Def 1.1. Thus,

RNS
(βS) = RN (β) = ψ(h(β)) = ψ(hS(βS)), (375)

since supp(β) ⊆ S. Finally, note that for any β′ ∈ R|S|, β′ = β′′
S , where β′′

i = β′
i if i ∈ S and

β′′
i = 0 otherwise. Thus,

RNS
(β′) = ψ(hS(β

′)), (376)
for all β′ ∈ R|S|. Thus, NS induces hS(·) as induced complexity measure.

E.5 Contraction of paths

Another technique we will use to modify architectures is to contract a path. Let NP be an architecture
which is a concatenation of some architecture N0:i of depth i, followed by a fully connected layer
consisting of one node at the i + 1th layer, and then followed by a path P of depth d − i − 1.
Equivalently, |Nj | = 1 for all j > i. Then, we claim that contracting P to a single output node would
not affect the induced complexity measure. We state this as a lemma.
Lemma 45. Let NP be an architecture of depth d such that |Nj | = 1 for all j > i. Let P = Ni+1:d

be the last d − i layers of NP , which is a path. Let N0:i+1 be the first i + 1 layers of NP . Then,
N0:i+1 and NP induce the same induced complexity measure.

Note that N0:i+1 is obtained from NP by contracting the path P to a single output node.

Proof. Let t be the scaling factor induced by weights on P , that is

t =
∏
e∈P

w(e), (377)

where w(e) denotes the weights on an edge e. Let
d2 = d− i− 1, (378)

be the length of P . By AM-GM inequality, it is clear that the weights of edges on P would be the
same in order to achieve minimum representation cost, that is

RP (t) = d2|t|2/d2 . (379)
Let N0:i+1 be the architecture obtained from NP by contracting P to a single output node. Then, by
Lemma 37,

RN0:i+1
(β/t) =

RN0:i+1
(β)

|t|2/(i+1)
. (380)

By equations (379) and (380),

RNP
(β) = min

t
(RN0:i+1(β/t)+RP (t)) = min

t

(
RN0:i+1(β)

|t|2/(i+1)
+d2|t|2/d2

)
= d

(
RN0:i+1(β)

i+ 1

)(i+1)/d

,

(381)
where the last step follows from AM-GM inequality (write the first term into a sum of i+ 1 identical
terms and write the second term into a sum of d2 identical terms, and then use AM-GM on the
resulting d terms). Since RNP

(β) is monotonic in RN0:i+1
(β), NP and N0:i+1 induce the same

induced complexity measure.
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Since we only care about induced complexity measure of architectures, we can always contract a
path P when the conditions in Lemma 45 are met.

E.6 Reduced architectures

Now, we discuss a notion called reduced architectures. Intuitively, if an architecture N is not reduced,
then we can modify it to make it reduced without changing its induced complexity measure. To
motivate the definition, we first make a simple observation. Note that for any β ∈ Rn, and any
architecture N , the representation cost of β in N is certainly lower bounded by that in a fully
connected network since we can always choose to set the weights of some edges to zero. However,
under what condition would that be attained? Now, we give a necessary and sufficient condition for
that. Recall that a fully connected network of depth d has representation cost d∥β∥2/d2 (See [15]), for
all β ∈ Rn.

Lemma 46. For any β ∈ Rn,
RN (β) ≥ d∥β∥2/d2 . (382)

Moreover, for any S ⊆ [n], S ̸= ∅, the following statements are equivalent:

(1) There exists β ∈ Rn with supp(β) = S, such that

RN (β) = d∥β∥2/d2 . (383)

(2) There exists a node v in the first hidden layer N1, that is connected to all nodes in the input layer
that correspond to the support of β, or equivalently,

Sv ⊃ supp(β) = S. (384)

for some v ∈ N1.

(3) For all β ∈ Rn with supp(β) = S, we have

RN (β) = d∥β∥2/d2 . (385)

In particular, this implies that RN (β) = d∥β∥2/d2 , for all β ∈ Rn if and only if there exists a node v
in the first hidden layer N1, that is connected to all nodes in the input layer, or equivalently,

Sv = N0. (386)

for some v ∈ N1.

Proof. We will first prove Eq. (382). Then we will prove (1) ⇒ (2) ⇒ (3) ⇒ (1). The last one is
trivial. For the first one, we will first expand the trivial inequality RN (β) ≥ d∥β∥2/d2 into a chain
of inequalities. Then, if equality is attained for some β ∈ Rn, then all the inequalities in the chain
have to hold with equality. We will use one of these inequalities to prove (2), which is essentially
an application of Cauchy Schwartz inequality. To show (2) ⇒ (3), we will see that since we are
interested in the representation cost of β, we can delete all input nodes except for those corresponding
to the support of β. Then, in the resulting architecture, we show that we can extract a fully connected
subnetwork. Now, since representation cost of a subnetwork is lower bounded by representation cost
of the original one, we know that the representation cost of β in the original network is upper bounded
by that of a fully connected network. On the other hand, the representation cost of β in the original
network is always bounded below by that of a fully connected network since we can always add
edges to the original network to make it fully connected. Now, the new network has a representation
cost upper bounded by the original one since it contains the original one as a subnetwork. Note that
we are essentially using the fact the representation cost of a fully connected network does not depend
on its width. Now, we give the rigorous proof.

Equation (382) :Equation (382) :Equation (382) : Let w = (W1,W2, . . . ,Wd) be such that

FN (w) =

d∏
i=1

Wd−i+1 = β. (387)
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∥w∥22 =

d∑
i=1

∥Wi∥2F

(a)

≥ d

(
d∏

i=1

∥Wi∥F

)2/d

(b)

≥ d

(∥∥∥∥∥
d∏

i=1

Wd−i+1

∥∥∥∥∥
F

)2/d

= d∥β∥2/d2 ,

(388)

where we used AM-GM inequality in (a) and submultiplicity of Frobenius norm in (b). Thus,

RN (β) ≥ d∥β∥2/d2 . (389)

(1) ⇒ (2) :(1) ⇒ (2) :(1) ⇒ (2) : Let S ⊆ [n], S ̸= ∅. Suppose that

RN (β) = d∥β∥2/d2 . (390)

for some β ∈ Rn with
supp(β) = S. (391)

Then there exists some w = (W1,W2, . . . ,Wd) such that

FN (w) =

d∏
i=1

Wd−i+1 = β, ∥w∥22 = d∥β∥2/d2 . (392)

By (b), this means that

d

(
d∏

i=1

∥Wi∥F

)2/d

= d

(∥∥∥∥∥
d∏

i=1

Wd−i+1

∥∥∥∥∥
F

)2/d

. (393)

In particular, this implies∥∥∥∥∥
d−1∏
i=1

Wd−i+1

∥∥∥∥∥
2

F

∥W1∥2F =

∥∥∥∥∥
(

d−1∏
i=1

Wd−i+1

)
W1

∥∥∥∥∥
2

F

, (394)

since
d∏

i=1

∥Wi∥F ≥

∥∥∥∥∥
d−1∏
i=1

Wd−i+1

∥∥∥∥∥
F

∥W1∥F ≥

∥∥∥∥∥
d∏

i=1

Wd−i+1

∥∥∥∥∥
F

. (395)

Let A =W1 ∈ Rm×n, c = (
∏d−1

i=1 Wd−i+1)
T ∈ Rm. Let ai,j = A[i, j], wi = c[i]. Then∥∥cTA∥∥2
F
= ∥c∥22∥A∥

2
F . (396)

Note that ∥∥cTA∥∥2
F
=

n∑
j=1

(

m∑
i=1

wiai,j)
2

(e)

≤
n∑

j=1

((
m∑
i=1

w2
i

)(
m∑

k=1

a2k,j

))

=

(
m∑
i=1

w2
i

)(
n∑

j=1

m∑
k=1

a2k,j

)
= ∥c∥22∥A∥

2
F ,

(397)
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where we used Cauchy’s inequality in (e). Since cTA = β ̸= 0 by Eq. (392), c ̸= 0. Thus, there
exists i∗ ∈ [m] such that wi∗ ̸= 0. We will show that the i∗th node in the first hidden layer N1 is
connected to all nodes in the input layer that correspond to the support of β. Now, for (e) to hold
with equality, for each j ∈ [n], there exists λj such that

ai,j = λjwi (398)

for all i ∈ [m]. Since
∑m

i=1 wiai,j = βj ̸= 0 for all j ∈ S = supp(β),

λj ̸= 0 (399)

for all j ∈ S. Then
ai∗,j = λjwi∗ ̸= 0 (400)

for all j ∈ S. Let v be the i∗th node in N1. Then v is connected to all nodes in the input layer that
correspond to the support of β.

(2) ⇒ (3) :(2) ⇒ (3) :(2) ⇒ (3) : Suppose that there is a node v ∈ N1 that is connected to all nodes in the input layer
that correspond to S. Let β ∈ Rn be a vector with

supp(β) = S. (401)

Let NS be the subnetwork of N with respect to the input nodes in S (Def E.2). Then, by Lemma 44,

RN (β) = RNS
(βS), (402)

where βS is the projection of β on coordinates in S. Since v is connected to all input nodes of NS ,
we can extract a fully connected subnetwork NFC from NS as follows. Let P be a path from v to
the output node. Let NFC be the subnetwork obtained from NS by keeping only the path P and the
edges between the input nodes and v. Then, for any β ∈ Rn,

RN (β) = RNS
(βS) ≤ RNFC

(βS) = d∥βS∥2/d2 = d∥β∥2/d2 , (403)

where NFC is fully connected. Thus,

RN (β) = d∥β∥2/d2 . (404)

By the proof of the previous lemma, we get the following corollary.
Corollary 47. Suppose there exists a node v ∈ Ni+1 that is connected to all u ∈ Ni. Let P be a
directed path from v to the output node O. Then removing all the nodes in Ni+1 except for v and
removing all edges after the i+ 1th layer except for those on P would not change the representation
cost. Furthermore, contracting P to a single output node would not change the induced complexity
measure.

Proof. Let d be the depth of N . We view N as a concatenation of two architectures N0:i and Ni:d,
where the first one corresponds to the first i layer and second one corresponds to the last d− i+ 1
layers. Let N ′

i:d be the subnetwork obtained from Ni:d by removing all the nodes in Ni+1 except for
v and removing all edges after the i+ 1th layer except for those on P. Then, N ′

i:d is fully connected.
Thus, by Lemma 46,

(d− i)∥β∥2/(d−i)
2 ≤ RNi:d

(β) ≤ RN ′
i:d
(β) = (d− i)∥β∥2/(d−i)

2 , (405)

where the first term is the representation cost of a fully connected network of depth d− i, and the
second inequality follows from the fact that N ′

i:d is a subnetwork of Ni:d. Thus,

RNi:d
(β) = RN ′

i:d
(β). (406)

Let N ′ be the concatenation of N0:i and N ′
i:d. Then for any β ∈ Rn,

RN (β) = min
A,c

{RN0:i(A) +RNi:d
(c) : cTA = β}

= min
A,c

{RN0:i
(A) +RN ′

i:d
(c) : cTA = β}

= RN ′(β).

(407)

Note that in N ′, the architecture of the last d − i layers is a path, which we denote by P . By
Lemma 45, contracting P to a single output node does not affect the induced complexity measure.
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(a) (b)

Figure 3: Two architectures. Figure 3a is an essentially diagonal network. Figure 3b is not fully
reduced. Figure 1a is a k-balanced network, which induces k-support norm with n = 3, k = 2.

Now, we are ready to give the definition of reduced architectures.
Definition E.3 (Reduced Architecture). An architecture N is reduced if for all i < d− 1, there does
not exist v ∈ Ni+1 that is connected to all u ∈ Ni.

If an architecture is not reduced, then we can always do some modifications as in Corollary 47
without changing its induced complexity measure. Thus, we can always assume that an architecture
is reduced.

Now, we prove Theorem 36.
Theorem 36. For all linear homogeneous feedforward neural networks N without shared weights
and of depth d,

RFC(β) = d∥β∥2/d2 ≤ RN (β) ≤ d∥β∥2/d2/d = RDNN (β). (309)

Furthermore, the lower bound is achieved for all β ∈ Rn if and only if the mixing depths MN (S) = 1
for all S ⊆ [n], and the upper bound is achieved for all β ∈ Rn if and only if the mixing depths
MN (S) = d for all S ⊆ [n] such that |S| ≥ 2.

Proof. The proof follows from Lemma 42, Lemma 46, Theorem 1, and Theorem 2.

F Supplementary materials in Section 4.1.1 : lp quasi-norms

We will use the following results in [15] many times:

RFC(β) = d∥β∥2/d2 , RDNN (β) = d∥β∥2/d2/d, (408)

where FC and DNN are fully connected network and diagonal network of depth d, respectively. In
this section, we only consider networks without shared weights.

F.1 Essentially diagonal networks

We begin with the definition of essentially diagonal layer and essentially diagonal network.
Definition F.1 (Essentially Diagonal). A layer Ni is essentially diagonal if for all v ∈ Ni,

|Sv| = 1, (409)
where Sv is defined as

Sv := {i ∈ N0 : ∃ a directed path from i to v}. (410)
An architecture N of depth d is essentially diagonal if it consists of d− 1 essentially diagonal layers
followed by a fully connected layer.

Note that if N is essentially diagonal, then |Sv| = 1, for all v ∈
⋃d−1

i=1 Ni. In other words, an
essentially diagonal network is the combination of n separated subnetworks that are connected to the
same output node in the last layer. See Figure 3a for an example.

Thus, N is essentially diagonal if and only if the mixing depths MN (S) = d for all S ⊆ [n], |S| ≥ 2.
This means that essentially diagonal networks achieve the upper bound in Theorem 36. Thus, we
immediately get its representation cost.
Lemma 48. If N is essentially diagonal, then

RN (β) = RDNN (β) = d∥β∥2/d2/d. (411)
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F.2 Fully reduced architectures

Now, we make some observations similar to Lemma 46 and Corollary 47. If we have an architecture
whose first d1 layers are essentially diagonal, then its representation cost is certainly lower bounded
by that of the architecture which consists of d1 essentially diagonal layers followed by d− d1 fully
connected layers. The representation cost of the latter one can be shown to be d∥β∥2/d2/(d1+1). Indeed,
by Corollary 47, we can show that the second architecture has the same representation cost as a
diagonal network of depth d1 + 1 followed by a path of depth d− d1 − 1. However, when would this
lower bound be attained? We give a necessary and sufficient condition in the following lemma.
Lemma 49. Let N be a depth d linear neural network such that for some d1 < d,

|Su| = 1 (412)

for all u ∈ Nd1
. Then for any β ∈ Rn,

RN (β) ≥ d∥β∥2/d2/(d1+1). (413)

Moreover, the following statements are equivalent:

(1) There exists β ∈ Rn such that βi ̸= 0 for all i ∈ [n], and

RN (β) = d∥β∥2/d2/(d1+1). (414)

(2) There exists a node v ∈ Nd1+1 such that

Sv = N0. (415)

(3) For all β ∈ Rn,
RN (β) = d∥β∥2/d2/(d1+1). (416)

Proof. We will first prove Eq. (413). Then, we will prove (1) ⇒ (2) ⇒ (3) ⇒ (1). The proof
strategy is exactly the same as in Lemma 46.

Eq. (413):Eq. (413):Eq. (413): Let β ∈ Rn. For each i ∈ [n], let

Wi = {v ∈ Nd1 : Sv = {i}}, wi = |Wi|. (417)

Without loss of generality, assume that the nodes in Nd1
are ordered in a way so that the first w1

nodes are in W1, the next w2 nodes are in W2 and so on. Let w = (w1:d1
, wd1+1:d) be the weights

of N , where w1:d1
denotes the weights in the first d1 layer and wd1+1:d denotes the weights in the

remaining layers, such that
FN (w) = β. (418)

We view N as a concatenation of N0:d1
and Nd1:d, where N0:d1

corresponds to the first d1 layers
and Nd1:d corresponds to the remaining d2 + 1 := d− d1 + 1 layers. Let

T = FN0:d1
(w1:d1), aT = FNd1:d

(wd1+1:d). (419)

By assumption,

T =


t1 0 . . . 0
0 t2 . . . 0
...

... . . .
...

0 0 . . . tn

 , (420)

where ti ∈ Rwi , for all i ∈ [n]. Let

aT = (aT1 , a
T
2 , . . . , a

T
n ), (421)

where ai ∈ Rwi , for all i ∈ [n]. Then we have

β = aTT = (aT1 t1, a
T
2 t2, . . . , a

T
n tn). (422)

Thus,
βi = aTi ti (423)
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for all i ∈ [n]. Let (V ′, E′) be the directed graph associated with N0:d1 . We partition the network
N0:d1 as follows. For each i ∈ N0, let

V ′
i = {v ∈ V ′ : there exists a directed path from i to v}. (424)

Let
E′

i = {e ∈ E′ : both endpoints of e lie in V ′
i }. (425)

Let Ni be the architecture corresponding to the directed graph (V ′
i , E

′
i). Since |Sv| = 1 for all

v ∈ Nd1 ,
E′

i ∩ E′
j = ∅, (426)

for all i ̸= j. Thus,

RN0:d1
(T ) =

n∑
i=1

RNi
(ti)

(e)

≥
n∑

i=1

d1∥ti∥2/d1

2 , (427)

where in (e) we used the fact that the representation cost of a vector ti (here the linear transformation
is R → Rwi) in a fully connected network of depth d1 is d1∥ti∥2/d1

2 (See Theorem 1), which is
certainly a lower bound for any other architecture of the same depth. Now, note that

∥w∥22 = ∥w1:d1
∥22 + ∥wd1+1:d∥22

≥ RN0:d1
(T ) +RNd1:d

(a)

(f)

≥
n∑

i=1

d1∥ti∥2/d1

2 + d2∥a∥2/d2

2

(g)

≥ d

[(
n∑

i=1

∥ti∥2/d1

2

)d1
(
∥a∥2/d2

2

)d2
]1/d

= d

[(
n∑

i=1

∥ti∥2/d1

2

)d1
(

n∑
i=1

∥ai∥22

)]1/d

= d

[(
n∑

i=1

(∥ti∥2/(d1+1)
2 )(d1+1)/d1

)d1/(d1+1)( n∑
i=1

(∥ai∥2/(d1+1)
2 )d1+1

)1/(d1+1)](d1+1)/d

(h)

≥ d

[
n∑

i=1

(∥ti∥2/(d1+1)
2 ∥ai∥2/(d1+1)

2 )

](d1+1)/d

(r)

≥ d

[
n∑

i=1

(|aTi ti|)2/(d1+1)

](d1+1)/d

(s)
= d

[
n∑

i=1

|βi|2/(d1+1)

](d1+1)/d

= d∥β∥2/d2/(d1+1).

(428)

where in (f) we used Eq. (427) and Lemma 46, in (g) we used AM-GM inequality, in (h) we used
Holder’s inequality, in (r) we used Cauchy’s inequality, and in (s) we used Eq. (423). This proves
Eq. (413).

(1) ⇒ (2) :(1) ⇒ (2) :(1) ⇒ (2) : Suppose that there exists β ∈ Rn, such that βi ̸= 0 for all i ∈ [n], and

RN (β) = d∥β∥2/d2/(d1+1). (429)

Then there exists w such that

∥w∥22 = d∥β∥2/d2/(d1+1) and FN (w) = β. (430)

By step (f) in equation (428), this implies that

RNd1:d
(a) = d2∥a∥2/d2

2 . (431)
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Now, we will focus on the subnetwork Nd1:d. By Eq. (431) and Lemma 46, there is a node v in
Nd1+1(which is the first hidden layer in Nd1:d) that is connected to all nodes in Nd1 that correspond
to the support of a. Thus,

Sv ⊃
⋃

i∈supp(a)

Sui
, (432)

where ui is the ith node in Nd1
. Since βi ̸= 0 for all i ∈ [n],

aTi ti ̸= 0 (433)

for all i ∈ [n] by equation (423). Thus, for each i ∈ [n], there exists si such that

ai[si] ̸= 0. (434)

For each i ∈ [n], let

ji = si +

i−1∑
l=1

wi. (435)

Then
a[ji] ̸= 0, and Suji

= {i}, (436)

for all i ∈ [n]. Then, by Eq. (432),

Sv ⊃
⋃
i∈[n]

Suji
= [n] = N0. (437)

Thus,
Sv = N0. (438)

(2) ⇒ (3) :(2) ⇒ (3) :(2) ⇒ (3) : Suppose that there exists v ∈ Nd1+1 such that

Sv = N0. (439)

Now, for each i ∈ [n], let Pi be a directed path from i to v. Let P be a directed path from v to O.
Let Ñ be the subnetwork of N corresponding to the subgraph

⋃n
i=1 Pi ∪ P . Now, Ñ is a diagonal

network concatenated with a path. Then for any β ∈ Rn,

RN (β) ≤ RÑ (β) = min
λ

((d1 + 1)∥β/λ∥2/(d1+1)
2/(d1+1) + (d2 − 1)λ2/(d2−1))

(a)
= d∥β∥2/d2/(d1+1), (440)

where in (a) we used AM-GM inequality. Thus,

RN (β) = d∥β∥2/d2/(d1+1). (441)

By the proof of the above lemma, we get the following corollary.

Corollary 50. Let N be a neural network such that there exists d1 < d− 1 such that for all u ∈ Nd1
,

|Su| = 1 (442)

and there exists v ∈ Nd1+1 such that
Sv = N0. (443)

For each i ∈ [n], let Pi be a directed path from i to v. Then removing all edges from N except for
those on

⋃n
i=1 Pi would not change the induced complexity measure.

Proof. This immediately follows from the last part ((2) ⇒ (3)) of the proof of Lemma 49 and
Lemma 45.

Now, we give the definition of a fully reduced architecture.
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Definition F.2 (Fully Reduced Architecture). An architecture N of depth d is fully reduced when the
following holds:

For all 0 ≤ d1 < d− 1, if for all u ∈ Nd1
,

|Su| = 1, (444)

then for any v ∈ Nd1+1,
Sv ̸= N0 = [n]. (445)

Note that if an architecture is not fully reduced, then we can do some modifications to make it fully
reduced without changing its induced complexity measure by Corollary 50. For instance, network in
Figure 3b is not fully reduced because of the red node (here d = 3 and d1 = 1). For any u ∈ N1,
|Su| = 1 but for the red node v ∈ N2, we have Sv = N0. Thus, this architecture is not fully reduced.
We can modify it by removing the three blue nodes.

F.3 Essentially diagonal networks and lp quasi-norms

Now, we will show that lp quasi-norms correspond to essentially diagonal networks in the sense
that an architecture N induces lp quasi-norm as induced complexity measure if and only if N is
essentially diagonal, provided that N is fully reduced. Before giving the main result, we first make
some observations. Suppose that N induces lp quasi-norm as induced complexity measure. Then
the subnetwork Ni,j (Def E.2) of N with respect the i, jth input nodes also induces lp quasi-norm
as induced complexity measure for the same value of p by Lemma 44. Thus, if we can show that
any architecture N with two input nodes could induce lp quasi-norm only if p = 2/d′ for some
d′ ∈ N, then the same statement follows for any architecture. Indeed, as we shall see, all fully reduced
architecture N with two input nodes are essentially diagonal.
Lemma 51. Let N be a fully reduced architecture with two input nodes. Then, N is essentially
diagonal. Consequently, any architecture with two input nodes induces lp quasi-norm as induced
complexity measure for some p ∈ {2/d′ : d′ ∈ N}.

Proof. Let N be a fully reduced architecture with two input nodes. Let

d′ = min{t : ∃v ∈ Nt such that Sv = N0 = {1, 2}}, (446)

where
Sv = {i ∈ N0 : ∃ a directed path from i to v}. (447)

Since N is fully reduced (Def F.2), N is essentially diagonal of depth d′. By Lemma 48, N induces
l2/d′ quasi-norm as induced complexity measure. The second claim follows from the fact that we
can always modify an architecture to make it fully reduced without changing its induced complexity
measure by Corollary 50.

Now, we give the main theorem.
Theorem 52. Suppose that N induces lp quasi-norm for some p. Then 2/p ∈ N. Moreover, if N is
also fully reduced, then it is essentially diagonal of depth 2/p.

The first part of the proof follows directly from the discussion at the beginning of this section. The
second part of the proof will use d′∥β∥2/d

′

2/d′ as a reference function (Section E.3), where d′ = 2/p.

Proof. Let N be an architecture which induces lp quasi-norm as induced complexity measure. Then
the subnetwork Ni,j (Def E.2) of N with respect the i, jth input nodes also induces lp quasi-norm
as induced complexity measure for the same value of p by Lemma 44. By Lemma 51, p = 2/d′ for
some d′ ∈ N.

In addition, suppose N is also fully reduced. For each i, j ∈ [n], let

di,j = min{t : ∃v ∈ Nt such that Sv ⊃ {i, j}}, (448)

where
Sv = {i ∈ N0 : ∃ a directed path from i to v}. (449)
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Since Ni,j induces l2/d′ quasi-norm as induced complexity measure,

di,j = d′ (450)

for all i, j ∈ [n], by Lemma 49. Thus, |Sv| = 1 for all v ∈
⋃d′−1

t=1 Nt. Then, we claim that there is
u ∈ Nd′ such that Su = [n] = N0. Suppose for the sake of contradiction that

Su ̸= N0 (451)

for all u ∈ Nd′ . Let β = (1, 1, . . . , 1). By Lemma 49 ((1) ⇒ (2)),

RN (β) > d∥β∥2/d2/d′ , (452)

where d is the depth of N . Let β′ = ∥β∥2/d′(1, 0, . . . , 0). Then, by Lemma 46,

RN (β′) = d∥β′∥2/d2 = d∥β∥2/d2/d′ < RN (β). (453)

However,
∥β∥2/d′ = ∥β′∥2/d′ . (454)

Thus, N cannot induce l2/d′ quasi-norm as induced complexity measure since there are two vector
with the same l2/d′ quasi-norm but different representation cost with respect to N (See Reference
Function in section E.3). Thus, there exists u ∈ Nd′ such that Su = [n] = N0. Since N is fully
reduced (Def F.2), N is essentially diagonal of depth d′.

Now, we immediately get the following corollary about lp,q group quasi-norms that can be induced
as induced complexity measure by neural networks.

Corollary 53. If N induces lp,q group quasi-norm for some p, q, then 2/p, 2/q ∈ N.

Proof. Suppose that N induces the following lp,q group quasi-norm as induced complexity measure

∥β∥p,q = (

k∑
j=1

(
∑
i∈Gj

|βi|q)p/q)1/p, (455)

where β ∈ Rn, k denotes the number of groups, and Gj denote the jth group. Note that by definition
of group quasi-norms, the Gjs are disjoint. Now, let NG1

be the subnetwork (Def E.2) of N with
respect to the input nodes in G1. Then NG1

induces lq quasi-norms as induced complexity measure.
To see this, substitute βi = 0 in equation (455) for all i except for i ∈ G1. Thus, by Theorem 35,

2/q ∈ N. (456)

Now, for each j ∈ [k], pick ij ∈ Gj . Let

B = {ij : j ∈ [k]}. (457)

Let NB be the subnetwork (Def E.2) of N with respect to the input nodes in B. Then NB induces lp
quasi-norms as induced complexity measure. Thus, by Theorem 35,

2/p ∈ N. (458)

F.4 Proof of main results of lp quasi-norms

Now, we give a proof of Theorem 35.

Theorem 35. A linear homogeneous feedforward neural network N without shared weights induces
lp quasi-norm if and only if MN (S) = 2/p, for all S ⊆ [n], |S| ≥ 2.
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Proof. Suppose N induces lp quasi-norm. Note that the operations in Corollary 50 do not change
mixing depths. Thus, if N is not fully reduced, we can make it fully reduced using operations in
Corollary 50 without changing its mixing depths and induced complexity measures. Without loss of
generality, assume that N is fully reduced. By Theorem 52, it is essentially diagonal of depth 2/p.
Thus, MN (S) = d = 2/p, for all S ⊆ [n], |S| ≥ 2.

On the other hand, suppose that MN (S) = 2/p, for all S ⊆ [n], |S| ≥ 2. This implies that |Su| = 1
for all u ∈ N2/p−1 and there exists v ∈ N2/p such that Sv = N0 = [n]. By Lemma 49, N induces
lp quasi-norm.

Now, we prove Theorem 7.
Theorem 7. There exists a linear homogeneous feedforward neural network N without shared
weights that induces lp quasi-norm if and only if 2/p ∈ N. In particular, diagonal network of depth
2/p induces lp quasi-norm.

Proof. This immediately follows from Theorem 35, since mixing depths are always integers and a
diagonal network has uniform mixing depths.

G Supplementary materials in Section 4.1.2 : lp,q group quasi-norms

In this section, we only consider networks without shared weights.

G.1 Intuitions of group architectures

We give some intuitions on how we design group architectures. The main observation is that if
N induces lp,q quasi-norm as the complexity measure, then the subnetwork NS with S = {i, j}
( Def E.2) induces lq or lp quasi-norm depending on whether i and j are in the same group or
not. The reasoning for this observation is two-fold: Restricting a network to two nodes gives a
subnetwork with “restricted induced complexity measure” as in Eq. (368); and restricting lp,q group
quasi-norm to 2 sparse vectors gives lp or lq quasi-norms. Theorem 35 identifies the architectures
which induce lp quasi-norm as the ones with uniform mixing depths 2/p. Hence, the mixing depths
of any architectures that induces lp,q quasi-norm satisfy

MN ({i, j}) =
{
2/q if i and j are in the same group;
2/p if i and j are in different groups.

(459)

Based on this, it is natural to consider architectures that consists of some diagonal layers followed by
a grouping layer and then followed by a diagonal network (Section 3.1.2). This immediately gives us
the group networks.

G.2 Proof of Theorem 9

Theorem 9. Let G1, G2 . . . Gk be a partition of [n]. Let βGj
be the projection of β on Gj . Then for

d2 > d1, RN 1;d1,d2 (β) = d2
∑k

j=1

∥∥βGj

∥∥2/d2

2/d1
= d2∥β∥2/d2

2/d2,2/d1

∼= ∥β∥2/d2,2/d1
.

Proof. For each j ∈ [k], let N 1;d1,d2

Gj
be the subnetwork (See Def E.2) of N 1;d1,d2 with respect to

Gj . Then N 1;d1,d2

G1
, . . . ,N 1;d1,d2

Gk
form a partition of N 1;d1,d2 . Thus,

RN 1;d1,d2 (β) =

k∑
j=1

RN 1;d1,d2
Gj

(βGj ). (460)

Now, note that each N 1;d1,d2

Gj
is an essentially diagonal network of depth d1 concatenated with a path

of depth d2. By Lemma 49,

RN 1;d1,d2
Gj

(βGj ) = d2
∥∥βGj

∥∥2/d2

2/d1
. (461)
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Thus,

RN 1;d1,d2 (β) = d2

k∑
j=1

∥∥βGj

∥∥2/d2

2/d1
. (462)

G.3 Proof of Theorem 10

Theorem 10. When d2 = d1 + 1, RN 2;d1,d2 (β) = d2∥β∥2/d2

2/d1,2/d2

∼= ∥β∥2/d1,2/d2
.

Proof. Let w be the weights on N 2;d1,d1+1 such that

FN 2;d1,d1+1(w) = β, RN 2;d1,d1+1(β) = ∥w∥22. (463)

Let w1, w2 denote the weights corresponding to the first d1 − 1 diagonal layers and the remaining
layers respectively. Let T = diag(t1, . . . , tn) denote the diagonal matrix generated by w1 in the first
d1 − 1 diagonal layers. Since RN 2;d1,d1+1(β) = ∥w∥22 (w attains the minimum representation cost),

∥w1∥22 =

n∑
i=1

RNFC
(ti) = (d1 − 1)

n∑
i=1

|ti|2/(d1−1), (464)

where NFC denotes a fully connected neural network and the first equality follows from the fact
that the first d1 − 1 hidden layers are n disjoint paths each of which is a fully connected network
with one input node and one output node. Let Nd1−1:d1+1 be the subnetwork of N corresponding
to the last three layers. Note that Nd1−1:d1+1 has the same architecture as N2,1 in section D.4. Let
a = FN (w2). Then since

aTT = β, (465)

we have

ai = βi/ti (466)

for all i ∈ [n]. Since RN 2;d1,d1+1(β) = ∥w∥22 (w attains the minimum representation cost),

∥w2∥22 = RNd1−1:d1+1
(a) = RN2,1

(a) = 2

√√√√√ k∑
j=1

( ∑
i∈Gj

|ai|

)2

= 2

√√√√√ k∑
j=1

( ∑
i∈Gj

|βi|
|ti|

)2

. (467)
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Therefore,

∥w∥22 = ∥w1∥22 + ∥w2∥22

= (d1 − 1)

n∑
i=1

|ti|2/(d1−1) + 2

√√√√√ k∑
j=1

( ∑
i∈Gj

|βi|
|ti|

)2

(a)

≥ (d1 + 1)

[( n∑
i=1

|ti|2/(d1−1)
)d1−1( k∑

j=1

( ∑
i∈Gj

|βi|
|ti|
)2)]1/(d1+1)

= (d1 + 1)

{[ k∑
j=1

(
(
∑
i∈Gj

|ti|2/(d1−1))(d1−1)/d1
)d1/(d1−1)

](d1−1)/d1
[ k∑
j=1

(
(
∑
i∈Gj

|βi|
|ti|

)2/d1
)d1
]1/d1

} d1
d1+1

(b)

≥ (d1 + 1)

{
k∑

j=1

[( ∑
i∈Gj

|ti|2/(d1−1)
)(d1−1)/d1

( ∑
i∈Gj

|βi|
|ti|
)2/d1

]}d1/(d1+1)

= (d1 + 1)

{
k∑

j=1

[( ∑
i∈Gj

(|ti|
2

d1+1 )
d1+1
d1−1

) d1−1
d1+1

( ∑
i∈Gj

((
|βi|
|ti|

)
2

d1+1 )
d1+1

2

) 2
d1+1

] d1+1
d1

} d1
d1+1

(c)

≥ (d1 + 1)

{
k∑

j=1

[ ∑
i∈Gj

|βi|
2

d1+1

] d1+1
d1

} d1
d1+1

= (d1 + 1)∥β∥2/(d1+1)
2/d1,2/(d1+1),

(468)
where in (a) we used AM-GM inequality, in (b), (c) we used Holder’s inequality.

Now, we show that this bound can be attained. To show this, it suffices to find a t ∈ Rn such that the
bound in Eq. (468) is attained. We do this by first start with some arbitrary vector t = (t1, . . . , tn)
and modify it step by step such that the inequalities in each step of Eq. (468) can be achieved with
equality. This would imply that the bound in Eq. (468) is achievable. For each j ∈ [k], let

t(j) ∈ R|Gj | (469)
denote the subvector of t such that ti is an entry in t(j) if and only i ∈ Gj . Now, in order for (c) to
hold with equality, we modify t(j) such that

|t(j)[i1]|
|t(j)[i2]|

=
|βi1 |
|βi2 |

(d1+1)/(d1−1)

(470)

for all i1, i2 ∈ Gj , for all j ∈ [k]. Note that this requirement only depends on the ratio between entries
in t(j) for each j. In other words, it will remain to hold if the ratio within-group does not change.
Now, in order for (b) to hold with equality, we scale each t(j) by λj such that the ratio between-groups
satisfy some certain requirement. Note that this does not affect the ratio within-groups and thus (c)
continues to hold with equality. Lastly, for (a) to holds with equality, we scale the whole vector t by
some constant λ, which does not change the ratio between groups or the ratio within groups. Thus,
(b), (c) continue to hold with equality. Thus,

RN 2;d1,d1+1(β) = (d1 + 1)∥β∥2/(d1+1)
2/d1,2/(d1+1). (471)

G.4 Proof of Theorem 8

Theorem 8. If there exists a linear homogeneous feedforward neural network N without shared
weights that induces lp,q group quasi-norms, then 2/p, 2/q ∈ N. On the other hand, if 2/p, 2/q ∈ N
and 2/p ≥ 2/q − 1, then there exists a linear homogeneous feedforward neural network N without
shared weights that induces lp,q group quasi-norms.

Proof. This follows immediately from Corollary 53, Theorem 9 and Theorem 10.
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G.5 Negative results of N 2;d1,d2 when d2 > d1 + 1

Now, we give some negative results. We will show that N 2;1,d2 does not induce l2,2/d2
quasi-norm

as induced complexity measure for all d2 ≥ 3. We do this in two steps. First, we will define a new
quasi-norm f , which is monotonic in l2,2/d2

quasi-norm. Then, we use f as a reference function
(Section E.3) to show that N 2;1,d2 does not induce l2,2/d2

quasi-norm as induced complexity measure.
Note that f is not a parametrization here.

Lemma 54. Let f : Rn −→ R+ be defined as

f(β) = d2 min

{ ∑
h∈N1

∥vh∥2/d2

2 : vh ∈ Rn, supp(vh) ⊆ Sh,

( ∑
h∈N1

v
2/d2

h

)d2/2

= β

}
, (472)

where N1 and Sh are defined as in section D.4 Eq. (287) and (288) respectively, and the exponents
are applied component-wise(i.e ak[i] = a[i]k). Then

f(β) = d2∥β∥2/d2

2,2/d2
. (473)

Proof. Let ϕ : Rn −→ Rn be defined as

ϕ(x)[i] = x[i]2/d2 . (474)

Then

∥vh∥2/d2

2 =

(
n∑

i=1

vh[i]
2

)1/d2

=

(
n∑

i=1

|ϕ(vh)[i]|d2

)1/d2

= ∥ϕ(vh)∥d2
. (475)

Also, note that ∑
h∈N1

ϕ(vh) = ϕ(β) (476)

if and only if ( ∑
h∈N1

v
2/d2

h

)d2/2

= β. (477)

Let g(ϕ(β)) = f(β)/d2. Then

g(ϕ(β)) = min

{ ∑
h∈N1

∥ϕ(vh)∥d2
: supp(vh) ⊆ Sh,

∑
h∈N1

ϕ(vh) = ϕ(β)

}
. (478)

Note that g is a norm. Let g∗ denote its dual norm. Let d∗ > 0 be such that

1

d2
+

1

d∗
= 1. (479)

By the similar arguments (with l2 norm changing to ld2 norm) in Lemma 6 and Theorem 34, we have

g∗(ϕ(β)) = max

{(∑
i∈Sh

|ϕ(β)[i]|d
∗

)1/d∗

: h ∈ N1

}

=

(
k∑

j=1

(
max
i∈Gj

|ϕ(β)[i]|

)d∗)1/d∗

= ∥ϕ(β)∥d∗,∞.

(480)

Thus,
g(ϕ(β)) = ∥ϕ(β)∥d2,1

. (481)
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Then

f(β) = d2g(ϕ(β))

= d2∥ϕ(β)∥d2,1

= d2

(
k∑

j=1

( ∑
i∈Gj

|ϕ(β)[i]|

)d2
)1/d2

= d2

(
k∑

j=1

( ∑
i∈Gj

|βi|2/d2

)d2
)1/d2

= d2∥β∥2/d2

2,2/d2
.

(482)

Lemma 55. Let d2 ≥ 3. For any β ∈ Rn,

RN 2;1,d2 (β) ≥ f(β), (483)

where equality is attained only if there exists vh ∈ Rn for each h ∈ N1 such that the supports for vh
are disjoint, ∑

h∈N1

vh = β, supp(vh) ⊆ Sh ∀h ∈ N1, (484)

and ∑
h∈N1

∥vh∥2/d2

2 = ∥β∥2/d2

2,2/d2
. (485)

Proof. By the same argument as in Lemma 5, we have

RN 2;1,d2 (β) = d2 min

{ ∑
h∈N1

∥vh∥2/d2

2 : supp(vh) ⊆ Sh,
∑
h∈N1

vh = β

}
, (486)

for any β ∈ Rn. Fix a β ∈ Rn. Let {vh : h ∈ N1} be such that∑
h∈N1

vh = β, supp(vh) ⊆ Sh, (487)

and
RN 2;1,d2 (β) = d2

∑
h∈N1

∥vh∥2/d2

2 . (488)

For each i ∈ [n], let

λi =

∑
h∈N1

vh[i]

(
∑

h∈N1
vh[i]2/d2)d2/2

. (489)

Since d2 ≥ 3,
(
∑
h∈N1

vh[i]
2/d2)d2/2 ≥

∑
h∈N1

vh[i], (490)

where equality is attained only if all but one of the vh[i]s are zero. Thus,

λi ≤ 1, (491)

for all i ∈ [n]. Now, for each i ∈ [n], for each h ∈ N1 let

wh[i] = λivh[i]. (492)

Then ( ∑
h∈N1

w
2/d2

h

)d2/2

= β, supp(wh) ⊆ Sh, (493)
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and
f(β) ≤ d2

∑
h∈N1

∥wh∥2/d2

2 ≤ d2
∑
h∈N1

∥vh∥2/d2

2 = RN 2;1,d2 (β), (494)

where equality is attained only if
λi = 1, (495)

for all i ∈ [n]. This occurs only if all but one of the vh[i]s are zero for all i ∈ [n], which implies that
the supports of vhs are disjoint.

Now, we are going to prove that N 2;1,d2 does not induce l2,2/d2
quasi-norm as induced complexity

measure. Note that if N 2;1,d2 does not induce l2,2/d2
quasi-norm as induced complexity measure for

any nontrivial grouping, then there have to be at least two groups and one of which should contain at
least one element. Then, without loss of generality, we can assume that

{1, 3} ⊆ G1, 2 ∈ G2. (496)

Then, if we remove all input nodes except for the first three of them, then the resulting architecture
would also induce l2,2/d2

quasi-norm as induced complexity measure. Thus, in order to show that
N 2;1,d2 does not induce l2,2/d2

quasi-norm as induced complexity measure, we can assume without
loss of generality that

n = 3, k = 2, G1 = {1, 3}, G2 = {2}. (497)

Note that the above argument still holds if we change N 2;1,d2 to any other candidate architecture
N that is supposed to induce l2,2/d2

quasi-norm as induced complexity measure. Now, we state the
result.

Lemma 56. If d2 ≥ 3, then N 2;1,d2 does not induce l2,2/d2
quasi-norm as induced complexity

measure.

Proof. As we just discussed, we can assume without loss of generality that

n = 3, k = 2, G1 = {1, 3}, G2 = {2}. (498)

For any β ∈ Rn,

∥β∥2,2/d2
=

√√√√√ k∑
j=1

( ∑
i∈Gj

|βi|2/d2

)d2

=
√
(|β1|2/d2 + |β3|2/d2)d2 + |β2|2. (499)

Note that N1 = (h1, h2) and

Sh1
= {1, 2}, Sh2

= {2, 3}. (500)

Let
β′ = (1, 2d2/2, 1). (501)

Suppose for the sake of contradiction that

f(β′) = RN 2;1,d2 (β
′). (502)

Then, by Lemma 55, there exists v1, v2 such that

supp(v1) ⊆ Sh1
, supp(v2) ⊆ Sh2

, supp(v1) ∩ supp(v2) = ∅, (503)

and ∑
h∈N1

vh = β′,
∑
h∈N1

∥vh∥2/d2

2 = ∥β′∥2/d2

2,2/d2
. (504)

Without loss of generality, assume that

supp(v1) = {1}, supp(v2) = {2, 3}. (505)

Then
v1 = (1, 0, 0), v2 = (0, 2d2/2, 1). (506)
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Then ∑
h∈N1

∥vh∥2/d2

2 = 1 + (2d2 + 1)1/d2 > 1 + 2 = 3. (507)

However,

∥β′∥2/d2

2,2/d2
= ((|β1|2/d2 + |β3|2/d2)d2 + |β2|2)1/d2 = 2(d2+1)/d2 < 2

√
2 < 3, (508)

since d2 > 2. Thus,
RN 2;1,d2 (β

′) > f(β′). (509)
Now, let

β′′ = λ(1, 0, 0), (510)
where λ > 0 is chosen such that

∥β′′∥2,2/d2
= ∥β′∥2,2/d2

. (511)

Recall that

RN 2;1,d2 (β
′′) = d2 min

{ ∑
h∈N1

∥vh∥2/d2

2 : supp(vh) ⊆ Sh,
∑
h∈N1

vh = β′′

}
. (512)

Now, if we choose v1 = β′′ and v2 = 0, then

RN 2;1,d2 (β
′′) ≤ d2∥β′′∥2/d2

2 = d2λ
2/d2 = d2∥β′′∥2/d2

2,2/d2
= d2∥β′∥2/d2

2,2/d2
= f(β′) < RN 2;1,d2 (β

′).

(513)
Thus, N 2;1,d2 does not induce l2,2/d2

quasi-norm as induced complexity measure.

By a similar argument as in the proof of Theorem 10, we can show that N 2;d1,d2 does not induce
l2/d1,2/d2

quasi-norm when d2 > d1 + 1. Roughly speaking, we can get a similar chain of inequal-
ity as in Eq. 468. However, this time it cannot be achieved since N 2;1,d2−d1+1 does not induce
l2,2/(d2−d1+1) quasi-norm as induced complexity measure, and the equality in the second step of
Eq. 468 becomes strict inequality.

H Supplementary materials in Section 4.2 : negative results on homogeneous
neural networks

In this section, we only consider networks without shared weights.

Elastic nets is defined as
∥β∥EN = ∥β∥1 + α∥β∥2, (514)

where α > 0 is some constant.

To show the impossibility of designing architectures with these induced complexities, we make the
following observation.
Lemma 57. Let h : Rn −→ R+ be a function that is the induced complexity measure of some linear
homogeneous feedforward neural network N without shared weights. Let i, j ∈ [n], i < j be two
distinct indices. Let hi,j : R2 −→ R+ be defined as

hi,j(β
′) = h(β) (515)

where βi = β′
1, βj = β′

2, and βk = 0 for all k ̸∈ {i, j} (β is the lifting of β′). Then, there exists a
strictly increasing function ϕ : R+ −→ R+ and p = 2/d for some d ∈ N such that

hi,j(β
′) = ϕ(∥β′∥p), (516)

for all β′ ∈ R2, where ∥·∥p denotes the lp quasi-norm.

Proof. Let Ni,j be the subnetwork of N with respect to the i, jth input nodes (Def E.2). By
Lemma 44, Ni,j induces hi,j as induced complexity measure. On the other hand, Ni,j induces l2/d
quasi-norm as induced complexity measure for some d ∈ N by Lemma 51. Thus, the result follows.
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The above result shows that any function that is the induced complexity measure of some linear
homogeneous feedforward neural network always behaves like a lp quasi-norm on 2-sparse vectors.
The result is a direct consequence of Lemma 44 and Lemma 51.

Since neither elastic nets nor lp,q quasi-norms with overlapping between groups satisfy this property,
they are not induced complexity measure of any architecture N .

Theorem 58. For any α > 0, elastic nets ∥·∥EN defined in Eq. (514) is not the induced complexity
measure of any linear homogeneous feedforward neural network without shared weights.

Next, we give the negative result for lp,q group quasi-norm with overlapping groups.

Proof. Let h(·) = ∥·∥EN . Let h1,2 : R2 −→ R+ be defined as

h1,2(β
′) = h(β) (517)

where β is obtained from β′ by putting zeros to the kth entries for all k ̸∈ {1, 2}. Then

h1,2(β1, β2) = |β1|+ |β2|+ α
√
β2
1 + β2

2 . (518)

Suppose h1,2 is monotonic in lp quasi-norm for some p = 2/d. Then

h1,2(1, 1) = h1,2(2
1/p, 0), (519)

since
∥(1, 1)∥p =

∥∥∥(21/p, 0)∥∥∥
p
. (520)

Note that
h1,2(2

1/p, 0) = 21/p(1 + α), h1,2(1, 1) = 2 + α
√
2. (521)

Thus, we have
2 + α

√
2 = 21/p(1 + α). (522)

If d ≥ 2, then p ≤ 1 and
21/p(1 + α) ≥ 2(1 + α) > 2 + α

√
2. (523)

Thus, d = 1 and p = 2. However,

21/p(1 + α) =
√
2(1 + α) < 2 + α

√
2. (524)

Thus, h1,2 is not monotonic in lp quasi-norm for any p = 2/d. Thus, by Lemma 57, h cannot be
induced as induced complexity measure by any linear neural network.

The lp,q group quasi-norm with overlapping groups is defined as

∥β∥p,q =
( k∑
j=1

( ∑
i∈Gj

|βi|q
)p/q)1/p

, (525)

where G1, G2 . . . Gk ⊆ [n].

Theorem 59. Let G1, . . . , Gk ⊆ [n] such that

k⋃
j=1

Gj = [n]. (526)

Let ∥·∥p,q be the lp,q group quasi-norm with respect to G1, . . . , Gk for some p, q > 0, p ̸= q, defined
in Eq. (525). Suppose that there exists i, j ∈ [n] and s, t ∈ [k] such that

{i, j} ⊆ Gs, i ∈ Gt, j ̸∈ Gt. (527)

Then ∥·∥p,q is not the induced complexity measure of any linear homogeneous feedforward neural
network without shared weights.
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Note that the assumption in the above result is necessary. If the assumption does not hold, then
for all i, j, xi and xj are either always in the same group or always in different groups. However,
this implies that the resulting quasi-norm is lp,q quasi-norm without overlapping between groups,
provided that

Gs ̸= Gt ∀s ̸= t. (528)
Indeed, the assumption in the above result exactly characterizes lp,q quasi-norm with overlapping
groups.

Proof. Let h(·) = ∥·∥p,q. Without loss of generality, assume that i = 1, j = 2. Let w1 denote the
number of groups that only contains 1. Let w2 denote the number of groups that only contains 2. Let
w3 be the number of groups that contain both 1 and 2. Let h1,2 : R2 −→ R+ be defined as

h1,2(β
′) = h(β) (529)

where β is obtained from β′ by putting zeros to the kth entries for all k ̸∈ {1, 2}. Then
h1,2(x)

p = w3(|x1|q + |x2|q)p/q + w1|x1|p + w2|x2|p. (530)
Since we only care about the value of h1,2 up to monotonic transformation, we can assume that

w3 = 1. (531)
Note that at least one of w1 and w2 is nonzero by assumption. Now, suppose for the sake of
contradiction that h1,2 is monotonic in l2/d quasi-norm for some d ∈ N. Then

h1,2(1, 0) = h1,2(0, 1), (532)
which implies that

w1 = w2 = c (533)
for some c > 0. Now,

h1,2(x)
p = (|x1|q + |x2|q)p/q + c(|x1|p + |x2|p). (534)

Since h1,2 is monotonic in l2/d quasi-norm, it is constant on

{(td/2, (1− t)d/2) : t ∈ (0, 1)}. (535)
Let

g(t) = h1,2((t
d/2, (1− t)d/2))p = (tqd/2 + (1− t)qd/2)p/q + c(tpd/2 + (1− t)pd/2). (536)

Let
r = p/q, s = qd/2. (537)

Then
g(t) = (ts + (1− t)s)r + c(trs + (1− t)rs). (538)

Since p ̸= q,
r ̸= 1. (539)

Now, if s = 1, then
g(t) = 1 + c(tr + (1− t)r), (540)

which is clearly not constant since r ̸= 1 and c > 0. Thus,
s ̸= 1. (541)

Since g(t) is constant, its derivative is 0:
g′(t) = rs(ts + (1− t)s)r−1(ts−1 − (1− t)s−1) + crs(trs−1 − (1− t)rs−1) = 0, (542)

which implies that
g′(t)/rs = (ts + (1− t)s)r−1(ts−1 − (1− t)s−1) + c(trs−1 − (1− t)rs−1) = 0, (543)

for all t ∈ (0, 1). Then
lim
t→0

g′(t)/rs = 0. (544)

However,
lim
t→0

g′(t)/rs = −1− c < 0 (545)

if s > max(1, 1/r),
lim
t→0

g′(t)/rs = ∞ (546)

if s < 1 or s < 1/r,
lim
t→0

g′(t)/rs = −1 < 0 (547)

if s = 1/r > 1. This is a contradiction. Thus, h1,2 is not monotonic in l2/d quasi-norm for any
d ∈ N. Thus, by Lemma 57, h cannot be induced as induced complexity measure by any linear neural
network.

76



I Supplementary materials: homogeneous parameterizations

In this section, we consider general homogeneous parametrizations. We will show several homoge-
neous parameterizations whose induced complexity measure cannot be induced by any linear neural
network.

First, we recall the setup. We consider parameterized mappings f : X × Rp −→ Rm, from input
x ∈ X and parameters w ∈ Rp to predictions f(x;w). We denote the predictor implemented with
parameters w by F (w) : X −→ Rm defined as F (w)(x) := f(x;w). Then image(F ) is the set of
functions from X to Rm which can be obtained from this class of parameterized models. In this
section, we consider the single output linear models, i.e., m = 1,X = Rn, and image(F ) is the set
of linear transformations, which can be identified as Rn.

The representation cost ([15, 31, 27]) of a function g in image(F ) under the parametrization F is

RF (g) = min{∥w∥22 : F (w) = g}. (548)

I.1 Elastic nets

In this section, we consider the Elastic Nets penalty defined as:
∥β∥1 + α∥β∥2, (549)

for β ∈ Rn, where α > 0 is some constant. Letw1 = (w1, w2), w2 = (W3, w4), wherew1, w2, w4 ∈
Rn and W3 ∈ Rn×n. Let

W1 = diag(w1). (550)
Let w = (w1, w2) be the parameter, and X = Rn. Let

fEN (x;w) = sign(wT
2 W1)min(2|wT

2 W1|, 2α−1|wT
4 W3|)x, (551)

where min(·), sign(·), and absolute value | · | are applied component-wise.
Theorem 60. For any β ∈ Rn,

RFEN
(β) = ∥β∥1 + α∥β∥2 = ∥β∥EN . (552)

Thus, the induced complexity measure induced by FEN is an elastic net.

Proof. Let w = (w1, w2,W3, w4) be such that β = fEN (·;w). Let

β′T = wT
2 W1, β′′T = wT

4 W3. (553)
By results in linear fully connected networks and linear diagonal networks, we have

RFEN
(β) = min{2∥β′∥1 + 2∥β′′∥2 : sign(β′)min(2|β′|, 2α−1|β′′|) = β}. (554)

Since |β| = min(2|β′|, 2α−1|β′′|),
RFEN

(β) ≥ 2∥β/2∥1 + 2∥αβ/2∥2 = ∥β∥1 + α∥β∥2, (555)

where equality is achieved when 2β′ = 2α−1β′′ = β.

In the proof of Theorem 60, the key step is to answer the follow question: Given two parameterizations
F1, F2, how can we find another parameterization F such thatRF (·) = RF1(·)+RF2(·)? The answer
is taking component-wise minimum min(·). Similarly, we can extend this result to an arbitrary number
of parameterizations.
Lemma 61. Let f1(·;w1), . . . , fk(·;wk) be k linear predictors such thatRFj (β) is strictly increasing
in |βi| for all i ∈ [n] and only depends on |β|, for all j ∈ [k], where | · | is component-wise absolute
value. Let

f(x;w) = sign(f1(·;w1)) min
j∈[k]

(|fj(·;wj)|)Tx, (556)

where min(·) and absolute value | · | are taken component-wise, and w = (w1, . . . , wk). Then,

RF (β) =

k∑
j=1

RFj
(β). (557)

In addition, if Fjs are all positively homogeneous of degree L > 0, then F is also positively
homogeneous of degree L.
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Proof. For any β ∈ Rn,

RF (β) = min

{
k∑

j=1

∥wj∥22 : sign(f1(·;w1)) min
j∈[k]

(|fj(·;wj)|) = β

}

= min

{
k∑

j=1

min{∥wj∥22 : fj(·;wj) = γj} : sign(γ1) min
j∈[k]

(|γj |) = β

}

= min

{
k∑

j=1

RFj
(γj) : sign(γ1) min

j∈[k]
(|γj |) = β

}

(a)
= min

{
k∑

j=1

RFj (|γj |) : sign(γ1) min
j∈[k]

(|γj |) = β

}

(b)
=

k∑
j=1

RFj
(|β|)

(c)
=

k∑
j=1

RFj
(β),

(558)

where in (a), (c) we used the fact that RFj (β) depends only on |β|, and in (b) we used the fact that
RFj

(β) is strictly increasing in |β|.

In addition, suppose that fj is positively homogeneous of degree L > 0 for all j ∈ [k]. Then for all
λ > 0, for all j ∈ [k],

fj(·;λw)Tx = fj(x;λw) = λLfj(x;w) = λLfj(·;w)Tx, (559)

for all x ∈ Rn. Thus,
fj(·;λw) = λLfj(·;w) (560)

for all j ∈ [k]. Then for all λ > 0,

f(x;λw) = sign(f1(·;λw1)) min
j∈[k]

(|fj(·;λwj)|)Tx

= sign(λLf1(·;w1)) min
j∈[k]

(λL|fj(·;wj)|)Tx

= λL sign(f1(·;w1)) min
j∈[k]

(|fj(·;wj)|)Tx

= λLf(x;w).

(561)

Thus, f is positively homogeneous of degree L.

I.2 lp quasi-norms

Let p ∈ (0,∞), and X = Rn. Our goal is to find a homogeneous parameterization which induces lp
quasi-norm as induced complexity measure. Let ϕp : R −→ R be defined as

ϕp(z) = sign(z)|z|2/p. (562)

Let
fp(x;w) = ϕp(w)

Tx, (563)
where x;w ∈ Rn and ϕ is applied component-wise.
Theorem 62. For any β ∈ Rn,

RFp
(β) = ∥β∥pp ∼= ∥β∥p. (564)

Thus, Fp induces lp quasi-norm as induced complexity measure.
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Proof. Let w ∈ Rp such that

fp(·;w) = β and ∥w∥22 = RFp(β). (565)

Then since ϕp(w) = β,
|w[i]| = |βi|p/2 (566)

for all i ∈ [n]. Then, we would have

RFp(β) = ∥w∥22 = ∥β∥pp. (567)

Note that this parameterization cannot be realized by any linear neural network since it is not
multilinear. Indeed, as we have seen in Theorem 35, not all lp quasi-norms can be induced as induced
complexity measure by neural networks.

I.3 lp,q group quasi-norm with overlapping between groups

In Corollary 59, we showed that lp,q quasi-norm with overlapping between groups cannot be induced
as induced complexity measure by any linear neural networks. In contrast, we will show that with
homogeneous parameterization, we can indeed induce lp,q quasi-norm with overlapping between
groups as induced complexity measure for all p, q > 0. We will give two classes of homogeneous
parameterizations for the case p < q and p > q respectively.

We begin with the case p < q. The strategy is to first find a parameterization fpq such that

RFp
q
(β) = c∥β∥pq , (568)

for some constant c. Then, we will use something similar to Lemma 61 to get the parameterization
Fp,q whose representation cost is

RFp,q
(β) =

k∑
j=1

cRFp
q
(βGj

) = c

k∑
j=1

( ∑
i∈Gj

|βi|q
)p/q

= c

k∑
j=1

∥∥βGj

∥∥p
q
, (569)

where G1, . . . , Gk are the groups and βGj
denotes the projection of β onto the coordinates that

correspond to elements in Gj . Thus, Fp,q induces lp,q quasi-norm with overlapping between groups
as induced complexity measure.

Now, we give the parameterization F p
q whose representation cost satisfies equation (568) for p < q.

We will use the following generalized AM-GM inequality:

xty1−t ≤ tx+ (1− t)y (570)

for any x, y ≥ 0 and t ∈ [0, 1]. Fix t ∈ [0, 1]. We will find parameterization Fp,q for p = tq. Based
on the previous paragraph, we will first find parameterization F tq

q such that

RF tq
q
(β) = c∥β∥tqq , (571)

for some constant c. Let q ∈ (0,∞). Let X = Rn. Let ϕq : R −→ R be defined as

ϕq(z) = sign(z)|z|2/q. (572)

Let w = (w1, w2) be the parameters where w1 ∈ Rn and w2 ∈ R. For any w = (w1, w2) ∈ Rn+1

and x ∈ Rn, let
f tqq (x;w) = ϕq(w

(1−t)/t
2 w1)

Tx, (573)
where ϕq is applied component-wise.
Lemma 63. For any β ∈ Rn,

RF tq
q
(β) = ct∥β∥tqq ∼= ∥β∥q, (574)

where ct = 1/(tt(1− t)1−t).
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Proof. Let w = (w1, w2) ∈ Rn+1 be such that ϕ(w(1−t)/t
2 w1) = β. Let β′ = w

(1−t)/t
2 w1. Then

∥w1∥22 + w2
2 =

∥β′∥2

w
2(1−t)/t
2

+ w2
2

(a)

≥
∥β′∥2t2

tt(1− t)1−t
, (575)

where in (a) we used the generalized AM-GM inequality (570), which can be attained when

∥β′∥2

tw
2(1−t)/t
2

=
w2

2

1− t
. (576)

Now, since ϕ(β′) = β,
|β′

i| = |βi|q/2 (577)
for all i ∈ [n]. Thus,

RF tq
q
(β) =

∥β′∥2t2
tt(1− t)1−t

=
∥β∥tqq

tt(1− t)1−t
. (578)

Using some technique similar to Lemma 61, we get the following result.
Theorem 64. Let G1, . . . , Gk ⊆ [n] be the groups. For x ∈ Rn, let xGj denote the projection of x
on coordinates that correspond to elements in Gj . Let w = (w1, . . . , wk) be the parameters, where
wj ∈ R|Gj |+1 for all j ∈ [k]. For each j ∈ [k], let

fj(x;wj) = f tqq (xGj
;wj), (579)

where f tqq is defined in equation (573). So fj(·;wj) is the lifting of f tqq (·;wj) by putting zeroes to
coordinates not in Gj . For each i ∈ [n], pick ji ∈ [k] such that i ∈ Gji . Let

ftq,q(x;w) =

n∑
i=1

sign(fji(·;wji)[i]) min
j:i∈Gj

(|fj(·;wj)[i]|)xi, (580)

Then

RFtq,q
(β) = ct

k∑
j=1

∥∥βGj

∥∥tq
q

∼= ∥β∥tq,q, (581)

where Ftq,q is the parameterization induced by ftq,q and ct = 1/(tt(1− t)1−t).

Thus, Ftq,q induces ltq,q quasi-norm as induced complexity measure.

Proof. Let β ∈ Rn. Suppose that ftq,q(·;w) = β, and ∥w∥22 = RFtq,q
(β). Then,

|βi| = min
j:i∈Gj

(|fj(·;wj)[i]|) (582)

for each i ∈ [n]. Since RFj
(a) = RF tq

q
(aGj

) (aGj
is the projection of a on coordinates in Gj) is

strictly increasing in |ai| for i ∈ Gj by Lemma 63, and w attains the minimum representation cost,

|fj(·;wj)[i]| = |βi|, (583)

for all j such that i ∈ Gj . Thus, by Lemma 63,

∥wj∥22 = RF tq
q
(βGj

) =
1

tt(1− t)1−t

∥∥βGj

∥∥tq
q
, (584)

where βGj is the projection of β on coordinates in Gj . Therefore,

RFtq,q
(β) =

k∑
j=1

∥wj∥22 =
1

tt(1− t)1−t

k∑
j=1

∥∥βGj

∥∥tq
q
. (585)
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Next, we turn to the p > q case and aim to find a homogeneous parameterization that induces lq,tq
quasi-norm as induced complexity measure. First, we recall the construction of hidden layer used to
induce l2,1 norm (section D.4) as induced complexity measure. Let G1, . . . , Gk be a partition of [n].
Let

C =

k∏
j=1

Gj = G1 ×G2 × · · · ×Gk (586)

be the Cartesian product of the k groups. For each h ∈ C, let Sh := {h[j] : j ∈ [k]}. Let
w = (wh)h∈C be the parameters, where wh ∈ Rk+1 for all h ∈ C. For each x ∈ Rn, let xSh

be the projection of x on coordinates that correspond to elements in Sh. For each h ∈ C, let
gh(f

tq
q (·;wh)) ∈ Rn be the vector defined as

gh(f
tq
q (·;wh))[i] = f tqq (·;wh)[i] (587)

if i ∈ Sh and 0 otherwise. Now, let

fq,tq(x;w) =

((∑
h∈C

gh(f
tq
q (·;wh))

tq

)1/tq)T

x, (588)

where the exponents are taken component-wise(i.e ak[i] = a[i]k).

Theorem 65. For β ∈ Rn,

RFq,tq
(β) = ct∥β∥tqq,tq ∼= ∥β∥q,tq, (589)

where ct = 1/(tt(1− t)1−t).

Thus, Fq,tq induces lq,tq quasi-norm as induced complexity measure.

Proof. By Lemma 63,

RFq,tq
(β) = ct min

{∑
h∈C

∥vh∥tqq : supp(vh) ⊆ Sh,

(∑
h∈C

vtqh

)1/tq

= β

}
, (590)

where vh = gh(f
tq
q (·;wh)) and ct = 1/(tt(1− t)1−t). Let ϕ : Rn −→ Rn be defined as

ϕ(x)[i] = x[i]2/d. (591)

Then

∥vh∥tqq =

(
n∑

i=1

vh[i]
q

)t

=

(
n∑

i=1

ϕ(vh)[i]
1/t

)t

= ∥ϕ(vh)∥1/t. (592)

Also, note that ∑
h∈C

ϕ(vh) = ϕ(β) (593)

if and only if (∑
h∈C

vtqh

)1/tq

= β. (594)

Let g(ϕ(β)) = RFq,tq
(β)/ct. Then

g(ϕ(β)) = min

{∑
h∈C

∥ϕ(vh)∥1/t : supp(vh) ⊆ Sh,
∑
h∈C

ϕ(vh) = ϕ(β)

}
. (595)

Note that g is a norm since 1/t > 1. Let g∗ denote its dual norm. Let t∗ > 0 be the conjugate of 1/t,
that is

t+
1

t∗
= 1. (596)
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By the same arguments in Lemma 6 and Theorem 34, we have

g∗(ϕ(β)) = max

{(∑
i∈Sh

|ϕ(β)[i]|t
∗

)1/t∗

: h ∈ C

}

=

(
k∑

j=1

(
max
i∈Gj

|ϕ(β)[i]|

)t∗)1/t∗

= ∥ϕ(β)∥t∗,∞.

(597)

Thus,
g(ϕ(β)) = ∥ϕ(β)∥1/t,1. (598)

Then

RFq,tq
(β) = ctg(ϕ(β)) = ct∥ϕ(β)∥1/t,1 = ct

(
k∑

j=1

( ∑
i∈Gj

|ϕ(β)[i]|

)1/t)t

= ct

(
k∑

j=1

( ∑
i∈Gj

|βi|tq
)1/t)t

= ct∥β∥tqq,tq. (599)

To summarize, we can induce all lp,q group quasi-norms with overlapping between groups as induced
complexity measure using homogeneous parameterizations for all p and q. In particular, we can
induce all lp,q group quasi-norms without overlapping between groups as induced complexity measure
using homogeneous parameterizations for all p and q.
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