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A PROOFS

Note that hhh is identical for both real and learned systems. Unless otherwise specified, we omit hhh in
the following discussions.

A.1 PROOF OF PROPOSITION 3.1

According to the constraints of the initial conditions, the initial position q
(t0)
θ is E(3)-equivariant

and the initial velocity q̇
(t0)
θ is O(3)-eqivariant and translation-invariant. Given that G1 and back-

bone GNN fθ are O(3)-equivariant and translation-invariant, for any translation vector b ∈ R3,
orthogonal matrix A ∈ R3×3 and t′ ∈ [0,∆t], we have

Ψt′,gθ,fθ (Aq
(t0)
θ + b) = gθ(Aq

(t0)
θ + b) + G1(fθ(Aq

(t0)
θ + b), t′)

= Agθ(q
(t0)
θ ) + G1(Afθ(q

(t)
θ ), t′)

= Aq̇
(t0)
θ +AG1(fθ(q

(t0)
θ ), t′)

= Aq̇
(t0+t′)
θ = AΨ∆t,gθ,fθ (q

(t0)
θ ).

(17)

Thus, Ψt′,gθ,fθ (q
(t0)
θ ) is proved to be O(3)-equivariant and translation-invariant. Then, for q(t0+t′)

θ ,
we have

Φt′,gθ (Aq
(t0)
θ + b) = Aq

(t0)
θ + b+ G2(Ψt′,gθ,fθ (Aq

(t0)
θ + b), t′)

= Aq
(t0)
θ + G2(AΨt′,gθ,fθ (q

(t0)
θ ), t′) + b

= Aq
(t0)
θ +AG2(Ψt′,gθ,fθ (q

(t0)
θ ), t′) + b

= Aq
(t0+t′)
θ + b.

(18)

Therefore, q
(t0+t′)
θ = Φt′,gθ (q

(t0)
θ ) is E(3)-equivariant. Note that the composition of E(3)-

equivariant functions is still E(3)-equivariant. For any time t ∈ [t0, t1], q
(t)
θ , which is generated

via iteratively calling integrator Φt′,gθ (Eq. 11) with suitable t′ ∈ [0,∆t], is E(3)-equivariant. Over-
all, the approximated trajectory qθ is E(3)-equivariant. For example, if the backbone is EGNN, the
message passing is defined by

m
(t)
ij = ϕe

(
||q(t)

θ,i − q
(t)
θ,j ||

2,hi,hj , aij

)
, q̈

(t)
θ,i =

1

N − 1

∑
j∈Ni

(q
(t)
θ,i − q

(t)
θ,j)ϕq(m

(t)
ij ).

h
(t+∆t)
i = h

(t)
i + ϕh(h

(t)
i ,

∑
j∈Ni

m
(t)
ij ).

(19)

Here ϕe, ϕx denotes Multi-Layer Perceptrons (MLP) whose output is a scalar and the output of ϕh
is a vector. The non-geometric features are updated via skip connections. Analogous to neural ODE
methods, the model parameters are shared among all iterations.

Specifically, most widely used numerical solvers for motion equations are E(3) equivariant. For
example, a symplectic Euler integrator computes

q(t+∆t) = q(t) + q̇(t+∆t)∆t, q̇(t+∆t) = q̇(t) + q̈(t)∆t. (20)

It is straightforward to show that

Aq̇(t) +Aq̈(t+∆t)∆t = Aq̇(t+∆t), Aq(t) + b+Aq̇(t+∆t)∆t = Aq(t+∆t) + b. (21)

This property also holds for Velocity Verlet

q(t+∆t) = q(t) + q̇(t)∆t+
1

2
q̈(t)∆t2, q̇(t+∆t) = q̇(t) +

1

2
(q̈(t) + q̈(t+∆t))∆t, (22)

and Leapfrog

q(t+∆t) = q(t) + q̇(t)∆t+
1

2
q̈(t)∆t2, q̇(t+∆t) = q̇(t) + q̈(t+∆t)∆t. (23)

The proof is the same as symplectic Euler.

13



Under review as a conference paper at ICLR 2024

A.2 PROOF OF THEOREM 4.1

We first prove the uniqueness of the solution in our dynamic system. The key to this proof is to
convert the high-order non-linear ODE to a first-order non-linear ODE. Let’s define a new variable
Q(t) = (q̇(t), q(t)) and Q̇(t) as its first-order derivative with respect t. Then in terms of this new
variable, the second-order non-linear ODE becomes

Q̇(t) = (F (Q(t)), G(Q(t))), (24)

where F (Q(t))) = f(q(t)) and G(Q(t)) = q̇(t). Furthermore, let’s define H(Q(t)) =
(F (Q(t)), G(Q(t))), and Eq. 24 is reformatted as

Q̇(t) = H(Q(t)), Q(t0) = (q̇(t0), q(t0)), (25)

which is exactly a first-order non-linear ODE with a known initial condition. Note that G and f
are both Lipschitz continuous, thus H is Lipschitz continuous. Then, based on Picard’s existence
theorem (Coddington et al., 1956), the aforementioned non-linear ODE has a unique solution Q(t),
∀t ∈ [t0, t1]. Subsequently, our system has a unique solution q(t), ∀t ∈ [t0, t1].

A.3 PROOF OF PROPOSITION 4.2

Due to the uniqueness of the solution, if the realistic measurement q(t1) is given, then the trajectory
q(t) is fully determined over the time interval [t0, t1]. Under SEGNO framework, without loss of
generality, we define the discrepancy between q

(t1)
θ and q(t1) as

d(q
(t1)
θ , q(t1)) = ||q(t1)

θ − q(t1)||p = ||(Φ∆t,gθ )
τ (q(t0))− ϕT,g(q

(t0))||p, (26)

where || · ||p represents the p-norm. According to Eq. 9, Φ∆t,gθ is fully determined by fθ. To mini-
mize d(q(t1)

θ , q(t1)), our neural ODE update scheme requires fθ(q
(t0+k∆t)
θ ) accurately approximate

f(q(t0+k∆t)) for k = 0, · · · , τ − 1. Then, under the assumption of universal approximation of
neural networks (Hornik et al., 1989) and with sufficiently small ∆t, there exists a fθ∗ such that
fθ∗(q

(t)
θ∗ ,h) = f(q(t),h), ∀t ∈ [t0, t1].

A.4 PROOF OF THEOREM 4.3

The proof sketch is as follows: We first revisit the core definitions pertaining to neural ODE in
SEGNO and introduce its variant with Euler integrator, then derive the bound for first-order approx-
imation error ||gθ−g||∞, and finally extend the results to the second-order case ||fθ−f ||∞ to finish
the proof.

A.4.1 EULER INTEGRATOR IN SEGNO

As mentioned in Eq. 10, the Euler integrator Φ∆t,gθ , as mentioned in Eq. 20, approaches ϕ∆t,gθ via

gθ(q
(t+∆t)
θ ) = gθ(q

(t)
θ ) + fθ(q

(t)
θ )∆t,

Φ∆t,gθ (q
(t)
θ ) = q

(t)
θ + gθ(q

(t+∆t)
θ )∆t.

(27)

Considering Eq. 11 and 12, it is straightforward to reframe our learning objective in the context of a
neural ODE:

Ltrain =
∑

s∈Dtrain

||q(t1)
θ,s − q(t1)

s ||2 =
∑

s∈Dtrain

||(Φ∆t,gθ )
τ (q(t0)

s )− ϕT,g(q
(t0)
s )||2. (28)

A.4.2 APPROXIMATION ERROR OF fθ

In our dynamical system, gθ and g are entirely determined by fθ and f respectively. Thus, we first
establish the boundedness of ||gθ − g||∞, then demonstrate the approximation error of ||fθ − f ||∞.
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Lemma A.1. For q(t0) ∈ R3 as the initial position of a trajectory, ra, rb, T, τ > 0 and k ∈ Z+,
a given ODE solver that is τ compositions of an Euler Integrator Φ∆t,gθ with ∆t = T/τ , a set of
points on exact trajectory associated with time increment interval [k∆t, T + k∆t] as

V T+k∆t
k∆t = {ϕt′,g(q(t0))|k∆t ≤ t′ ≤ T + k∆t}, (29)

, and denote

LT+k∆t
k∆t =

1

T
||(Φ∆t,gθ )

τ − ϕT,g||B(V T+k∆t
k∆t ,ra)

, (30)

and suppose that g and gθ are analytic and bounded by m within B(V T+k∆t
k∆t , ra + rb), the union of

complex balls centered at q ∈ V T+k∆t
k∆t with radius ra+rb. Then, there exist constants T0 andC that

depends on ra/m, rb/m, τ , and Φ∆t,gθ , such that, if 0 < T < T0, ∀t ∈ [t0 + k∆t, t0 + T + k∆t],

||gθ(q(t))− g(q(t))||∞ ≤ Cm∆t+
e

e− 1
LT+k∆t
k∆t , (31)

where e is the base of the natural logarithm.

Proof. This result can be directly derived from Theorem 3.1, 3.2 and Corollary 3.3 in (Zhu et al.,
2022) via replacing the integrator from Runge-Kutta integrator with Euler integrator since Euler
integrator has been proven to satisfy the prerequisites of theorems in Appendix B.2 in (Zhu et al.,
2022).

Since B(V T
0 , r1) ⊂ B(V 2T

0 , r1), per our assumption, then g and gθ are both analytic and bounded
by m1 in B(V T

0 , r1). To utlize Lemma A.1, we set k = 0 and T = t1 − t0. With suitable r1 and
m1, we have T < T0 and, ∀t ∈ [t0, t1],

||gθ(q(t))− g(q(t))||∞ ≤ C1m1∆t+
e

e− 1
LT
0 , (32)

where LT
0 = 1

T ||(Φ∆t,gθ )
τ − ϕT,g||B(V T

0 ,r1) and C1 is a control constant.

To establish the connection between g and f , we only focus on the first time step ∆t instead of the
entire time interval T . Recall that g is obtained by integrating f , we have

ψ∆t,g,f (q
(t0)) = g(q(t0+∆t)) = g(q(t0)) +

∫ t0+∆t

t0

f(q(t)) dt, (33)

as the flow map for the first-order derivative of the exact trajectory in a single step. As defined in
Eq. 27, its corresponding Euler integrator has the form

gθ(q
(t0+∆t)
θ ) = Ψ∆t,gθ,fθ (q

(t0)) = gθ(q
(t0)
θ ) + fθ(q

(t0)
θ )∆t. (34)

Note that B(V T
0 , r2) ⊂ B(V 2T

0 , r2), f and fθ are both analytic and bounded by m2 in B(V T
0 , r2).

In lemma A.1, we substitute ϕ∆t,gθ by Ψ∆t,gθ,fθ and set T = ∆t with τ = 1 and k = 0, then the
corresponding loss becomes

LT
0,1 =

1

∆t
||Ψ∆t,gθ,fθ − ψ∆t,g,f ||B(V ∆t

0 ,r2)

= sup
q∈B(V ∆t

0 ,r2)

1

∆t
||Ψ∆t,gθ,fθ (q)− ψ∆t,g,f (q)||∞

=
1

∆t
||Ψ∆t,gθ,fθ (q

∗)− ψ∆t,g,f (q
∗)||∞

=
1

∆t
||gθ(q̃(t0+∆t)

θ )− g(q̃(t0+∆t))||∞,

(35)

where q∗ denote the point that maximizes the Eq. 35 and q̃(t) is another trajectory with q̃(t0) = q∗

because q∗ ∈ V ∆t
0 may not holds. For both q̃(t) and qt, the actual position and estimation from

SEGNO at t0 +∆t have the form

q̃(t0+∆t) = q̃(t0) +

∫ t0+∆t

t0

g(q̃(t)) dt,

q̃
(t0+∆t)
θ = q̃(t0) + gθ(q̃

(t0))∆t+ fθ(q̃
(t0))∆t2,

q
(t0+∆t)
θ = q(t0) + gθ(q

(t0))∆t+ fθ(q
(t0))∆t2.

(36)
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Then, with suitable ∆t and r1, g(q̃(t0+∆t)), gθ(q̃
(t0+∆t)
θ ) and gθ(q

(t0+∆t)
θ ) are bounded bym1 since

q̃(t0+∆t), q̃
(t0+∆t)
θ , q

(t0+∆t)
θ ∈ B(VT , r1). Given such, the aforementioned loss is transformed into

LT
0,1 ≤ 1

∆t

[
||gθ(q̃(t0+∆t)

θ )− gθ(q̃
(t0+∆t))||∞ + ||gθ(q̃(t0+∆t))− gθ(q

(t0+∆t))||∞

+ ||gθ(q(t0+∆t))− g(q(t0+∆t))||∞ + ||g(q(t0+∆t))− g(q̃(t0+∆t))||∞
]

≤ 1

∆t
(6m1 + C1m1∆t+

e

e− 1
LT
0 ).

(37)

Subsequently, given that ∆t < T < T0, we have, ∀t ∈ [t0, t0 +∆t],

||fθ(q(t))− f(q(t))||∞ ≤ C2m2∆t+
e

e− 1
LT
0,1,

≤ C2m2∆t+
e

e− 1

[ 1

∆t
(6m1 + C1m1∆t+

e

e− 1
LT
0 )

]
,

≤ C2m2∆t+ (
e

e− 1
)2
LT
0

∆t
+

e

e− 1
(
6m1

∆t
+ C1m1),

≤ O(∆t+
LT
0

∆t
).

(38)

To extend the boundness up to t1, we can easily utilize Lemma A.1 with different k = 1, · · · , τ − 1
(Eq. 32) to repeat the above derivation, and obtain, ∀t ∈ [t0 + k∆t, t0 + (k + 1)∆t],

||fθ(q(t))− f(q(t))||∞ ≤ O(∆t+
LT+k∆t
k∆t

∆t
), (39)

where LT+k∆t
k∆t = 1

T ||(Φ∆t,gθ )
τ − ϕT,g||B(V T+k∆t

k∆t ,r1)
. Therefore, ∀t ∈ [t0, t1],

||fθ(q(t))− f(q(t))||∞ ≤ sup
k=0,··· ,τ−1

O(∆t+
LT+k∆t
k∆t

∆t
)

≤ O(∆t+
L2T
0

∆t
),

(40)

where L2T
0 = 1

T ||(Φ∆t,gθ )
τ − ϕT,g||B(V 2T

0 ,r1) and it concludes the proof.

A.5 PROOF OF COROLLARY 4.4

A.5.1 LOCAL TRUNCATION ERROR

We use Taylor series expansion to approximate the trajectory at time t+∆t as

q(t+∆t) = q(t) + g(q(t))∆t+
1

2
f(q(t))∆t2 +O(∆t3). (41)

Then the local truncation error ϵt+∆t, ∀t ∈ [t0, t1], equals to

ϵt+∆t = ||q(t+∆t) − q(t) − g(q(t))∆t− fθ(q
(t))∆t2||2

= ||q(t) + g(q(t))∆t+
1

2
f(q(t))∆t2 +O(∆t3)

− q(t) − g(q(t))∆t− fθ(q
(t))∆t2||2

= ||1
2
f(q(t))∆t2 − fθ(q

(t))∆t2 +O(∆t3)||2

= ||1
2
(f(q(t))− fθ(q

(t)))∆t2 − 1

2
fθ(q

(t))∆t2 +O(∆t3)||2

≤ ||1
2
(f(q(t))− fθ(q

(t)))∆t2||2 + ||1
2
fθ(q

(t))∆t2||2 +O(∆t3)

≤
√
3∆t2

2
||f(q(t))− fθ(q

(t)))||∞ + ||1
2
m2∆t

2||2 +O(∆t3)

≤
√
3∆t2

2
O(∆t+

2L2T
0

∆t
) +O(∆t2).

(42)
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Here the last inequality is due to Theorem 4.3. If the learned model achieves a near-perfect approx-
imation of the true trajectory, resulting in a significantly diminished loss L2T

0 . Then, ∀t ∈ [t0, t1],

ϵt+∆t ≤ O(∆t2). (43)

A.5.2 GLOBAL TRUNCATION ERROR

Considering t ∈ [t0, t1] and k = 1, · · · , τ − 1, the boundness of the global truncation error can be
derived in a recursive way via

Et+(k+1)∆t = ||q(t+(k+1)∆t) − q
(t+(k+1)∆t)
θ ||2

= ||q(t+(k+1)∆t) − q
(t+k∆t)
θ − gθ(q

(t+k∆t)
θ )∆t− fθ(q

(t+k∆t)
θ )∆t2||2

= ||q(t+k∆t) − q
(t+k∆t)
θ + q(t+(k+1)∆t) − q(t+k∆t) − g(q(t+k∆t))∆t

− fθ(q
(t+k∆t))∆t2 + fθ(q

(t+k∆t))∆t2 − fθ(q
(t+k∆t)
θ )∆t2

+ g(q(t+k∆t))∆t− gθ(q
(t+k∆t))∆t

+ gθ(q
(t+k∆t))∆t− gθ(q

(t+k∆t)
θ )∆t||2

≤ Et+k∆t + ϵt+(k+1)∆t + ||fθ(q(t+k∆t))− fθ(q
(t+k∆t)
θ )||2∆t2

+
[
||gθ(q(t+k∆t))− gθ(q

(t+k∆t)
θ )||2 + ||g(q(t+k∆t))− gθ(q

(t+k∆t))||2
]
∆t.

(44)

Note that gθ and fθ satisfy the Lipschitz continuity, we have

||gθ(q(t+k∆t))− gθ(q
(t+k∆t)
θ )||2 ≤ Lg||q(t+k∆t) − q

(t+k∆t)
θ ||2 = Lg||Et+k∆t||2,

||fθ(q(t+k∆t))− fθ(q
(t+k∆t)
θ )||2 ≤ Lf ||q(t+k∆t) − q

(t+k∆t)
θ ||2 = Lf ||Et+k∆t||2,

(45)

where Lg and Lf denote Lipschitz constant for gθ and fθ respectively. Given that the learned model
achieves a near-perfect approximation of the true trajectory, by Lemma A.1 and Eq. 32, we obtain

||g(q(t+k∆t))− gθ(q
(t+k∆t))||2 ≤

√
3
[
C1m1∆t+

e

e− 1
L2T
0

]
≤ O(∆t). (46)

Thus, the global truncation error in Eq. 44 is transformed into

Et+(k+1)∆t ≤ (1 + Lg∆t+ Lf∆t
2)Et+k∆t +O(∆t2). (47)

Note that the global truncation error for the first step Et+∆t, where k = 1, is exactly the local
truncation error ϵt+∆t mentioned in Eq. 42. Given that k ≤ τ , we can derive, ∀t ∈ [t0, t1] and
k = 1, · · · , τ ,

Et+k∆t ≤ (1 + Lg∆t+ Lf∆t
2)k−1O(∆t2) + · · ·+ (1 + Lg∆t+ Lf∆t

2)O(∆t2)

≤ O(τ∆t2) = O(
T

∆t
∆t2) = O(∆t).

(48)

B IMPLEMENTATION DETAILS

B.1 MORE DETAILS ON SIMULATED N-BODY SYSTEMS

N-body charged system We use the same N-body charged system code2 with previous
work (Satorras et al., 2021; Brandstetter et al., 2021). They inherit the 2D implementation of (Kipf
et al., 2018) and extend it to 3 dimensions. System trajectories are generated in 0.001 timestep and
unbounded with virtual boxes. The initial location is sampled from a Gaussian distribution (mean
µ = 0, standard deviation σ = 0.5), and the initial velocity is a random vector of norm 0.5.

N-body gravity system The code3 of gravitational N-body systems is provided by (Brandstetter
et al., 2021). They implement it under the same framework as the above charged N-body systems.
System trajectories are generated in 0.001 timestep, using gravitational interaction and no boundary
conditions. Particle positions are initialized from a unit Gaussian, particle velocities are initialized
with a norm equal to one, random direction, and particle mass is set to one.

2https://github.com/vgsatorras/egnn
3https://github.com/RobDHess/Steerable-E3-GNN
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Figure 5: Molecular structures of MD22 dataset, which is borrowed from Fig.1 of original pa-
per (Chmiela et al., 2023).

Hyperparameter We empirically find that the following hyperparameters generally work well,
and use them across most experimental evaluations: Adam optimizer with learning rate 0.001, the
number of epochs 500, hidden dim 64, weight decay 1 × 10−12, and layer number 4. We set the
iteration time of SEGNO to 8. The representation degrees of SE(3)-transformer and TFN are set to
3 and 2. The number of training, validation, and testing sets are 3000, 2000, and 2000, respectively.

B.2 MORE DETAILS ON MD22

Molecules and Hyperparameter The molecular structures of MD22 are displayed in Figure 5,
which is borrowed from their paper (Chmiela et al., 2023). We use the following hyperparame-
ters across all experimental evaluations: Adam optimizer with learning rate 0.0005, the number of
epochs 500, hidden dim 64, weight decay 1 × 10−12, and layer number 4. The iteration time of
SEGNO is searched from 4 to 8. The representation degrees of SE(3)-transformer and TFN are set
to 2. Due to the limited memory, the batch size of TFN is searched in 50, 30, 10 according to the
size of molecules. The number of training, validation, and testing sets are 500, 2000, and 2000,
respectively. The threshold for graph construction is set to 2.5 for all molecules.

B.3 MORE DETAILS ON MOTION CAPTURE

Hyperparameter We use the following hyperparameters across all experimental evaluations:
Adam optimizer with learning rate 0.001, the number of epochs 3000, hidden dim 64, weight decay
1 × 10−12, and layer number 4. The iteration time of SEGNO is set to 4. We adopt a random split
strategy introduced by Huang et al. (2022) where train/validation/test data contains 200/600/600
frame pairs.

C ADDITIONAL EXPERIMENTS

C.1 ACCURACY OF LEARNED LATENT TRAJECTORY

It is interesting to see how models learn the latent trajectory between the input and output states.
Accordingly, we train models on 1000ts on two datasets and make the test on shorter time steps
by performing SEGNO on the smaller τ step with the same ratio. For the baselines, we treat the
forward timestep of each hidden layer as the same and extract their object position information as
the prediction. Table 5 reports the mean and standard deviation of each setting. From Table 5 we
can observe that:
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Table 5: The generalization from long-term to short-term. All models are trained on 1000ts and
test on 250/500/750/1000 ts. Mean squared error (×10−2) and the standard deviation are reported.
Results averaged across 5 runs.

Method Charged Gravity
250 ts 500 ts 750 ts 1000 ts Avg 250 ts 500 ts 750 ts 1000 ts Avg

GNN 73.40±9.60 31.79±5.28 12.86±2.81 0.826±0.08 29.72 181.9±26.1 90.33±15.5 30.66±12.3 0.746±0.05 75.93
GDE 92.65±25.0 43.94±10.9 12.20±23.2 0.652±0.05 37.36 136.0±135 56.80±60.6 12.21±14.8 0.588±0.58 51.39

EGNN 6.756±3.05 3.816±4.68 3.668±0.74 0.568±0.09 3.702 7.146±7.06 29.70±20.4 9.712±3.60 0.382±0.11 11.89
GMN 10.44±7.43 10.92±4.67 4.518±1.36 0.512±0.16 6.598 7.430±8.19 9.540±12.1 5.730±6.69 0.349±0.48 5.762

SEGNN 21.78±9.69 52.74±15.6 34.13±14.9 0.342±0.04 27.25 10.58±6.28 49.63±37.7 25.82±27.0 0.448±0.02 21.62
SEGNO 0.188±0.03 0.312±0.06 0.360±0.06 0.309±0.11 0.292 0.064±0.02 0.128±0.03 0.176±0.04 0.210±0.07 0.145

Table 6: Comparsion (×10−2) between SEGNO and GNS on simulated N-body systems. Results
averaged across 3 runs.

Method Charged Gravity
1000 ts 1500 ts 2000 ts 1000 ts 1500 ts 2000 ts

GNS 3.245± 0.068 11.689± 0.330 31.632± 0.206 4.204± 0.081 17.095± 0.136 50.275± 0.201

SEGNO-avg. 2.146± 0.079 10.145± 0.034 24.244± 0.212 1.431± 0.047 19.488± 0.978 54.370± 1.385

SEGNO 0.433± 0.013 1.858± 0.029 4.285± 0.049 0.338± 0.027 1.362± 0.077 4.017± 0.087

• Clearly, SEGNO outperforms all other baselines across all settings by a large margin. Notably,
when there is a lack of supervised signals at 250/500/750ts, the performance of all other baselines
decreases significantly. By contrast, SEGNO achieves similar results as in 1000ts, demonstrating
its robust generalization to short-term prediction.

• Another interesting point is that SEGNO’s error exhibits a distinct trend compared to other
baselines. While the errors of other baselines significantly increase with decreasing time steps,
SEGNO achieves even smaller errors with shorter time steps. This observation justifies our theo-
retical results that the error is bound by the chosen timestep.

• Additionally, the standard deviation of SEGNO is much smaller than that of other baselines, indi-
cating the numerical stability of SEGNO. This result further confirms our theoretical finding that
SEGNO can obtain a better latent trajectory between two discrete states.

C.2 COMPARISON WITH GNS

We conducted additional evaluations of GNS and PINGO-avg., which are learned by minimizing
average acceleration, on two N-body systems. The results of these evaluations are presented in
Table 6. We can observe that SEGNO outperforms both GNS and PINGO-avg. In all cases, show-
ing that training second-order neural odes on position loss outperforms training models on average
acceleration.

C.3 ROLLOUT COMPARISON ON N-BODY SYSTEMS

We evaluate the generalizability of models for rollout simulation. Specifically, we train all models
on 1000ts and use rollout to make the prediction for the longer time step (over 40 rollout steps,
indicating over 40000ts.). Figure 6 depicts the mean squared error of all methods on two datasets.
We can observe that all baselines experience numerical explosion due to error accumulation during
the rollout process, leading to a quick drop in prediction performance. In contrast, SEGNO demon-
strates an order-of-magnitude error improvement over other baselines. This numerical stability can
be attributed to the Neural ODE framework for modeling position and velocity.

C.4 MORE RESULTS ON CMU MOTION CAPTURE

This section illustrates more visualizations of GMN and SEGNO on modeling object motions. From
Figure 7, we can observe that PINGO is able to track the ground-truth trajectories accurately, which
is consistent with the performance in Table 4.
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Figure 6: Mean squared error of rollout. Each rollout step is equal to 1000 ts. All models are trained
on 1000ts.

Figure 7: Example snapshots of Motion Capture with 50 time steps. Top: Prediction of GMN.
Bottom: Prediction of SEGNO. Ground truth in red, and prediction in blue.
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