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Introduction

Recent advancements in geometric Graph Neural Networks (GNNs) have shown

promising results in molecular modeling.

Large-scale datasets like OC20 [1] and QM7-X [2] facilitate fast and accurate

molecular property predictions.

This study investigates the impact of:
Canonicalization methods

Graph creation strategies

Auxiliary tasks

Aim: Improve performance, scalability, and symmetry enforcement in molecular

modeling using geometric GNNs.

Canonicalization methods

E(3)-equivariance is desirable to learn representations suited for tasks such as
force predictions on atoms. It can be enforced on unconstrained GNNs with a

coordinate-preprocessing step referred to as canonicalization.

We evaluate several canonicalization procedures with FAENet backbone architec-
ture [3] on OC20 and QM9:

Vector Neurons Network (VNN) [4] using the VN re-implementation of PointNet [5] and

DGCNN [6]

Stochastic Frame Averaging (SFA) [3], which approximates Frame Averaging [7] by sampling

one canonical orientation per epoch.

SFA+SignNet, which handles the sign ambiguity problem in SFA with a sign-invariant network

[8]. We use two versions of SignNet, either using VNNs or MLPs (resp. exactly and approx.

equivariant).

Results

Heuristic approximations of equiv-

ariance can perform as well as ex-

act equivariance in some practical

applications.

In terms of symmetry enforcement,

non-exact methods are nearly as

effective as fully invariant meth-

ods, suggesting that the FAENet

backbone implicitly learns to han-

dle symmetries.

For exact canonicalization methods,

training or not the network, and

swappingmethods has little impact.

Canonicalization Cano. trained avg. MAE EwT (ID) 3D Rotation

parameters (meV) ↓ (%) ↑ Invariance ↓
SFA 0 594 4.40 1.30 · 10−2

(U) SFA+MLP-SignNet 0 580 4.48 9.71 · 10−2

(T) SFA+MLP-SignNet 454 583 4.46 4.00 · 10−2

(U) SFA+VN-SignNet 0 592 4.69 7.58 · 10−3

(T) SFA+VN-SignNet 2,620 599 4.25 2.57 · 10−2

(U) VN-Pointnet 0 605 4.09 4.62 · 10−3

(T) VN-Pointnet 1,310 598 4.12 3.80 · 10−3

(U) VN-DGCNN 0 600 4.31 3.11 · 10−2

(T) VN-DGCNN 663,804 593 4.42 9.10 · 10−3

Invariance comparison of canonicalization methods on

OC20 IS2RE dataset. (U) (resp. (T)) indicates an

untrained (resp. trained) canonicalization network.

Auxiliary Tasks

Noisy Nodes

To address oversmoothing, [9] propose

to add an auxiliary node-level denoising

task encouraging diversity in latent rep-

resentations of nodes.

Implementation on IS2RE: adding posi-

tion decoding head in addition to the

original energy prediction head + adding

Gaussian noise to input positions of

atoms.

Results

Models trained with Noisy Nodes IS2RS auxiliary task do not suffer from

oversmoothing (i.e. MAD going to zero) even with 28 interaction layers.

The improvements are only observed when using canonicalization methods,

showing that equivariance is a beneficial inductive bias and allows for robustness

to noising.

Graph creation strategies

Long-range interactions between atoms are essential for property predictions [10].

Need for architectures and graph models that allow to correctly model these inter-

actions.

Traditional graph creation strategies used on SOTA models consist in defining a

distance cutoff between atoms to decide whether to create a link.

Graph Cutoff

ID

Model EwT (%) ↑ MAE (eV) ↓
Cutoff 30 - Max neighbours 40 2.65 0.697

Cutoff 20 - Max. neighbours 40 3.08 0.673

Cutoff 20 - Max. neighbours 10 2.25 0.768

Cutoff 10 - Max. neighbours 50 4.17 0.553

Cutoff 10 - Max. neighbours 10 4.49 0.553

Cutoff 6 - Max. neighbours 40 4.31 0.553

Cutoff 1 - Max. neighbours 40 1.35 1.069

Need to be careful about not connecting

extremity or isolated atoms because it

would create unwanted interactions.

Complete graph strategies are way too

expressive leading to poor performance.

Ewald Message Passing (EMP) [11]

Physics-Inspired message passing seem to inform

expressivity-limited models such as SchNet but not al-

ready expressive models.

ID

Model EwT (%) ↑ MAE (eV) ↓
FAENet 4.05 0.551

FAENet + Ewald 4.12 0.562

SchNet 2.93 0.654

SchNet + Ewald 3.48 0.597

Iterative Relaxation

Iterative relaxation is competitive with

direct IS2RE for non-symmetry con-

straining models!

The subsurface atoms of the catalyst

crystals (tag 0 atoms, although periodic

and repetitive) are crucial to correctly

compute the forces but they can be ig-

nored for direct IS2RE [12].

IS2RE IS2RS

Model EwT (%) ↑ MAE (eV) ↓ DwT (%) ↑ Pos. MAE ↓
FAENet (Direct) 4.05 0.551 - -

FAENet (SFA) 4.92 0.587 31.1 0.390

FAENet (UTPN) 5.64 0.560 33.7 0.381

Discussion and Conclusion

Approximative heuristics for symmetry enforcements seem to yield similar perfor-

mance as exact methods. Thus, how can we design canonicalization methods for

practical settings beyond theoretical guarantees?

Need for new graph creation strategies that are not necessarily Physics-Inspired

but architecture oriented for expressive models.

Future research should explore pre-training strategies inspired by techniques like

Noisy Nodes [13] or design helpful auxiliary tasks.
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