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ABSTRACT

Uniformity plays an important role in evaluating learned representations, pro-
viding insights into self-supervised learning. In our quest for effective unifor-
mity metrics, we pinpoint four principled properties that such metrics should
possess. Namely, an effective uniformity metric should remain invariant to in-
stance permutations and sample replications while accurately capturing feature
redundancy and dimensional collapse. Surprisingly, we find that the unifor-
mity metric proposed by Wang & Isola (2020) fails to satisfy the majority of
these properties. Specifically, their metric is sensitive to sample replications,
and can not account for feature redundancy and dimensional collapse correctly.
To overcome these limitations, we introduce a new uniformity metric based on
the Wasserstein distance, which satisfies all the aforementioned properties. Inte-
grating this new metric in existing self-supervised learning methods effectively
mitigates dimensional collapse and consistently improves their performance on
downstream tasks involving CIFAR-10 and CIFAR-100 datasets. Code is available
at https://github.com/statsle/WassersteinSSL.

1 INTRODUCTION

Self-supervised learning excels in acquiring invariant representations to various augmentations (Chen
et al., 2020; He et al., 2020; Caron et al., 2020; Grill et al., 2020; Zbontar et al., 2021). It has been
outstandingly successful across a wide range of domains, such as multimodality learning, object
detection, and segmentation (Radford et al., 2021; Li et al., 2022; Xie et al., 2021; Wang et al., 2021;
Yang et al., 2021; Zhao et al., 2021). To gain a deeper understanding of self-supervised learning,
thoroughly evaluating the learned representations is necessary (Wang & Isola, 2020; Gao et al., 2021;
Tian et al., 2021; Jing et al., 2022).

Constant Collapse Dimensional Collapse

Figure 1: The left figure presents constant
collapse, and the right figure visualizes di-
mensional collapse.

Alignment, a metric quantifying the similarities between
positive pairs, holds significant importance in the evalua-
tion of learned representations (Wang & Isola, 2020). It
ensures that positive pairs are mapped to similar features,
making them invariant to unnecessary details (Hadsell
et al., 2006; Chen et al., 2020). However, relying solely
on alignment proves inadequate for effectively assessing
the representations. This limitation becomes evident in
the presence of extremely small alignment values in col-
lapsing solutions, as observed in Siamese networks (Had-
sell et al., 2006), where all outputs collapse to a single
point (Chen & He, 2021), as illustrated in Figure 1. In such cases, the learned representations
exhibit optimal alignment but fail to provide meaningful information for any downstream tasks. This
underscores the necessity of incorporating additional metrics when evaluating learned representations.

∗Qiang Sun and Benyou Wang are joint corresponding authors.
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To further evaluate the learned representations, Wang & Isola (2020) formally introduced a uniformity
metric based on the logarithm of the average pairwise Gaussian potential (Cohn & Kumar, 2007).
Uniformity assesses how feature embeddings are distributed uniformly across the unit hypersphere,
and higher uniformity indicates more information from the data is preserved. Since its introduction,
uniformity has played a pivotal role in understanding self-supervised learning and mitigating constant
collapse (Arora et al., 2019; Wang & Isola, 2020; Gao et al., 2021). Nevertheless, the effectiveness of
this particular uniformity metric warrants further examination.

To delve deeper into the existing uniformity metric proposed by Wang & Isola (2020), we introduce
four principled properties that an effective uniformity metric should possess. Guided by these
properties, we conduct a theoretical analysis, unveiling key limitations of this metric, particularly its
inability to capture feature redundancy and dimensional collapse (Hua et al., 2021). Dimensional
collapse refers to the scenario where representations occupy a lower-dimensional subspace rather
than the entire embedding space (Jing et al., 2022); see Figure 1. We reinforce our theoretical findings
with empirical evidence, demonstrating, for instance, the existing metric’s inability to differentiate
between different degrees of dimensional collapse. Subsequently, we propose a novel uniformity
metric based on the quadratic Wasserstein distance that satisfies all four properties, thereby surpassing
the existing one. Finally, integrating the proposed uniformity metric as an auxiliary loss within
existing self-supervised learning methods consistently enhances their performance in downstream
tasks.

Our main contributions are summarized as follows. (i) We identify four principled properties that
an effective uniformity metric should possess, providing new guidelines on designing such metrics.
(ii) Surprisingly, we find that the existing uniformity metric (Wang & Isola, 2020) fails to meet the
majority of these properties. For example, it can not correctly capture dimensional collapse. (iii) We
propose a new uniformity metric based on the Wasserstein distance that satisfies all four properties,
addressing key limitations of the existing metric. (iv) Our proposed uniformity metric can seamlessly
integrate as an auxiliary loss in various self-supervised learning methods, resulting in improved
performance in downstream tasks.

2 BACKGROUND

2.1 SELF-SUPERVISED REPRESENTATION LEARNING

Self-supervised learning leverages the idea that similar samples should have similar representa-
tions that are invariant to unnecessary details (Wang & Isola, 2020). For instance, the Siamese
network (Hadsell et al., 2006) takes as input positive pairs (xa,xb), often obtained by taking two
augmented views of the same sample x. These positive pairs are then processed by an encoder
network f consisting of a backbone (e.g., ResNet (He et al., 2016)) and a projection MLP head (Chen
et al., 2020), yielding representations (za = f(xa), zb = f(xb)1. To enforce invariance, a natural
approach is to minimize the following alignment loss, defined as the expected distance between
positive pairs:

LA := E(za,zb)∼ppos

∥∥zai − zbi
∥∥2
2
, (1)

where ppos(·, ·) is the distribution of positive pairs.

However, optimizing the above alignment loss alone may lead to an undesired collapsing solution,
where all representations collapse into a single point, as shown in Figure 1.

2.2 EXISTING SOLUTIONS TO CONSTANT COLLAPSE

To prevent constant collapse, existing solutions include contrastive learning, asymmetric model
architecture, and redundancy reduction.

Contrastive Learning Contrastive learning offers a potent solution to mitigate constant collapse.
The key idea is to leverage negative pairs. For example, SimCLR (Chen et al., 2020) introduced
an in-batch negative sampling strategy that utilizes samples within a batch as negative samples.
However, its effectiveness is contingent on the use of a large batch size. To address this limitation,

1For simplicity, we also refer to (za, zb) as positive pairs.
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MoCo (He et al., 2020) used a memory bank, which stores additional representations as negative
samples. Recent research endeavors have also explored clustering-based contrastive learning, which
combines a clustering objective with contrastive learning techniques (Li et al., 2021; Caron et al.,
2020).

Asymmetric Model Architecture The use of asymmetric model architecture represents another
strategy to combat constant collapse. One plausible explanation for its effectiveness is that such
an asymmetric design encourages encoding more information (Grill et al., 2020). To maintain this
asymmetry, BYOL (Grill et al., 2020) introduces the concept of using an additional predictor in one
branch of the Siamese network while employing momentum updates and stop-gradient operators
in the other branch. DINO (Caron et al., 2021), takes this asymmetry a step further by applying
it to two encoders, distilling knowledge from the momentum encoder into the other one (Hinton
et al., 2015). SimSiam (Chen & He, 2021) removes the momentum update from BYOL, and shows
that the momentum update may not be essential in preventing constant collapse. However, Mirror-
SimSiam (Zhang et al., 2022a) swaps the stop-gradient operator to the other branch. Its failure
challenges the assertion made in SimSiam (Chen & He, 2021) that the stop-gradient operator is the
key component for preventing constant collapse. Tian et al. (2021) provides a theoretical examination
to elucidate why an asymmetric model architecture can effectively avoid constant collapse.

Redundancy Reduction The fundamental principle behind redundancy reduction to mitigate
constant collapse is to maximize the information preserved by the representations. The key idea
is to decorrelate the learned representations. Barlow Twins (Zbontar et al., 2021) aims to achieve
decorrelation by focusing on the cross-correlation matrix, while VICReg (Bardes et al., 2022) focuses
on the covariance matrix. Zero-CL (Zhang et al., 2022b) takes a hybrid approach, combining
instance-wise and feature-wise whitening techniques.

2.3 THE EXISTING UNIFORMITY METRIC

While the aforementioned solutions effectively prevent constant collapse, they are not as effective
in preventing dimensional collapse, wherein representations occupy a lower-dimensional subspace
instead of the entire space. This phenomenon has been observed in contrastive learning by visualizing
the singular value spectra of representations (Jing et al., 2022; Tian et al., 2021).

To quantitatively measure the degree of collapse, Wang & Isola (2020) introduced a uniformity
loss based on the logarithm of the average pairwise Gaussian potential. Given (normalized) feature
representations {z1, z2, ..., zn}, their proposed empirical uniformity loss is:

LU := log
1

n(n− 1)/2

n∑
i=2

i−1∑
j=1

e−t∥zi−zj∥2
2 , (2)

where t > 0 is a fixed parameter, often set to 2. Then −LU serves as the corresponding uniformity
metric, with a higher value indicating greater uniformity.

We demonstrate in this work that this metric is insensitive to dimensional collapse, both theoretically
in Section 3.2 and empirically in Section 5.2.

3 WHAT MAKES AN EFFECTIVE UNIFORMITY METRIC?

In this section, we begin by presenting four fundamental properties that an effective uniformity metric
should possess. Leveraging these properties as a lens, we then scrutinize the existing uniformity
metric −LU , shedding light on its limitations.

3.1 FOUR PROPERTIES FOR UNIFORMITY

A uniformity metric U : Rmn → R is a function that maps a set of learned representations to a
scalar indicator of uniformity. In the following section, we introduce four principled properties that
an effective uniformity metric should possess. Let D = z1, . . . , zn ∈ Rmn represent the learned
representations. To avoid the trivial case, we assume that z1, . . . , zn are not all equal, meaning that
not all points collapse to a single constant point.

3
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First, an effective uniformity metric should be invariant to the permutation of instances, as the
distribution of representations should not be affected by permutations.

Property 1 (Instance Permutation Constraint (IPC)). An effective uniformity metric U should satisfy

U(π(D)) = U(D), (3)

where π is a permutation over the instances.

Second, an effective uniformity metric should be invariant to instance clones, as instance cloning
does not vary the distribution of representations.

Property 2 (Instance Cloning Constraint (ICC)). An effective uniformity metric U should satisfy

U(D ⊎D) = U(D), (4)

where D ⊎D := {z1, z2, ..., zn, z1, z2, ..., zn}.

Third, an effective uniformity metric should strictly decrease as feature-level cloning for each instance
occurs, as this duplication introduces redundancy, which corresponds to dimensional collapse (Zbontar
et al., 2021; Bardes et al., 2022).

Property 3 (Feature Cloning Constraint (FCC)). An effective uniformity metric U should satisfy

U(D ⊕D) < U(D), (5)

where D⊕D := {z1⊕z1, z2⊕z2, ..., zn⊕zn} and zi⊕zi := (zi1, · · · , zim, zi1, · · · , zim)T ∈ R2m.

Fourth, an effective uniformity metric should strictly decrease with the addition of constant features for
each instance, as this introduces uninformative and thus redundant features, which again corresponds
to dimensional collapse.

Property 4 (Feature Baby Constraint (FBC)). An effective uniformity metric U should satisfy

U(D ⊕ 0k) < U(D), k ∈ N+, (6)

where ⊕ is defined in Property 3, that is, D ⊕ 0k = {z1 ⊕ 0k, z2 ⊕ 0k, ..., zn ⊕ 0k} and zi ⊕ 0k =
(zi1, zi2, ..., zim, 0, 0, ..., 0)T ∈ Rm+k.

Intuitively, Properties 1 and 2 ensure that the uniformity metric should remain insensitive to instance
permutations and sample replications, respectively. Meanwhile, Properties 3 and 4 ensure that feature
redundancy and dimensional collapse reduce the uniformity metric, as they make the distribution of the
representations less uniform. These four properties constitute intuitive yet principled characteristics
of an effective uniformity metric.

3.2 EXAMINING THE UNIFORMITY METRIC −LU

We employ the four properties introduced earlier to analyze the uniformity metric −LU defined in
Eqn. (2). The following theorem summarizes our findings.

Theorem 1. The uniformity metric −LU satisfies Property 1, but violates Properties 2, 3, and 4.

The proof of the above theorem is provided in Appendix C. The violation of Property 2 indicates that
the uniformity metric −LU is sensitive to sample replications, while the violations of Properties 3
and 4 suggest that feature redundancy and dimensional collapse do not reduce the uniformity metric
−LU , making this uniformity metric unable to correctly reflect feature redundancy and dimensional
collapse. Therefore, there is a pressing need to develop a new uniformity metric.

4 A NEW UNIFORMITY METRIC

In this section, we introduce a new uniformity metric to address the limitations of −LU .
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(b) Wasserstein Distance

Figure 2: The KL divergence and Wasserstein distance between Yi and Ŷi w.r.t. various dimensions.

4.1 THE UNIFORM SPHERICAL DISTRIBUTION AND AN APPROXIMATION

As pointed out by (Wang & Isola, 2020), feature vectors should be roughly uniformly distributed on
the unit hypersphere Sm−1, preserving as much information of the data as possible. Therefore, we
adopt the uniform spherical distribution as our target distribution.

Our approach utilizes the quadratic Wasserstein distance, a form of statistical distance, between
the feature distribution and the target distribution as the new uniformity loss. However, computing
any statistical distances involving the uniform spherical distribution can be challenging. To address
this, we first establish an asymptotic equivalence between the uniform spherical distribution and
the isotropic Gaussian distribution. By adopting a Gaussian distribution for the representations, we
then exploit the fact that the quadratic Wasserstein distance between two Gaussian distributions
has a closed form involving only the means and covariance matrices, leading to a new and simple
uniformity loss. We need the following fact.
Fact 1. If Z ∼ N (0, σ2Im), then Y := Z/∥Z∥2 is uniformly distributed on the unit hypersphere
Sm−1.

Because the average length of ∥Z∥2 is roughly σ
√
m (Chandrasekaran et al., 2012), that is,

m√
m+ 1

≤ ∥Z∥2/σ ≤
√
m,

we expect that Z/(σ
√
m) ∼ N (0, Im/m) provides a reasonable approximation to Z/∥Z∥2, and thus

to the uniform spherical distribution. This is partially justified by the following theorem.
Theorem 2. Let Yi be the i-th coordinate of Y = Z/∥Z∥2 ∈ Rm, where Z ∼ N (0, σ2Im). Then
the quadratic Wasserstein distance between Yi and Ŷi ∼ N (0, 1/m) converges to zero as m → ∞,
that is,

lim
m→∞

W2(Yi, Ŷi) = 0.

Theorem 2 suggests that N (0, Im/m) approximates the distribution of each coordinate of the uniform
spherical distribution as m → ∞. It can be proven by first employing the Talagrand T2 inequality
(Van Handel, 2016) to upper bound the quadratic Wasserstein distance using the Kullback-Leibler
(KL) divergence, and then establishing that the Kullback-Leibler (KL) divergence converges to 0.
The proof is provided in Appendix B.

We empirically compare the distributions of Yi and Ŷi across various dimensions m ∈
2, 4, 8, 16, 32, 64, 128, 256. For each m, we sample 200,000 data points from both Yi and Ŷi, bin
them into 51 groups, and calculate the empirical KL divergence and Wasserstein distance. Figure 2
plots both distances versus increasing dimensions. We observe that both distances converge to 0
as m increases. Specifically, these results indicate that the distribution of Ŷi provides a reasonable
approximation to that of Yi when m ≥ 24 = 16. Further comparisons between Y and Ŷ can be
found in Appendix D.

4.2 A NEW METRIC FOR UNIFORMITY

In this section, we discuss how to use the quadratic Wasserstein distance between the distribution of
learned representations and N (0, Im/m), in place of the uniform spherical distribution Unif(Sm−1),
as our new uniformity loss.
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To facilitate computation, we adopt a Gaussian hypothesis for the learned representations and assume
they follow N (µ,Σ). With this assumption, we employ the quadratic Wasserstein distance2 to
measure the distance between two distributions. We need the following well-known lemma (Olkin &
Pukelsheim, 1982).
Lemma 1. Then the quadratic Wasserstein distance between N (µ,Σ) and N (0, I/m) is√

∥µ∥22 + 1 + tr(Σ)− 2√
m

tr(Σ
1
2 ). (7)

The lemma above indicates that the quadratic Wasserstein distance can be easily computed using the
population mean and covariance of the representations. In practice, we estimate the population mean
and covariance by using the sample mean µ̂ and covariance matrix Σ̂, respectively. Specifically, the
empirical quadratic Wasserstein distance serves as the new empirical uniformity loss:

W2 :=

√
∥µ̂∥22 + 1 + tr(Σ̂)− 2√

m
tr(Σ̂

1
2 ). (8)

Thus, −W2 can be utilized as the new uniformity metric, with larger values indicating greater
uniformity. Moreover, our new uniformity loss can be seamlessly integrated into various existing
self-supervised learning methods to enhance their performance.

5 COMPARING TWO METRICS

5.1 THEORETICAL COMPARISON

We examine the proposed metric −W2 in terms of the four properties introduced earlier. The
following theorem summarizes our findings.
Theorem 3. The uniformity metric −W2 satisfies all four properties, that is, Properties 1–4.

The proof of the above theorem is similar to that of Theorem 1, and is provided in Appendix C.2.
Table 1 compares −LU and −W2. It is important to highlight that our new uniformity metric
is invariant to instance permutations and sample replications, while effectively capturing feature
redundancy and dimensional collapse.

Table 1: Comparing the two uniformity metrics.

Properties IPC ICC FCC FBC
−LU " % % %

−W2 " " " "

Taking dimensional collapse as an example, we
consider D ⊕ 0k versus D. Here, a larger k
indicates a more severe dimensional collapse.
However, −LU fails to identify this issue, as
−LU (D ⊕ 0k) = −LU (D). In stark contrast,
our proposed metric can accurately detect this
dimensional collapse, as −W2(D ⊕ 0k) < −W2(D).

5.2 EMPIRICAL COMPARISONS VIA SYNTHETIC STUDIES

We perform synthetic experiments to investigate the two uniformity metrics. An empirical examination
of the correlation between these metrics shows that data points following an isotropic Gaussian
distribution exhibit better uniformity compared to those from other distributions; see Appendix E for
detailed results. Additionally, we generate data vectors from this distribution to enable a thorough
comparison between the two metrics.

On Dimensional Collapse Degrees To generate data reflecting varying degrees of dimensional
collapse, we sample data vectors from an isotropic Gaussian distribution, normalize them to have ℓ2
norms3, and then zero out a proportion of the coordinates. As the proportion of zero-value coordinates,
denoted by η, increases, dimensional collapse becomes more pronounced, while the proportion of

2We discuss using other statistical distances as uniformity losses, such as the Kullback-Leibler divergence
and Bhattacharyya distance, in Appendix A.

3In this paper, we always first normalize the representations to have unit ℓ2 norms.
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Figure 3: Sensitivity to dimensional collapse degrees: −W2 is more sensitive than −LU .

non-zero coordinates is 1 − η. In Figure 3(a) and Figure 3(b), we observe that −W2 effectively
captures different collapse degrees, whereas −LU remains almost unchanged even with 80% collapse
(η = 80%), indicating that −LU is insensitive to the degrees of dimensional collapse.
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Figure 4: Effectiveness of the metrics when increasing dimension m: −LU fails to distinguish
different dimensional collapse degrees for large m, while −W2 is always able to.

On Sensitiveness of Dimensions Figure 4 demonstrates that −LU can not distinguish between
different degrees of dimensional collapse (η = 25%, 50%, and 75%) as the dimension m increases
(e.g., m ≥ 28 = 256). In contrast, −W2 only depends on the degree of dimensional collapse and is
independent of the dimensions m.

To complement the theoretical comparisons between the two metrics discussed in Section 5.1, we
also conduct empirical comparisons in terms of FCC and FBC. ICC comparisons are collected in
Appendix E.

On Feature Cloning Constraint We investigate the impact of feature cloning by creating multiple
feature clones of the dataset, such as D ⊕D and D ⊕D ⊕D, corresponding to one and two times
cloning, respectively. Figure 5(a) demonstrates that the value of −LU increases as the number of
clones increases, which violates the strict decline in Eqn. (5). In contrast, in Figure 5(b), our proposed
metric −W2 decreases, satisfying the property.

On Feature Baby Constraint We proceed to analyze the effect of feature baby, where we insert
k dimensional zero vectors into each instance of D. This modified dataset is denoted as D ⊕ 0k,
and we examine the impact of k on both metrics. Figure 6(a) shows that the value of −LU remains
constant as k increases, violating the strict inequality constraint in Eqn. (6). In contrast, Figure 6(b)
shows that our proposed metric −W2 decreases, satisfying the constraint.

Summary of Synthetic Studies In summary, our empirical results corroborate our theoretical
analysis, confirming that our proposed metric −W2 outperforms the existing metric −LU in capturing
feature redundancy and dimensional collapse.
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Figure 5: FCC analysis.

0 2 4 6 8 10
Dimensions of Feature Baby (i = k/m)

0

0.8

1.6

2.4

3.2

4.0

= 75%
= 50%
= 25%

(a) −LU does NOT satisfy FBC

0 2 4 6 8 10
Dimensions of Feature Baby (i = k/m)

-1.5

-1.2

-0.9

-0.6

-0.3

0
= 75%
= 50%
= 25%

(b) −W2 does satisfy FBC

Figure 6: FBC analysis.

6 EXPERIMENTS

In this section, we integrate the proposed uniformity loss as an auxiliary term into various existing
self-supervised methods. We then conduct experiments on CIFAR-10 and CIFAR-100 datasets to
demonstrate its effectiveness.

Models We conduct experiments on a series of self-supervised representation learning models:
(i) AlignUniform (Wang & Isola, 2020), which incorporates both alignment and uniformity losses
in its objective function; (ii) three contrastive learning methods, namely SimCLR (Chen et al.,
2020), MoCo (He et al., 2020), and NNCLR (Dwibedi et al., 2021); (iii) two asymmetric models,
BYOL (Grill et al., 2020) and SimSiam (Chen & He, 2021); (iv) two methods based on redundancy
reduction, BarlowTwins (Zbontar et al., 2021) and Zero-CL (Zhang et al., 2022b). To investigate
the behavior of the proposed Wasserstein uniformity loss in self-supervised learning, we integrate
it as an auxiliary loss into the following models: MoCo v2, BYOL, BarlowTwins, and Zero-CL.
Additionally, we propose using linear decay to weight the Wasserstein uniformity loss during training.
This is achieved by setting αt = αmax − t, (αmax − αmin)/T , where t, T , αmax, αmin, and αt

represent the current epoch, maximum epochs, maximum weight, minimum weight, and current
weight, respectively. Further details on the experimental settings can be found in Appendix F.1.

Accuracy and representation capacity We assess the aforementioned methods using two distinct
criteria: accuracy and representation quality/capacity. Accuracy is gauged through linear evaluation
accuracy, quantified by Top-1 accuracy (Acc@1) and Top-5 accuracy (Acc@5). On the other hand,
representation quality/capacity is evaluated using the uniformity losses LU and W2, along with the
alignment loss LA. .

Main Results As depicted in Table 2, incorporating W2 as an additional loss consistently yields
superior performance compared to models without this loss or those with LU as the additional term.
Intriguingly, although it marginally compromises alignment, it enhances uniformity and accuracy in
downstream tasks. This underscores the effectiveness of W2 as a uniformity loss. Notably, integrating
the Wasserstein uniformity loss does not impede training or inference efficiency.

Convergence Analysis We evaluate the Top-1 accuracy of these models on CIFAR-10 and CIFAR-
100 using the linear evaluation protocol, as described in Appendix F.2, across different training
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Table 2: Main results on CIFAR-10 and CIFAR-100. Proj. and Pred. are the hidden dimensions in
projector and predictor. ↑ and ↓ indicates gains and losses, respectively.

Methods Proj. Pred. CIFAR-10 CIFAR-100
Acc@1↑ Acc@5↑ W2 ↓ LU ↓ LA ↓ Acc@1↑ Acc@5↑ W2 ↓ LU ↓ LA ↓

SimCLR 256 % 89.85 99.78 1.04 -3.75 0.47 63.43 88.97 1.05 -3.75 0.50
NNCLR 256 256 87.46 99.63 1.23 -3.12 0.38 54.90 83.81 1.23 -3.18 0.43
SimSiam 256 256 86.71 99.67 1.19 -3.33 0.39 56.10 84.34 1.21 -3.29 0.42
AlignUniform 256 % 90.37 99.76 0.94 -3.82 0.51 65.08 90.15 0.95 -3.82 0.53
MoCo v2 256 % 90.65 99.81 1.06 -3.75 0.51 60.27 86.29 1.07 -3.60 0.46
MoCo v2 + LU 256 % 90.98 ↑0.33 99.67 0.98 ↑0.08 -3.82 0.53 ↓0.02 61.21 ↑0.94 87.32 0.98 ↑0.09 -3.81 0.52 ↓0.06
MoCo v2 + W2 256 % 91.41 ↑0.76 99.68 0.33 ↑0.73 -3.84 0.63 ↓0.12 63.68 ↑3.41 88.48 0.28 ↑0.79 -3.86 0.66 ↓0.20
BYOL 256 256 89.53 99.71 1.21 -2.99 0.31 63.66 88.81 1.20 -2.87 0.33
BYOL + LU 256 % 90.09 ↑0.56 99.75 1.09 ↑0.12 -3.66 0.40 ↓0.09 62.68 ↓0.98 88.44 1.08 ↑0.12 -3.70 0.51 ↓0.18
BYOL + W2 256 256 90.31 ↑0.78 99.77 0.38 ↑0.83 -3.90 0.65 ↓0.34 65.16 ↑1.50 89.25 0.36 ↑0.84 -3.91 0.69 ↓0.36
BarlowTwins 256 % 91.16 99.80 0.22 -3.91 0.75 68.19 90.64 0.23 -3.91 0.75
BarlowTwins + LU 256 % 91.38 ↑0.22 99.77 0.21 ↑0.01 -3.92 0.76 ↓0.01 68.41 ↑0.22 90.99 0.22 ↑0.01 -3.91 0.76 ↓0.01
BarlowTwins + W2 256 % 91.43 ↑0.27 99.78 0.19 ↑0.03 -3.92 0.76 ↓0.01 68.47 ↑0.28 90.64 0.19 ↑0.04 -3.91 0.79 ↓0.04
Zero-CL 256 % 91.35 99.74 0.15 -3.94 0.70 68.50 90.97 0.15 -3.93 0.75
Zero-CL + LU 256 % 91.28 ↓0.07 99.74 0.15 -3.94 0.72 ↓0.02 68.44 ↓0.06 90.91 0.15 -3.93 0.74 ↑0.01
Zero-CL + W2 256 % 91.42 ↑0.07 99.82 0.14 ↑0.01 -3.94 0.71 ↓0.01 68.55 ↑0.05 91.02 0.14 ↑0.01 -3.94 0.76 ↓0.01

epochs. Figure 15 illustrates the results. By incorporating W2 as an additional loss for these models,
we observe faster convergence compared to the raw models, particularly for MoCo v2 and BYOL,
which exhibit significant collapse issues. Our experiments demonstrate that imposing the proposed
Wasserstein uniformity metric as an auxiliary penalty loss greatly enhances uniformity but may
compromise alignment. We further analyze uniformity and alignment throughout all training epochs
in Appendix F.3.
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Figure 7: Dimensional collapse analysis on CIFAR-100 dataset.

Dimensional Collapse Analysis We visualize the singular value spectra of the learned representa-
tions (Jing et al., 2022) for various models. These spectra contain the singular values of the covariance
matrix of representations from CIFAR-100 dataset, sorted in logarithmic scale order. As shown
in Figure 7(a), most singular values collapse to zeros in most models, indicating a large number
of collapsed coordinates in most models. To further understand how the additional loss W2 helps
prevent dimensional collapse, we add W2 as an additional loss for Moco v2 and BYOL, the numbers
of collapsed coordinates decrease to zeros in both cases; see Figure 7(b) and Figure 7(c). This verifies
that our proposed uniformity loss W2 can effectively address the dimensional collapse issue for Moco
v2 and BYOL. In contrast, LU can not effectively prevent dimensional collapse.

7 CONCLUSION

In this paper, we have identified four principled properties that an effective uniformity metric should
possess. Namely, an effective uniformity metric should remain invariant to instance permutations
and sample replications while accurately capturing feature redundancy and dimensional collapse.
Surprisingly, the popular uniformity metric proposed by Wang & Isola (2020) fails to meet the
majority of these properties, unveiling its limitations. Empirical investigations corroborate our
theoretical findings. To overcome these limitations, we introduce a new uniformity metric that
satisfies all four properties. Particularly, this new metric demonstrates remarkable abilities to capture
feature redundancy and dimensional collapse. Integrating it as an auxiliary loss in various self-
supervised learning methods effectively mitigates dimensional collapse and consistently improves
their performance on downstream tasks. Nonetheless, it is worth noting that the four identified
properties may not encompass a comprehensive characterization of an ideal uniformity metric,
warranting further exploration.
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E Additional synthetic studies 17
E.1 Correlation between −LU and −W2 . . . . . . . . . . . . . . . . . . . . . . . 17
E.2 On Instance Cloning Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . 18
E.3 Understanding Property 4: Why does it relate to dimensional collapse? . . . . . 19
E.4 Understanding W2: Large means may lead to collapse . . . . . . . . . . . . . . 19

F Experiment settings and convergence analysis 20
F.1 Experiment settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
F.2 Convergence analysis for Top-1 accuracy . . . . . . . . . . . . . . . . . . . . . 20
F.3 Convergence analysis for uniformity and alignment . . . . . . . . . . . . . . . . 21

A STATISTICAL DISTANCES OVER GAUSSIAN DISTRIBUTIONS

We first introduce the Wasserstein distance or the earth mover distance.

Definition 1. The Wasserstein distance or earth-mover distance with p norm is defined as below:

Wp(Pr,Pg) = ( inf
γ∈Π(Pr,Pg)

E(x,y)∼γ

[
∥x− y∥p

]
)1/p . (9)

where Π(Pr,Pg) denotes the set of all joint distributions γ(x, y) whose marginals are respectively
Pr and Pg . Intuitively, when viewing each distribution as a unit amount of earth/soil, the Wasserstein
distance or earth-mover distance takes the minimum cost of transporting “mass” from x to y to
transform the distribution Pr into the distribution Pg. This distance is also called the quadratic
Wasserstein distance when p = 2.

In this paper, we mainly exploit the quadratic Wasserstein distance over Gaussian distributions.
Besides this distance, we also discuss other distribution distances as uniformity metrics and make
comparisons with the Wasserstein distance. Specifically, the Kullback-Leibler divergence and the
Bhattacharyya distance over Gaussian distributions are provided in Lemma 2 and Lemma 3 respec-
tively. Both distances require full-rank covariance matrices, making them impropriate to conduct
dimensional collapse analysis. In contrast, our quadratic Wasserstein distance-based uniformity
metric is free of such a requirement.

Lemma 2 (Kullback-Leibler divergence (Lindley & Kullback, 1959)). Suppose two random variables
Z1 ∼ N (µ1,Σ1) and Z2 ∼ N (µ2,Σ2) obey multivariate normal distributions, then Kullback-
Leibler divergence between Z1 and Z2 is:

DKL(Z1,Z2) =
1

2
((µ1 − µ2)

TΣ−1
2 (µ1 − µ2) + tr(Σ−1

2 Σ1 − I) + ln
detΣ2

detΣ1
).

12
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Lemma 3 (Bhattacharyya Distance (Bhattacharyya, 1943)). Suppose two random variables Z1 ∼
N (µ1,Σ1) and Z2 ∼ N (µ2,Σ2) obey multivariate normal distributions, Σ = 1

2 (Σ1 +Σ2), then
bhattacharyya distance between Z1 and Z2 is:

DB(Z1,Z2) =
1

8
(µ1 − µ2)

TΣ−1(µ1 − µ2) +
1

2
ln

detΣ√
detΣ1 detΣ2

.

B PROOF OF THEOREM 2

We first need the following lemma, whose proof is collected in the end of this section.

Lemma 4. Let Z ∼ N (0, σ2Im) and Y = Z/∥Z∥2. Then the probability density function of Yi, the
i-th coordinate of Y is:

fYi
(yi) =

Γ(m/2)√
πΓ((m− 1)/2)

(1− y2i )
(m−3)/2, ∀ yi ∈ [−1, 1].

We are ready to prove Theorem 2.

Proof of Theorem 2. According to the Lemma 4, the pdf of Yi and Ŷi are:

fYi
(y) =

Γ(m/2)√
πΓ((m− 1)/2)

(1− y2)(m−3)/2, fŶi
(y) =

√
m

2π
exp{−my2

2
}.

Then the Kullback-Leibler divergence between Yi and Ŷi is

DKL(Yi∥Ŷi) =

∫ 1

−1

fYi
(y)[log fYi

(y)− log fŶi
(y)]dy

=

∫ 1

−1

fYi
(y)[log

Γ(m/2)√
πΓ((m− 1)/2)

+
m− 3

2
log(1− y2)− log

√
m

2π
+

my2

2
]dy

= log

√
2

m

Γ(m/2)

Γ((m− 1)/2)
+

∫ 1

−1

fYi
(y)[

m− 3

2
log(1− y2) +

my2

2
]dy.

Letting µ = y2, we have y =
√
µ and dy = 1

2µ
− 1

2 du. Thus,

A :=

∫ 1

−1

fYi
(y)[

m− 3

2
log(1− y2) +

my2

2
]dy

= 2

∫ 1

0

Γ(m/2)√
πΓ((m− 1)/2)

(1− y2)
m−3

2 [
m− 3

2
log(1− y2) +

my2

2
]dy

=
Γ(m/2)√

πΓ((m− 1)/2)

∫ 1

0

(1− µ)
m−3

2 [
m− 3

2
log(1− µ) +

m

2
µ]µ− 1

2 dµ

=
Γ(m/2)√

πΓ((m− 1)/2)

m− 3

2

∫ 1

0

(1− µ)
m−3

2 µ− 1
2 log(1− µ)dµ

+
Γ(m/2)√

πΓ((m− 1)/2)

m

2

∫ 1

0

(1− µ)
m−3

2 µ
1
2 dµ.

13
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By using the property of Beta distribution, and the inequality that −µ
1−µ ≤ log(1− µ) ≤ −µ, we have

A1 :=
Γ(m/2)√

πΓ((m− 1)/2)

m− 3

2

∫ 1

0

(1− µ)
m−3

2 µ− 1
2 log(1− µ)dµ

≤ − Γ(m/2)√
πΓ((m− 1)/2)

m− 3

2

∫ 1

0

(1− µ)
m−3

2 µ
1
2 dµ

= − Γ(m/2)√
πΓ((m− 1)/2)

m− 3

2
B(

3

2
,
m− 1

2
) and

A2, :=
Γ(m/2)√

πΓ((m− 1)/2)

m

2

∫ 1

0

(1− µ)
m−3

2 µ
1
2 dµ

=
Γ(m/2)√

πΓ((m− 1)/2)

m

2
B(

3

2
,
m− 1

2
).

Then, for A, we have

A = A1 +A2 ≤ − Γ(m/2)√
πΓ((m− 1)/2)

m− 3

2
B(

3

2
,
m− 1

2
) +

Γ(m/2)√
πΓ((m− 1)/2)

m

2
B(

3

2
,
m− 1

2
)

=
3

2

Γ(m/2)√
πΓ((m− 1)/2)

B(
3

2
,
m− 1

2
) =

3

2

Γ(m/2)√
πΓ((m− 1)/2)

Γ(3/2)Γ((m− 1)/2)

Γ((m+ 2)/2)

=
3

2

Γ(3/2)Γ(m/2)√
πΓ((m+ 2)/2)

=
3

2

(
√
π/2)Γ(m/2)√

πΓ((m+ 2)/2)
=

3

4

Γ(m/2)

Γ((m+ 2)/2)
.

Using the Stirling formula, we have Γ(x+ α) → Γ(x)xα as x → ∞ and thus

lim
m→∞

DKL(Yi∥Ŷi) = lim
m→∞

log

√
2

m

Γ(m/2)

Γ((m− 1)/2)
+ lim

m→∞
A

≤ lim
m→∞

log

√
2

m

Γ((m− 1)/2)(m−1
2 )1/2

Γ((m− 1)/2)
+ lim

m→∞

3

4

Γ(m/2)

Γ((m+ 2)/2)

= lim
m→∞

log

√
2

m

√
m− 1

2
+

3

4

Γ(m/2)

Γ(m/2)m
= lim

m→∞
log

√
m− 1

m
+

3

4m
= 0.

We further use T2 inequality (Van Handel, 2016, Theorem 4.31) to derive the quadratic Wasserstein
metric (Van Handel, 2016, Definition 4.29) as:

lim
m→∞

W2(Yi, Ŷi) ≤ lim
m→∞

√
2

m
DKL(Yi∥Ŷi) = 0.

B.1 PROOFS FOR SUPPORTING LEMMAS

Proof of Lemma 4. Let Z = [Z1, Z2, · · · , Zm] ∼ N (0, σ2Im), then Zi ∼ N (0, σ2),∀i ∈ [1,m].
Let U = Zi/σ ∼ N (0, 1), V =

∑m
j ̸=i(Zj/σ)

2 ∼ X 2(m− 1), then U and V are independent with
each other. The random variable T = U√

V/(m−1)
follows the Student’s t-distribution with m − 1

degrees of freedom, and its probability density function (pdf) is:

fT (t) =
Γ(m/2)√

(m− 1)πΓ((m− 1)/2)
(1 +

t2

m− 1
)−m/2.

For random variable Yi, we have

Yi =
Zi√∑m
i=1 Z

2
i

=
Zi√

Z2
i +

∑m
j ̸=i Z

2
j

=
Zi/σ√

(Zi/σ)2 +
∑m

j ̸=i(Zj/σ)2
=

U√
U2 + V

,
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and then T = U√
V/(m−1)

=
√
m−1Yi√
1−Y 2

i

, Yi = T√
T 2+m−1

. Therefore, the cumulative distribution

function (cdf) of T is:

FYi(yi) = P ({Yi ≤ yi}) =
{
P ({Yi ≤ yi}) yi ≤ 0

P ({Yi ≤ 0}) + P ({0 < Yi ≤ yi}) yi > 0

=

{
P ({ T√

T 2+m−1
≤ yi}) yi ≤ 0

P ({ T√
T 2+m−1

≤ 0}) + P ({0 < T√
T 2+m−1

≤ yi}) yi > 0

=

{
P ({ T 2

T 2+m−1 ≥ y2i , T ≤ 0}) yi ≤ 0

P ({T ≤ 0}+ P ({ T 2

T 2+m−1 ≤ y2i , T > 0}) yi > 0

=

P ({T ≤
√
m−1yi√
1−y2

i

}) yi ≤ 0

P ({T ≤ 0}+ P ({0 < T ≤
√
m−1yi√
1−y2

i

}) yi > 0

= P ({T ≤
√
m− 1yi√
1− y2i

}) = FT (

√
m− 1yi√
1− y2i

).

The probability density function of Yi can then be derived as:

fYi
(yi) =

d

dyi
FYi

(yi) =
d

dyi
FT (

√
m− 1yi√
1− y2i

)

= fT (

√
m− 1yi√
1− y2i

)
d

dyi
(

√
m− 1yi√
1− y2i

)

= [
Γ(m/2)√

(m− 1)πΓ((m− 1)/2)
(1− y2i )

m/2][
√
m− 1(1− y2i )

−3/2]

=
Γ(m/2)√

πΓ((m− 1)/2)
(1− y2i )

(m−3)/2.

C EXAMINING THE FOUR PROPERTIES FOR TWO UNIFORMITY METRICS

C.1 PROOF OF THEOREM 1: EXAMINING THE FOUR PROPERTIES FOR −LU

Property 1 can be easily verified for −LU and thus we skip the verification. We only examine the
other three properties for the uniformity metric −LU .

First, we prove that −LU does not satisfy Property 2. Due to the definition of LU in Eqn. (2), we
have

LU (D ⊎D) := log
1

2n(2n− 1)/2

4

n∑
i=2

i−1∑
j=1

e−t∥zi−zj∥2
2 +

n∑
i=1

e−t∥zi−zi∥2
2


= log

1

2n(2n− 1)/2

4

n∑
i=2

i−1∑
j=1

e−t∥zi−zj∥2
2 + n

 .

(10)

Letting G =
∑n

i=2

∑i−1
j=1 e

−t∥zi−zj∥2
2 , we have

G =

n∑
i=2

i−1∑
j=1

e−t∥zi−zj∥2
2 ≤

n∑
i=2

i−1∑
j=1

e−t∥zi−zi∥2
2 = n(n− 1)/2,
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and G = n(n− 1)/2 if and only if z1 = z2 = . . . = zn. Thus

LU (D ⊎D)− LU (D) = log
4G+ n

2n(2n− 1)/2
− log

G

n(n− 1)/2

= log
(4G+ n)n(n− 1)/2

2nG(2n− 1)/2
= log

(4G+ n)(n− 1)

4nG− 2G

= log
4nG− 4G+ n2 − n

4nG− 2G
≥ log 1 = 0.

The above equality holds if and only if G = n(n− 1)/2, which requires z1 = z2 = ... = zn, a trivial
case when all representations collapse to one constant point. We have excluded this trivial case, and
thus −LU (D ⊎D) < −LU (D). Therefore, the uniformity metric −LU does not satisfy Property 2.

Second, we prove that −LU does not satisfy Property 3. Letting ẑi = zi ⊕ zi and ẑj = zj ⊕ zj , we
have

LU (D ⊕D) := log
1

n(n− 1)/2

n∑
i=2

i−1∑
j=1

e−t∥ẑi−ẑj∥2
2 .

By the definitions of ẑi and ẑj , we have ∥ẑi∥2 =
√
2∥zi∥2, ∥ẑj∥2 =

√
2∥zj∥2, and ⟨ẑi, ẑj⟩ =

2⟨zi, zj⟩. Thus

∥ẑi − ẑj∥22 = 2∥zi∥22 + 2∥zj∥22 − 4⟨zi, zj⟩ = 2∥zi − zj∥22 ≥ ∥zi − zj∥22.
Therefore, −LU (D ⊕ D) ≥ −LU (D), indicating that the uniformity metric −LU does not satisfy
the Property 3.

Third, we prove that the existing metric −LU does not satisfy the Property 4. Letting ẑi = zi ⊕ 0k

and ẑj = zj ⊕ 0k, we have

LU (D ⊕ 0k) := log
1

n(n− 1)/2

n∑
i=2

i−1∑
j=1

e−t∥ẑi−ẑj∥2
2 .

By the definitions of ẑi and ẑj , we have ∥ẑi∥2 = ∥zi∥2, ∥ẑj∥2 = ∥zj∥2, ⟨ẑi, ẑj⟩ = ⟨zi, zj⟩, and
thus

∥ẑi − ẑj∥22 = ∥ẑi∥22 + ∥ẑj∥22 − 2⟨ẑi, ẑj⟩ = ∥zi∥22 + ∥zj∥22 − 2⟨zi, zj⟩ = ∥zi − zj∥22.
Therefore, −LU (D ⊕ 0k) = −LU (D), indicating that the uniformity metric −LU does not satisfy
Property 4.

C.2 PROOF OF THEOREM 3: EXAMINING THE FOUR PROPERTIES FOR −W2

Property 1 can be easily verified for −W2, and thus the proof is skipped. We only examine the rest
three properties for the proposed uniformity metric −W2.

First, we prove that our proposed metric −W2 satisfies Property 2. Let µ̂ and Σ̂ be defined as above,
for D ⊎D = {z1, z2, ..., zn, z1, z2, ..., zn}, the mean and covariance estimators are

µ̃ =
1

2n

n∑
i=1

2zi = µ̂, Σ̃ =
1

2n

n∑
i=1

2(zi − µ̃)T (zi − µ̃) = Σ̂,

which agree with those for D. Then we have

W2(D ⊎D) :=

√
∥µ̂∥22 + 1 + tr(Σ̂)− 2√

m
tr(Σ̂1/2) = W2(D).

Therefore, our proposed metric −W2 satisfies Property 2.

Second, we prove that −W2 satisfies Property 3. Let z̃i = zi ⊕ zi ∈ R2m. For D ⊕ D, the mean
and covariance estimators are:

µ̃ =

(
µ̂
µ̂

)
, Σ̃ =

(
Σ̂ Σ̂

Σ̂ Σ̂

)
.
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We easily have

Σ̃1/2 =

(
Σ̂1/2/

√
2 Σ̂1/2/

√
2

Σ̂1/2/
√
2 Σ̂1/2/

√
2

)
, tr(Σ̃) = 2 tr(Σ̂), and tr(Σ̃1/2) =

√
2 tr(Σ̂1/2).

Thus

W2(D ⊕D) :=

√
∥µ̃∥22 + 1 + tr(Σ̃)− 2√

2m
tr(Σ̃1/2)

=

√
2∥µ̂∥22 + 1 + 2 tr(Σ̂)− 2

√
2√

2m
tr(Σ̂1/2)

>

√
∥µ̂∥22 + 1 + tr(Σ̂)− 2√

m
tr(Σ̂1/2) = W2(D).

Therefore, −W2(D ⊕D) < −W2(D), indicating that our proposed metric −W2 could satisfy the
Property 3.

Third, we prove that our proposed metric −W2 satisfies Property 4. Let z̃i = zi⊕0k ∈ Rm+k with
an overload of notation. For D ⊕ 0k, the sample mean and covariance estimators are

µ̃ =

(
µ̂
0k

)
, Σ̃ =

(
Σ̂ 0m×k

0k×m 0k×k

)
,

where µ̂ and Σ̂ are defined previously. Therefore, we have tr(Σ̃) = tr(Σ̂), tr(Σ̃1/2) = tr(Σ̂1/2),
and thus

W2(D ⊕ 0k) :=

√
∥µ̃∥22 + 1 + tr(Σ̃)− 2√

m+ k
tr(Σ̃1/2)

=

√
∥µ̂∥22 + 1 + tr(Σ̂)− 2√

m+ k
tr(Σ̂1/2)

>

√
∥µ̂∥22 + 1 + tr(Σ̂)− 2√

m
tr(Σ̂1/2) = W2(D).

Therefore, −W2(D ⊕ 0k) < −W2(D), indicating that our proposed metric −W2 satisfies the
Property 4.

D FURTHER COMPARISONS BETWEEN Y AND Ŷ

This section further compares the distributions of Y and Ŷ.

We visually compare the distributions of Yi and Ŷi. To estimate the distributions of Yi and Ŷi, we
bin 200,000 sampled data points into 51 groups. Figure 8 compares the binning densities of Yi

and Ŷi when m ∈ {2, 4, 8, 16, 32, 64, 128, 256}. We can observe that two distributions are highly
overlapped when m is moderately large, e.g., m ≥ 8 or m ≥ 16.

By binning 2,000,000 data points into 51× 51 groups in two-axis, we also analyze the joint binning
densities and present 2D joint binning densities of (Yi, Yj) (i ̸= j) in Figure 9(a) and (Ŷi, Ŷj) (i ̸= j)
in Figure 9(b). Even if m is relatively small (i.e., 32), the densities of the two distributions are close.

E ADDITIONAL SYNTHETIC STUDIES

E.1 CORRELATION BETWEEN −LU AND −W2
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(e) m = 32
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(f) m = 64
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Figure 8: Comparing the binning densities of Yi and Ŷi with various dimensions.
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(a) Density for Yi and Yj
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(b) Density for Ŷi and Ŷj

Figure 9: Visualization of two arbitrary dimensions for Y and Ŷ when m = 32.
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Figure 10: Uniformity analysis for vari-
ous distributions by two metrics.

We employ synthetic experiments to study the uniformity
metrics across different distributions. Specifically, we
sample 50,000 data vectors (m = 256) from different
distributions, such as the isotropic Gaussian distribution
N (0, I), the uniform distribution on the hyperrectangle
[0,1], and the mixture of Gaussians, etc. Then we nor-
malize these data vectors, and estimate the uniformity of
different distributions by two metrics. As shown in Fig. 10,
isotropic Gaussian distribution achieves the maximum val-
ues for both −W2 and −LU , which indicates that isotropic
Gaussian distribution achieves larger uniformity than other
distributions. This empirical result is consistent with Fact 1
that the isotropic Gaussian distribution (approximately) achieves the maximum uniformity.

E.2 ON INSTANCE CLONING CONSTRAINT
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Figure 11: ICC analysis.

In this section, we compare the two metrics in terms
of Property 2 (ICC). Specifically, we randomly sample
1,000 data vectors from the isotropic Gaussian distribu-
tion (m = 32) and then mask 50% of their coordinates
with zeros, forming a new dataset D with an overload of
notation. To investigate the impact of instance cloning,
we create multiple clones of the dataset, such as D ⊎D
and D ⊎D ⊎D, which correspond to one and two times
cloning, respectively. We evaluate the two metrics on
these datasets. Figure 11 shows that the value of −LU
slightly decreases as the number of clones increases, in-
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(c) Three-dimensional visualiza-
tion with no collapsed dimension

Figure 12: A case study for Property 4 and blue points are data vectors.

dicating that −LU violates the equality in Equation 4. In contrast, our proposed metric −W2 remains
constant, satisfying the equality.

E.3 UNDERSTANDING PROPERTY 4: WHY DOES IT RELATE TO DIMENSIONAL COLLAPSE?

This section delves into Property 4 through case studies. Let us begin with a thought experiment.
Consider a dataset D with instances uniformly distributed on the unit hypersphere, thereby possessing
(almost) maximal uniformity. When additional coordinates with zeros are inserted to each instance of
D, forming a new dataset D⊕ 0k, it can no longer maintain maximal uniformity. This is because, the
new dataset only occupies a small area of the unit hypersphere. Consequently, as k increases, the
uniformity of the dataset would decrease significantly.

Let us visualize this thought experiment using synthetic studies. In Figure 12(a), we present 400
data vectors (D1) sampled from N (0, I2), which are also nearly uniformly distributed on S1. By
inserting one zero-coordinate to each instance of D1, we obtain a new dataset D1 ⊕ 01, as depicted
in Figure 12(b). We also construct another dataset D2 consisting of 400 data vectors sampled
from N (0, I3), visualized in Figure 12(c). Notably, D1 ⊕ 01 forms a ring on S2, while D2 is
almost uniformly distributed over S2. Naturally, U(D2) > U(D1 ⊕ 01). If U(D1) = U(D2)

4, then
U(D1) = U(D2) > U(D1 ⊕ 01). This partially confirms the validity of Property 4.
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Figure 13: Singular value spectrum of D⊕
0k.

Additionally, increasing the value of k in Property 4
exacerbates the degree of dimensional collapse. To il-
lustrate, consider a dataset D sampled from a multi-
variate Gaussian distribution N (0, Im/m), exhibiting a
collapse degree close to 0%. However, upon inserting
m-dimensional zero-value vectors to each instance of
D, denoted as D ⊕ 0m, half of the dimensions collapse.
Consequently, the collapse degree increases to 50%. Fig-
ure 13 visually represents the collapse of D ⊕ 0k using
the singular value spectra of the representations. It is
evident that a larger k results in a more pronounced
dimensional collapse. In summary, Property 4 corresponds to dimensional collapse.

E.4 UNDERSTANDING W2: LARGE MEANS MAY LEAD TO COLLAPSE

In this section, we explore our uniformity loss W2. This loss embodies two primary constraints.
Firstly, it promotes the covariance matrix to be isotropic (specifically Im/m). Secondly, it enforces
the mean to be zero. The latter constraint on the mean is crucial. To illustrate, we present a case study
demonstrating that deviating the mean from zero compromises uniformity, even if the covariance
matrix is precisely Im/m and thus isotropic. Means deviating from zero may result in dimensional
collapse and even constant collapse.

4Intuitively, maximal uniformity should stay constant regardless of dimensions; otherwise the corresponding
uniformity metric exhibit a preference for larger or smaller dimensions.
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Figure 14: Visualizing ℓ2 normalized Gaussian vectors with different means.

Table 3: Parameter settings for various models in the experiments.
Models MoCo v2 BYOL BarlowTwins Zero-CL
αmax 1.0 0.2 30.0 30.0
αmin 1.0 0.2 0 30.0

Assuming X ∈ R2 follows a Gaussian distribution N (0, I2), let Y = X + k · 1 such that Y ∼
N (k · 1, I2), where 1 ∈ Rk represents a vector of all ones. We vary k from 0 to 32 and visualize
the ℓ2-normalized Y’s in Figure 14 (by generating multiple independent copies). It is clear that an
excessively large means will cause representations to collapse to a single point, even if the covariance
matrix is isotropic.

F EXPERIMENT SETTINGS AND CONVERGENCE ANALYSIS

F.1 EXPERIMENT SETTINGS

To ensure fair comparisons, all experiments in Section 6 are conducted on a single 1080 GPU.
Additionally, we maintain consistency in network architecture across all models, utilizing ResNet-
18 (He et al., 2016) as the backbone and a three-layer MLP as the projector. The LARS optimizer (You
et al., 2017) is employed with a base learning rate of 0.2, accompanied by a cosine decay learning
rate schedule (Loshchilov & Hutter, 2017) for all models. Evaluation follows a linear evaluation
protocol, where models are pre-trained for 500 epochs. Evaluation involves adding a linear classifier
and training the classifier for 100 epochs while preserving the learned representations. The same
augmentation strategy is deployed across all models, encompassing various operations such as color
distortion, rotation, and cutout. Following da Costa et al. (2022), we set the temperature t = 0.2 for
all contrastive learning methods. For MoCo (He et al., 2020) and NNCLR (Dwibedi et al., 2021),
which require an additional queue to store negative samples, we set the queue size to 212. Regarding
the linear decay for weighting the quadratic Wasserstein distance, refer to Table 3 for the parameter
settings.

F.2 CONVERGENCE ANALYSIS FOR TOP-1 ACCURACY

Here we illustrate the convergence of Top-1 accuracy across all training epochs in Fig 15. Throughout
the training, we capture the model checkpoint at the end of each epoch to train a linear classifier. We
subsequently evaluate the Top-1 accuracy on unseen images from the test set (either CIFAR-10 or
CIFAR-100).
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For both CIFAR-10 and CIFAR-100, we observe that integrating the proposed uniformity metric
as an auxiliary loss significantly enhances the Top-1 accuracy, particularly in the initial stages of
training.

F.3 CONVERGENCE ANALYSIS FOR UNIFORMITY AND ALIGNMENT

This section presents the convergence of the uniformity metric and alignment loss across all training
epochs in Figure 16 and Figure 17, respectively. Throughout the training, we record the model
checkpoint at the end of each epoch to evaluate the uniformity using the proposed metric W2 and
alignment (Wang & Isola, 2020) on unseen images from the test set (either CIFAR-10 or CIFAR-100).

For both CIFAR-10 and CIFAR-100, we observe that integrating the proposed uniformity metric as
an auxiliary loss significantly improves uniformity. However, it also slightly compromises alignment
(where a smaller alignment loss indicates better alignment). It should be noted that improved
uniformity often leads to worse alignment.
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Figure 15: Convergence analysis for Top-1 accuracy during training.
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Figure 16: Visualizing uniformity during training
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Figure 17: Visualizing alignment during training.
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