Appendix: FlexMatch: Boosting Semi-Supervised
Learning with Curriculum Pseudo Labeling

Bowen Zhang* Yidong Wang*
Tokyo Institute of Technology Tokyo Institute of Technology
bowen.z.ab@m.titech.ac. jp wang.y.ca@m.titech.ac. jp

Wenxin Hou Hao Wu Jindong Wang'
Microsoft Tokyo Institute of Technology Microsoft Research Asia
wenxinhou@microsoft.com wu.h.aj@m.titech.ac.jp jindwang@microsoft.com

Manabu Okumura’ Takahiro Shinozaki'
Tokyo Institute of Technology Tokyo Institute of Technology
oku@pi.titech.ac.jp shinot@ict.e.titech.ac. jp

1 Experimental Results

1.1 Hyperparameter setting

For reproduction, we show the detailed hyperparameter setting for each method in Table [T and [2] for
algorithm-dependent and algorithm-independent hyperparameters, respectively.

Table 1: Algorithm dependent parameters.

Algorithm PL (Flex-PL) UDA (Flex-UDA) FixMatch (FlexMatch)
Unlabeled Data to Labeled Data Ratio (CIFAR-10/100, STL-10, SVHN) 1 7 7
Unlabeled Data to Labeled Data Ratio (ImageNet) - - 1
Pre-defined Threshold (CIFAR-10/100, STL-10, SVHN) 0.95 0.8 0.95
Pre-defined Threshold (ImageNet) - - 0.7
Temperature - 0.5

Table 2: Algorithm independent parameters.

Dataset CIFAR-10 CIFAR-100 STL-10 SVHN ImageNet
Model WRN-28-2 [I] WRN-28-8 WRN-37-2[2] WRN-28-2 ResNet-50 [3]
Weight Decay Se-4 le-3 Se-4 Se-4 3e-4
Batch Size 64 128
Learning Rate 0.03
SGD Momentum 0.9
EMA Momentum 0.999

Unsupervised Loss Weight 1

1.2 Class-wise accuracy improvement.

As introduced in the paper, CPL has its ability of improving performance on those hard-to-learn
classes by taking into consider the model’s learning status. A detailed class-wise accuracy comparison

*Equal contribution.
fCorresponding author.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

is listed in Table [3] where the final accuracies of class 2, 3 and 5 with originally bad performance are
improved.

Table 3: Class-wise accuracy comparison on CIFAR-10 40-1abel split.

Class Number 0 1 2 3 4 5 6 7 8 9

FixMatch 0964 0982 0.697 0.852 0974 0.890 0987 0970 0982 0.981
FlexMatch 0967 0980 0921 0.806 0.957 0.883 0988 0975 0982 0.968

1.3 Median error rates

We also report the median error rates of the last 20 checkpoints by allowing all methods to run the same
iterations, following existing work [4]]. There are 1000 iterations between every two checkpoints. The
results in Table] show that our CPL method can dramatically improve the performance of existing
SSL algorithms and the FlexMatch achieves the best accuracy. These conclusions are in consistency
with the results of Tablel in the main text, showing the effectiveness of our proposed CPL algorithm.

Table 4: Median error rates of the last 20 checkpoints.

Dataset | CIFAR-10 | CIFAR-100 | STL-10 | SVHN

Label Amount | 40 250 4000 | 400 2500 10000 | 40 250 1000 | 40 1000
PL 77424119 48.33+243 15.64+029 | 90.01+021 58.38+042 37.64x0.16 | 76.44+067 56.90+232 33.57+040 | 69.05+677 9.99+035
Flex-PL 76.09+225 47.53+225 15.30+024 | 86.60+048 56.72+054 36.20+020 | 76.84+1.04 53.71+269 33.19+025 | 67.20+399 15.10+133
UDA 10.96+368 5.46+007 4.60+005 | 51.97+138 29.92+035 23.64+033 | 41.11+521 10.74+139 8.00+058 | 5.31+439 1.97+0.04
Flex-UDA 5.77+052 5.48+033 4.52+007 | 59.51+£270 29.33+023 23.38+0.9 | 61.16+434 10.88+054 7.16+020 | 6.21+284 2.13+0.09
FixMatch 7.99+059 5.12+033 4.46x011 | 48.95+119 29.19+025 23.06+0.12 | 44.70+658 12.34+213 7.38+026 | 3.92+118 2.06+001
FlexMatch 5.19+005 5.33x012 4.47x009 | 4591176 28.11+020 23.04+028 | 44.69+7.49 9.27+049 6.15x025 | 20.81+526 12.90+2.68

1.4 Detailed results

To comprehensively evaluate the performance of all methods in a classification setting, we further
report the precision, recall, f1 score and AUC (area under curve) results on CIFAR-10 dataset. As
shown in Table@ we see that in addition to the reduced error rates, CPL also has the best performance
on precision, recall, F1 score, and AUC. These metrics, together with error rates (accuracy), shows
the strong performance of our proposed method.

Table 5: Precision, recall, f1 score and AUC results on CIFAR-10.

Label Amount | 40 labels \ 4000 labels

Criteria \ Precision Recall FI1 Score AUC \ Precision Recall Flscore AUC
PL 0.2539 0.2552 0.2493 0.6542 | 0.8498 0.8509 0.8500 0.9833
Flex-PL 0.2865 0.2865 0.2663 0.6718 | 0.8544 0.8545 0.8542 0.9843
UDA 0.8759 0.8408 0.8086 09775 | 0.9557 0.9559 0.9557 0.9985
Flex-UDA 0.9482 09485 0.9482 09974 | 0.9576 0.9577 0.9576 0.9986
Fixmatch 0.9333 09290 0.9278 0.9910 | 0.9571 0.9571 0.9569 0.9984
Flexmatch 0.9506 0.9507 0.9506 09975 | 0.9580 0.9581 0.9580 0.9984

2 TorchSSL: A PyTorch-based SSL Codebase

The PyTorch [3] framework has gained increasing attention in the deep learning research community.
However, the main existing SSL codebase [6] is based on TensorFlow. For the convenience and cus-
tomizability, we re-implement and open source a PyTorch-based SSL toolbox, named TorchSSLas
shown in Figure[I] TorchSSL contains eight popular semi-supervised learning methods: IT-Model [8]],
Pseudo-Labeling [9], VAT [10], Mean Teacher [11], MixMatch [12], ReMixMatch [13], UDA [14],

30Our toolbox is partially based on [[7].

and FixMatch [4], along with our proposed method FlexMatch. Most of our implementation details
are based on [6]. More importantly, in addition to the basic SSL methods and components, we
implement several techniques to make the results stable under PyTorch framework. For instance,
we add synchronized batch normalization [15] to avoid the performance degradation caused by
multi-GPU training with small batch size, and a batch norm controller to prevent performance crashes
for some algorithms, which is not officially supported in PyTorch.

Data libraries
- Dataset: - Data Preprocess: - Data Augmentation:

-CIFAR-10 -Split raw data into labeled -Weak Augmentation:
-CIFAR-100 set and unlabeled set. Random Flip & Crop
-SVHN -Strong Augmentation:
-STL-10 Random Augmentation
-lmageNet

Model libraries

- Neural Networks: - SSL Algorithms: - Training Components:

-WideResNet -M-model -MixMatch -Synchronized Batch Normalization
-ResNet -Pseudo Labeling -RemixMatch -Batch Normalization Controller
-WideResNet Variant -VAT -UDA -Exponential Moving Average
-MeanTeacher -FixMatch -Gradient Clipping
Main libraries
- Configuration: - Main Entrance: - Convenient Scripts:
-Config Creator -Distributed Data Parallel Training -Installation
-Config Parser -Automatic Mixed Precision -Experiments

-Results Extraction and Summarization

Figure 1: Components of TorchSSL.

2.1 BatchNorm Controller

We observed that Mean Teacher can be very unstable if we update BatchNorm for both labeled data
and unlabeled data in turn. Other algorithms such as II-Model and MixMatch also show the similar
instability. Therefore, we use BatchNorm Controller to update BatchNorm only for labeled data if
labeled data and unlabeled data are forwarded separately. The code of BatchNorm Controller is as
follows. We record the BatchNorm statistics before the forward propagation of unlabeled data and
restore them after the propagation is done.

2.2 Benchmark results

We comprehensively run all algorithms in our TorchSSL on four common datasets in SSL: CIFAR-10,
CIFAR-100, SVHN, and STL-10, and report the best error rates in Table[6] [7] [8] and[9] respectively.
These benchmark results provide a reference of using this toolbox.

Table 6: Benchmark results on CIFAR-10. The error bars are obtained from three trials.

Algorithms Error Rate (40 labels) Error Rate (250 labels) Error Rate (4000 labels)
1I-Model [8] 74.34+1.76 46.24+1.29 13.13+0.59
Pseudo-Labeling [9] 74.61+0.26 46.49+2.20 15.08+0.19
VAT [110] 74.66+2.12 41.03+1.79 10.51+0.12
Mean Teacher [[11] 70.09+1.60 37.46+3.30 8.10+0.21
MixMatch [12] 36.19+6.48 13.63+0.59 6.66+0.26
ReMixMatch [13] 9.88+1.03 6.30+0.05 4.8440.01
UDA [14] 10.62+3.75 5.16+0.06 4.29+0.07
FixMatch [4] 7.47+0.28 4.8640.05 4.2140.08
FlexMatch 4.97+0.06 4.98+0.09 4.19+0.01

Table 7: Benchmark results on CIFAR-100.

Algorithms Error Rate (400 labels) Error Rate (2500 labels) Error Rate (10000 labels)
1I-Model [8] 86.96+0.80 58.80+0.66 36.65+0.00
Pseudo-Labeling [9] 87.45+0.85 57.74+0.28 36.55+0.24
VAT [10] 85.20+1.40 46.84+0.79 32.14+0.19
Mean Teacher[11] 81.11+1.44 45.17+1.06 31.75+023
MixMatch [12] 67.59-+0.66 39.76+0.48 27.78+0.29
ReMixMatch [13] 42.7541.05 26.03+0.35 20.02+0.27
UDA [14] 46.394+1.59 27.73+0.21 22.49+0.23
FixMatch [4] 46.4240.82 28.03+0.16 22.20+0.12
FlexMatch 39.94+1.62 26.49+0.20 21.90+0.15

Table 8: Benchmark results on STL-10.

Algorithms Error Rate (40 labels) Error Rate (250 labels) Error Rate (1000 labels)
II-Model [8] 74.31+0585 55.13+150 32.78+0.40
Pseudo-Labeling [9] 74.68+0.99 55.45+2.43 32.64+0.71
VAT [110] 74.74+0.38 56.42+197 37.95+1.12
Mean Teacher [[11] 71.72+1.45 56.49+2.75 33.90+1.37
MixMatch [12] 54.9340.96 34.52+40.32 21.70+0.68
ReMixMatch [[13] 32.1246.24 12.49+1.28 6.74+0.14
UDA [14] 37.4248.44 9.72+1.15 6.64+0.17
FixMatch [4] 35.97+4.14 9.81+1.04 6.25+0.33
FlexMatch 29.15+4.16 8.23+0.39 5.77+0.18

Table 9: Benchmark results on SVHN.

Algorithms Error Rate (40 labels) Error Rate (250 labels) Error Rate (1000 labels)
II-Model [8] 67.48+0.95 13.30+1.12 7.16+0.11
Pseudo-Labeling [9] 64.61+5.60 15.59+0.95 9.40+0.32
VAT [10] T4.75+3.38 4.33+0.12 4.11+0.20
Mean Teacher [[11] 36.09+3.98 3.45+0.03 3.27+0.05
MixMatch [12] 30.60+8.39 4.56+0.32 3.69+0.37
ReMixMatch [[13] 24.0449.13 6.36+0.22 5.16+031
UDA [14] 5.12+427 1.92+0.05 1.89+0.01
FixMatch [4] 3.81+1.18 2.02+0.02 1.96+0.03
FlexMatch 8.1943.20 6.59+2.29 6.72+0.30
References
[1] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In BMVC, 2016.

(2]

(3]

(4]

(5]

(6]

Tianyi Zhou, Shengjie Wang, and Jeff Bilmes. Time-consistent self-supervision for semi-
supervised learning. In ICML, pages 11523-11533. PMLR, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770-778, 2016.

Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raf-
fel, Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-
supervised learning with consistency and confidence. NeurIPS, 33, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. NeurIPS, 32:8026-8037, 2019.

Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel,
Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. fixmatch. https://github.com/
google-research/fixmatch, 2020.

https://github.com/google-research/fixmatch
https://github.com/google-research/fixmatch

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Lee Doyup and Cheon Yeongjae. Fixmatch-pytorch. https://github.com/LeeDoYup/
FixMatch-pytorch, 2020.

Antti Rasmus, Harri Valpola, Mikko Honkala, Mathias Berglund, and Tapani Raiko. Semi-
supervised learning with ladder networks. In NeurlIPS, pages 3546-3554, 2015.

Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning method
for deep neural networks. In Workshop on challenges in representation learning, ICML,
volume 3, 2013.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial training:
a regularization method for supervised and semi-supervised learning. /EEE TPAMI, 41(8):1979—
1993, 2018.

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results. In NeurIPS, pages 1195—
1204, 2017.

David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin
Raffel. Mixmatch: A holistic approach to semi-supervised learning. NeurIPS, page 5050-5060,
2019.

David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex Kurakin, Kihyuk Sohn, Han Zhang,
and Colin Raffel. Remixmatch: Semi-supervised learning with distribution matching and
augmentation anchoring. In ICLR, 2019.

Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. Unsupervised data augmen-
tation for consistency training. NeurlIPS, 33, 2020.

Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi,
and Amit Agrawal. Context encoding for semantic segmentation. In CVPR, pages 7151-7160,
2018.

https://github.com/LeeDoYup/FixMatch-pytorch
https://github.com/LeeDoYup/FixMatch-pytorch

	Experimental Results
	Hyperparameter setting
	Class-wise accuracy improvement.
	Median error rates
	Detailed results

	TorchSSL: A PyTorch-based SSL Codebase
	BatchNorm Controller
	Benchmark results

