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Abstract

A recurring theme in statistical learning, online learning, and beyond is that faster
convergence rates are possible for problems with low noise, often quantified by
the performance of the best hypothesis; such results are known as first-order or
small-loss guarantees. While first-order guarantees are relatively well understood
in statistical and online learning, adapting to low noise in contextual bandits (and
more broadly, decision making) presents major algorithmic challenges. In a COLT
2017 open problem, Agarwal et al. [5] asked whether first-order guarantees are
even possible for contextual bandits and—if so—whether they can be attained
by efficient algorithms. We give a resolution to this question by providing an
optimal and efficient reduction from contextual bandits to online regression with the
logarithmic (or, cross-entropy) loss. Our algorithm is simple and practical, readily
accommodates rich function classes, and requires no distributional assumptions
beyond realizability. In a large-scale empirical evaluation, we find that our approach
typically outperforms comparable non-first-order methods.
On the technical side, we show that the logarithmic loss and an information-
theoretic quantity called the triangular discrimination play a fundamental role
in obtaining first-order guarantees, and we combine this observation with new
refinements to the regression oracle reduction framework of Foster and Rakhlin
[29]. The use of triangular discrimination yields novel results even for the classical
statistical learning model, and we anticipate that it will find broader use.

1 Introduction

In the contextual bandit problem, a learning agent repeatedly makes decisions based on contextual
information, with the goal of learning a decision-making policy that minimizes their total loss over
time. This model captures simple reinforcement learning tasks in which the agent must learn to
make high-quality decisions in an uncertain environment, but does not need to engage in long-term
planning or credit assignment. Owing to the availability of high-quality engineered reward metrics,
contextual bandit algorithms are now routinely deployed in production for online personalization
systems [4, 61].

Contextual bandits encompass both the general problem of statistical learning with function approx-
imation (specifically, cost-sensitive classification) and the classical multi-armed bandit problem,
yet present algorithmic challenges greater than the sum of both parts. In spite of these difficulties,
extensive research effort over the past decade has resulted in efficient, general-purpose algorithms, as
well as a sharp understanding of the optimal worst-case sample complexity [9, 12, 3, 29, 58].

While the algorithmic and statistical foundations for contextual bandits are beginning to take shape,
we still lack an understanding of adaptive or data-dependent algorithms that can go beyond the
worst case and exploit nice properties of real-world instances for better performance. This is in stark
contrast to supervised statistical learning, where adaptivity has substantial theory, and where standard
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algorithms (e.g., empirical risk minimization) are known to automatically adapt to nice data [17]. For
contextual bandits, adaptivity poses new challenges that seem to require algorithmic innovation, and
a major research frontier is to develop algorithmic principles for adaptivity and an understanding of
the fundamental limits.

To highlight the lack of understanding for adaptive and data-dependent algorithms, a COLT 2017 open
problem posed by Agarwal, Krishnamurthy, Langford, Luo, and Schapire [5] asks whether there exist
contextual bandit algorithms that achieve a certain data-dependent first-order regret bound, which
scales with the cumulative loss L? of the best policy, rather than with the time horizon T . For multi-
armed bandits, first-order regret bounds (also known as small-loss bounds or fast rates) typically scale
as
√
L? and imply faster convergence for “easy” problems, interpolating between the optimal

√
T

rate for worst-case instances and constant/logarithmic regret for noise-free instances [7, 31]. Agarwal
et al. [5] observed that existing techniques appear to be inadequate to achieve this type of guarantee in
contextual bandits. Beyond simply asking whether first-order regret can be achieved, they also asked
whether it can be achieved efficiently, which is essential for real-world deployment. Subsequently,
Allen-Zhu, Bubeck, and Li [6] gave an inefficient algorithm with an optimal first-order regret guaran-
tee, resolving the former question, but the existence of efficient first-order algorithms remained open.

Contributions. We give the first optimal and efficient contextual bandit algorithm with a first-order
regret guarantee, providing a resolution to the second open problem raised by Agarwal et al.
[5]. Our algorithm, FastCB, builds on a recent line of research that develops efficient contextual
bandit algorithms based on the computational primitive of (online/offline) supervised regression
[43, 32, 29, 58], and is efficient in terms of queries to an online oracle for regression with the
logarithmic loss. Beyond attaining first-order regret, FastCB inherits all of the benefits of recent
algorithms based on regression: it is simple and practical, accommodates flexible function classes,
requires no statistical assumptions beyond realizability, and enjoys strong empirical performance.

Technical highlights. By invoking the framework of regression oracles, our algorithm design
approach deviates sharply from prior approaches to first-order regret and necessitates the use of
techniques that are novel even in the context of statistical learning. At a high-level, the design of
FastCB leverages two key techniques:

1. First-order regret for plug-in classification via logarithmic loss: We show that algorithms based
on regression with least-squares, as used in prior work [29, 58, 68, 34, 23], fail to attain first-order
regret, even for the simpler problem of cost-sensitive classification in statistical learning. In
spite of this apparent setback, we show that regression with the logarithmic loss does lead to
first-order regret for statistical learning. This is established through a new analysis based on an
information-theoretic quantity called the triangular discrimination [66, 44, 62].

2. Reweighted inverse gap weighting: Moving from statistical learning to contextual bandits, we
transform predictions into distributions over actions using a scale-sensitive refinement to the
inverse-gap weighting scheme used in the SquareCB algorithm [1, 29]. Our new scheme is tailored
to small losses, and we show that its error is controlled by the triangular discrimination.

Summarizing, our approach leverages prediction via the logarithmic loss, allocation via reweighted
inverse gap weighting, and triangular discrimination as the bridge from prediction to allocation.

Empirical results. In Section 5, we evaluate FastCB on the large-scale contextual bandit benchmark
of Bietti et al. [13] and find that it typically outperforms SquareCB and other non-adaptive baselines
[35]. Interestingly, we observe that most of the performance improvement can be attributed to the use
of the logarithmic loss, while the reweighted allocation scheme provides modest additional benefit.
These findings raise a natural question as to whether simply moving to the logarithmic loss can yield
performance improvements in production contextual bandit deployments.

On the regression oracle model. As a disclaimer, we caution that our algorithm is efficient in
terms of an oracle for online regression, while Agarwal et al. [5] originally asked for an algorithm
that is efficient in terms of a cost-sensitive classification oracle capable of solving the policy
optimization problem argminπ∈Π

∑T
t=1 `t(π(xt)). Hence, while FastCB is the first algorithm with

first-order regret that is efficient in any oracle model, it does not formally solve the original open
problem. Nonetheless, there are strong reasons to prefer a solution based on regression over one
based on classification. First, cost-sensitive classification is intractable to implement even for simple
function classes for which regression can be solved efficiently [29]. Setting this issue aside, (online)
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Algorithm 1 FastCB (“Fast Rates for Contextual Bandits”)
1: parameters:

Learning rate γ > 0.
Online regression oracle AlgKL.

2: for t = 1, . . . , T do
3: Receive context xt.

// Compute oracle’s predictions (Eq. (4)).

4: For each action a ∈ A, compute ŷt(xt, a) := Alg
(t)
KL (xt, a ; {(xi, ai, `i(ai))}t−1

i=1).
5: Let bt ∈ argmina∈A ŷt,a.

// Reweighted inverse gap weighting.

6: For each a 6= bt, define pt,a = ŷt(xt,bt)
Aŷt(xt,bt)+γ(ŷt(xt,a)−ŷt(xt,bt))

. Let pt,bt = 1−
∑
a6=bt pt,a.

7: Sample at ∼ pt and observe loss `t(at).
8: Update AlgKL with example (xt, at, `t(at)).
9: end for

regression-based algorithms are typically simpler and faster than classification-based algorithms,
and multiple empirical evaluations have shown that algorithms based on regression dominate those
based on classification [32, 13, 35].

Organization. Section 2 contains our algorithm and main theorem. Section 3 describes the moti-
vation and analysis ideas behind FastCB, beginning from new techniques for statistical learning with
regression-based classifiers. Examples for the main theorem are given in Section 4, and experimental
results are given in Section 5. Detailed discussion of related work is deferred to Appendix A.

2 Main Result: An Efficient First-Order Algorithm for Contextual Bandits

We begin by formally introducing the contextual bandit model. At each round t ∈ [T ], the learner
observes a context xt ∈ X , selects an action at ∈ A, then observes a loss `t(at) ∈ [0, 1] for the
action they selected. We assume that A := |A| is finite and that each loss function `t : A → [0, 1] is
drawn independently from a fixed distribution P`t(· | xt), where P`1 , . . . ,P`T and x1, . . . , xT are
selected by a potentially adaptive adversary.

We make a standard realizability assumption [24, 2, 32, 29]. Namely, we assume that the learner has
access to a class of value functions F ⊂ (X ×A → [0, 1]) (e.g., neural networks, kernels, or forests)
that models the mean of the loss distribution.
Assumption 1 (Realizability). There exists f? ∈ F such that for all t, f?(x, a) = E[`t(a) | xt = x].

The aim of the learner is to minimize their regret to the optimal policy π?(x) := argmina∈A f
?(x, a):

RegCB(T ) :=

T∑
t=1

`t(at)−
T∑
t=1

`t(π
?(xt)). (1)

For each f ∈ F , we let πf (x) := argmina∈A f(x, a) be the induced policy. We let Π :=
{πf | f ∈ F} be the induced policy class.

Further notation. We adopt standard big-oh notation, and write f = Õ(g) to denote that f =
O(gmax{1,polylog(g)}). We use . only in informal statements to highlight the most salient
elements of an inequality. We use a ∨ b = max{a, b} and a ∧ b = min{a, b}.

2.1 Algorithm and Main Result

FastCB builds on the SquareCB algorithm of Foster and Rakhlin [29], which provides an efficient,
minimax-optimal reduction from contextual bandits to online regression with the square loss. Com-
pared to SquareCB and other subsequent algorithms based on online regression [34, 23], the first
twist here is that rather than working with the square loss, we build on the computational primitive
of online regression with the logarithmic loss. While this point is inconsequential for worst-case
guarantees, we show that it is a fundamental distinction for first-order guarantees.
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Online regression oracles. In more detail, an online regression oracle, which we denote by AlgKL
(for “Kullback-Leibler”) operates in the following protocol: For each time t, the algorithm receives
a context-action pair (xt, at), produces a prediction ŷt ∈ [0, 1], then receives a response yt. The
algorithm’s prediction error is measured through the binary logarithmic/cross-entropy loss ,

`log(ŷ, y) := y log(1/ŷ) + (1− y) log(1/(1− ŷ)). (2)
The algorithm’s goal is to ensure that the log loss regret to F is minimized for all sequences.
Assumption 2. The algorithm AlgKL guarantees that for every (possibly adaptively chosen) sequence
x1:T , a1:T , y1:T , the log loss regret is bounded by a known function RegKL(T ):

T∑
t=1

`log(ŷt, yt)− inf
f∈F

T∑
t=1

`log(f(xt, at), yt) ≤ RegKL(T ), (3)

Online regression with the logarithmic loss (or, sequential probability assignment) is a fundamental
and well-studied problem in online learning, and there are efficient algorithms available for many
function classes of interest [25, 67, 40, 37, 52, 55, 33, 48]; see Section 4 for examples. While log
loss regret is a more stringent notion of performance than square loss regret, it nonetheless has a
relatively mature theory characterizing optimal rates [57, 51, 20, 14].

The algorithm. FastCB (Algorithm 1) is a reduction that efficiently transforms any online regression
oracle satisfying Assumption 2 into a contextual bandit algorithm with an optimal first-order regret
bound. At each round t, the algorithm first computes the estimated loss

ŷt(xt, a) := Alg
(t)
KL (xt, a ; {(xi, ai, `i(ai))}t−1

i=1) (4)
predicted by the regression oracle for each action a (Line 4); see Appendix C.1 for a more detailed
formal description of the oracle model. Next, FastCB uses these estimates to assign a probability
of being played to each action a via a scale-sensitive refinement to the inverse gap weighting
strategy used in SquareCB [1, 29], which we call reweighted inverse gap weighting (Line 6). Letting
bt := argmina∈A ŷt(xt, a) be the greedy action according to the predicted losses, we define

pt,a :=
ŷt(xt, bt)

Aŷt(xt, bt) + γ(ŷt(xt, a)− ŷt(xt, bt))
∀a 6= bt, and pt,bt := 1−

∑
a6=bt

pt,a, (5)

where γ > 0 is a learning rate parameter. Given this distribution, FastCB simply samples at ∼ pt,
then updates the oracle with the resulting tuple (xt, at, `t(at)). Our main theorem shows that this
leads to an optimal first-order regret bound.1

Theorem 1 (Main theorem). Suppose Assumptions 1 and 2 hold. Then Algorithm 1 guarantees that
for all sequences with E

[∑T
t=1 `t(π

?(xt))
]
≤ L?, by choosing γ =

√
AL?/3RegKL(T ) ∨ 10A,

E[RegCB(T )] ≤ 40
√
L? ·ARegKL(T ) + 600ARegKL(T ). (6)

The dominant term in this regret bound scales with
√
L? whenever the oracle AlgKL attains a fast

log(T )-type regret bound. As a simple example, whenever F is finite, we can instantiate AlgKL so
that RegKL(T ) ≤ log|F| [67], whereby FastCB enjoys optimal [2] first-order regret:

E[RegCB(T )] ≤ O
(√

L? ·A log|F|+A log|F|
)
.

Beyond first-order regret, FastCB inherits all of the advantages of online regression-based algorithms:

• Efficiency and simplicity. The memory and runtime used by the algorithm—on top of what is
required by the regression oracle—scales only as O(A) per step; implementation is trivial.

• Flexibility. Working with regression as a primitive means that the algorithm easily accomodates
rich, potentially nonparametric function classes, and we can instantiate Theorem 1 to get provable
end-to-end regret guarantees for concrete classes of interest. For example, for linear models in Rd
we can efficiently attain RegKL(T ) ≤ O(d log(T )) [25, 40], which yields a first-order regret bound
RegCB(T ) .

√
L? ·Ad; our result is new even for this simple special case. Similar guarantees

are available for kernels, generalized linear models, and many other nonparametric classes. On the
other hand, even for function classes where provable algorithms are not available, regression is
amenable to practical heuristics (e.g., gradient descent). See Section 4 for detailed examples.

1While we assume that an upper bound on the optimal loss is known for simplicity, one can extend to
the unknown case by running the algorithm in epochs, setting γ in terms of the algorithm’s estimated loss
Lt =

∑t
τ=1 `τ (aτ ), and applying the doubling trick. Theorem 1 also readily extends to high probability.
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3 Overview of Analysis

We now outline the algorithmic principles and analysis ideas behind FastCB. First, in Section 3.1, we
take a step back and consider the sub-problem of cost-sensitive classification in statistical learning.
We establish that approaches based on least-squares fail to attain first-order regret (Theorem 2) for
cost-sensitive classification, then show how to fix this problem using log loss regression (Theorem 3);
this analysis serves as an introduction to the triangular discrimination. With this result in hand, we
move to the contextual bandit setting and transform predictions into distributions over actions using
the reweighted inverse-gap weighting scheme in (5), which exploits small losses. Our main result
here shows that this scheme satisfies a first-order variant of the per-round minimax inequality of
Foster and Rakhlin [29], which links the instantaneous contextual bandit regret to the triangular
discrimination for the regression oracle on a per-round basis (Theorem 4). Full proofs are deferred to
Appendices B and C.

3.1 Warmup: First-Order Regret Bounds for Plug-In Classifiers

For the simpler problem of cost-sensitive classification in statistical learning, the literature on plug-in
classification shows that whenever realizability conditions such as Assumption 1 hold, we can obtain
optimal worst-case regret by taking the greedy policy/classifier induced by a least-squares estimator.
We first show that this approach fails to attain first-order regret.

The statistical learning setting we consider is as follows. We receive a dataset Dn consisting of
n context-loss pairs (xt, `t) ∼ D i.i.d., where the entire loss function `t : A → [0, 1] is observed.
Analogously to Assumption 1, we assume access to a function class F ⊆ (X × A → [0, 1]) such
that ED[`(a) | x] = f?(x, a) for some f? ∈ F , and take Π := {πf | f ∈ F} as the induced class of
policies. Our goal is to learn a policy π̂ : X → A such that the regret (or, excess risk)

L(π̂)− L? (7)
is small, where L(π) := ED[`(π(x))] and L? := L(π?), with π? := πf? . Formally, this an easier
problem than contextual bandits, since any algorithm with a regret bound for contextual bandits
yields a bound on the cost-sensitive classification regret (7) via online-to-batch conversion.

A classical result in statistical learning [65, 54, 59] shows that if we compute the policy/classifier
π̂ := argminπ∈Π

∑n
t=1 `t(π(xt)) that minimizes the empirical risk, we obtain a first-order regret

bound of the form2

E[L(π̂)]− L? .
√
L? · log|F|

n
+

log|F|
n

. (8)

This is an optimal first-order guarantee, but computing π̂ is typically computationally intractable,
even for relatively simple policy classes. As an alternative, the approach of plug-in classification
aims to use the realizability assumption to develop algorithms based on the more tractable primitive
of regression. Here, another classical result (e.g., Audibert and Tsybakov [8]3), shows that if we
perform least-squares via

f̂LS := argmin
f∈F

n∑
t=1

∑
a∈A

(f(xt, a)− `t(a))2,

and take π̂LS := πf̂LS
as our classifier, then under the realizability assumption we are guaranteed

E[L(π̂LS)]− L? .
√
A log|F|

n
. (9)

While this result is rate-optimal, it is not first-order, and first-order regret bounds for plug-in classifi-
cation are conspicuously absent from the literature. We show that this is fundamental.
Theorem 2 (Failure of least-squares for plug-in classification). Let A = {1, 2} and X = {1, 2}. For
every n > 108, there exists a function class F ⊆ (X ×A → [0, 1]) with |F| = 2, and a realizable

distribution D such that L? ≤ 27

n < 1, yet L(π̂LS)− L? ≥ 2−5
√

1
n with probability at least 1/10.

2Following the convention in contextual bandit literature, we focus on finite classes with |F| <∞ in this
discussion, but one can extend our observations to general classes, e.g., using the machinery of Zhang [71].

3This result is well-known in the binary setting. We are not aware of a reference for the multiclass/cost-
sensitive version here, though it is implicit in many recent works on contextual bandits.
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Since the instance in this theorem has
√

L?·A log|F|
n . 1

n , we conclude that plug-in classification
with least-squares fails to attain the first-order regret bound in (8) with constant probability; a lower
bound in expectation follows immediately.

3.1.1 Fast Rates for Plug-In Classifiers: Triangular Discrimination and Logarithmic Loss

It would appear we are at an impasse, as Theorem 2 shows that square loss regression oracles of the
type used in Foster and Rakhlin [29] are unlikely to attain first-order regret bounds on their own.
However, the plug-in classification approach is not completely doomed. All we need to do to fix this
issue is change the loss function and instead perform regression with the logarithmic loss.

To understand why plug-in least-squares fails and how it can be improved, it will be helpful to review
the key steps in the analysis leading to the rate (9).

Step 1. First, using a generic regret decomposition based on realizability, for any f we have

L(πf )− L? ≤ 2 max
π∈{πf ,π?}

ED
∣∣f(x, π(x))− f?(x, π(x))

∣∣. (10)

Step 2. Next, by Cauchy-Schwarz, for any policy π we have

ED
∣∣f(x, π(x))− f?(x, π(x))

∣∣ ≤ (ED∣∣f(x, π(x))− f?(x, π(x))
∣∣2)1/2

, (11)

which we may further upper bound by
(∑

a∈A ED
∣∣f(x, a)− f?(x, a)

∣∣2)1/2

.

Step 3. Finally, under realizability, a standard concentration argument based on Bernstein’s inequality
implies that the least-squares estimator satisfies

E

[∑
a∈A

ED
∣∣f̂LS(x, a)− f?(x, a)

∣∣2] .
A log|F|

n
. (12)

Combining this bound with Step 2, we conclude that E[L(π̂LS)]− L? ≤
√
A log|F|/n.

The issue here is that even in the presence of low noise, the squared error in (12) shrinks no faster
than 1

n . This holds even if L? ∝ 1
n , as in the lower bound construction for Theorem 2. Consequently,

once we apply Cauchy-Schwarz in Step 2, we lose all hope of attaining a first-order bound.

Our starting point toward improving this result is a refined application of Cauchy-Schwarz, by which
we can replace the right hand side of (11) with(

ED[f(x, π(x)) + f?(x, π(x))] · ED

[(
f(x, π(x))− f?(x, π(x))

)2
f(x, π(x)) + f?(x, π(x))

])1/2

. (13)

The ratio term above is closely related to the triangular discrimination, an information-theoretic
divergence measure which we define for p, q ∈ RA+ as4

D∆(p ‖ q) :=
∑
a

(pa − qa)2

pa + qa
. (14)

The triangular discrimination—also known as the symmetric χ2-divergence and Vincze-Le Cam
distance—is a fundamental, often-overlooked quantity in information theory [66, 44, 62]. Since
readers may be unfamiliar, we record some basic facts.

Proposition 1 (Topsøe [62]). The triangular discrimination D∆, over the domain ∆A, i) is the
f -divergence given by f(t) = (t−1)2

t+1 , ii) is the square of a distance metric, and iii) is equivalent (up
to a multiplicative constant) to both Hellinger distance and Jensen-Shannon divergence.

4The triangular discrimination is traditionally defined over the simplex ∆A, but for our application it is
useful to work with the entire positive orthant.
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The triangular discrimination turns out to be “just right” for our purposes, in that it is both i) large
enough to facilitate the scale-sensitive application of Cauchy-Schwarz in (13), and ii) small enough
(compared to the more standard χ2-divergence) to facilitate minimizing from samples.

Returning to (13), we can upper bound with the triangular discrimination and leverage a certain
self-bounding property that it satisfies to arrive at the following improvement on Step 1/Step 2.
Lemma 1 (Regret decomposition for triangular discrimination). For any f : X ×A → [0, 1],

L(πf )− L? ≤ 8(L? · ED[D∆(f?(x, ·) ‖ f(x, ·))])1/2
+ 17ED[D∆(f?(x, ·) ‖ f(x, ·))]. (15)

Lemma 1 shows that low triangular discrimination (i.e. ED[D∆(f?(x, ·) ‖ f(x, ·))] ∝ 1/n) suffices
for an optimal first-order regret bound. What remains is to find an estimator f̂ that minimizes this
quantity given only samples. Our key observation here is that the triangular discrimination satisfies a
refined variant of Pinsker’s inequality (originally due to Topsøe [62]), which allows us to bound it by
the Kullback-Leibler divergence:

D∆(f?(x, ·) ‖ f(x, ·)) =
∑
a

(f(x, a)− f?(x, a))2

f(x, a) + f?(x, a)
≤ 2

∑
a

dKL(f?(x, a) ‖ f(x, a)), (16)

where dKL(p ‖ q) := p log(p/q) + (1− p) log((1− p)/(1− q)) is the binary KL-divergence. Note
that the triangular discrimination is critical here, as the opposite inequality holds for χ2-divergence.
This bound suggests that we should minimize the logarithmic loss, since—under the realizability
assumption—this loss is closely related to the KL-divergence. In particular, we show (Theorem 6 in
Appendix B), that by taking the estimator

f̂KL := argmin
f∈F

n∑
t=1

∑
a∈A

`log(f(xt, a), `t(a)),

we are guaranteed that with high probability, ED
[
D∆(f?(x, ·) ‖ f̂KL(x, ·))

]
. A log|F|

n . Putting
everything together, we arrive at a first-order regret bound for the plug-in classifier π̂KL := πf̂KL

.5

Theorem 3 (First-order regret bound for plug-in classification). Let δ ∈ (0, 1). Suppose that Assump-
tion 3 holds. Then with probability at least 1− δ, we have

L(π̂KL)− L? ≤ 16

√
L? ·A (log |F|+ log(A/δ))

n
+ 68

A (log |F|+ log(A/δ))

n
.

Interestingly, applications of the triangular discrimination similar to Lemma 1 have recently been
discovered across a number of branches of mathematics, including theoretical computer science
(communication complexity lower bounds), probability, and group theory (e.g., construction of
group homomorphisms) [70, 28, 11, 53]. Additionally, Bubeck and Sellke [18] use a related
non-negative χ2-divergence to provide first-order Bayesian regret bounds for Thompson sampling
for the multi-armed bandit.

3.2 Moving to Contextual Bandits: Inverse Gap Weighting meets Triangular Discrimination

FastCB builds on the development for plug-in classifiers in Section 3.1 but with two key differences.
First, since we need to make decisions on the fly for arbitrary sequences of contexts, the algorithm es-
timates losses using an online regression oracle for the logarithmic loss, as described in Assumption 2.
Second, and more importantly, since the algorithm receives partial feedback, the strategy for selecting
actions is critical. Here our main technical result shows that the reweighted inverse gap weighting
strategy (5) satisfies a certain per-round inequality that links the instantaneous contextual bandit error
to the triangular discrimination between the oracle’s prediction ŷt and the true loss function f?.
Theorem 4 (First-order per-round inequality). Let y ∈ [0, 1]A be given and b ∈ argmina ya. Define
pa = yb

Ayb+γ(ya−yb) for a 6= b, and pb = 1 −
∑
a6=b pa. If γ ≥ 2A, then for all f ∈ [0, 1]A and

a? ∈ argmina fa, we have∑
a

pa(fa − fa?)︸ ︷︷ ︸
CB regret

≤ 5A

γ

∑
a

pafa︸ ︷︷ ︸
bias from exploring

+ 7γ
∑
a

pa
(ya − fa)2

ya + fa︸ ︷︷ ︸
error from exploiting

. (17)

5The dependence on A in this result can be improved under additional assumptions on the loss distribution.
As an example, in Appendix B we remove the leading A factor for the special case of multiclass classification.
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The inequality (17) may be thought of as an algorithmic analogue of the refined Cauchy-Schwarz
lemma (15), with the learning rate γ modulating the tradeoff between exploration and exploitation.
Applying the inequality for each step t (with p = pt, y = ŷt(xt, ·), and f = f?(xt, ·)), and using the
Pinsker-type inequality (16), we are guaranteed that

E[RegCB(T )] ≤ 5A

γ
E[LT ] + 14γ ·RegKL(T ), (18)

where LT :=
∑T
t=1 `t(at). By a standard argument, this implies the main result in Theorem 1.

Compared to the per-round inequality used to analyze the original version of SquareCB in Foster and
Rakhlin [29], the main improvement given by Theorem 4 is that, by reweighting—which leads to less
exploration when the optimal loss is small—we are able to replace a constant exploration bias of order
A
γ incurred by SquareCB with the scale-sensitive bias term A

γ ·
∑
a pafa in (17), leading to a first-order

bound. The price for this improvement is that we must now minimize the triangular discrimination
rather than the squared error used by SquareCB, but this is taken care of by the log loss oracle.

4 Examples

In this section we take advantage of the extensive literature on regression with the logarithmic loss
[25, 67, 40, 37, 52, 55, 33, 48] and instantiate Theorem 1 to give provable and efficient first-order
regret bounds for a number of function classes of interest. To the best of our knowledge, our results
are new for each of these special cases.
Example 1 (Finite function classes). If F is a finite class, Vovk’s aggregating algorithm [67]
guarantees that6 RegKL(T ) ≤ log|F|. With this choice, FastCB satisfies E[RegCB(T )] ≤
O
(√

L? ·A log|F|+A log|F|
)
.

Example 2 (Low-dimensional linear functions). Suppose that F takes the form F =
{(x, a) 7→ 〈w, φ(x, a)〉 | w ∈ ∆d}, where φ(x, a) ∈ Rd+ is a fixed feature map with ‖φ(x, a)‖∞ ≤ 1.
Then the continuous exponential weights algorithm ensures that RegKL(T ) ≤ O(d log(T/d)), and
can be implemented in poly(d, T ) time per step using log-concave sampling [25, 40].7 With this
choice, FastCB satisfies E[RegCB(T )] ≤ O

(√
L? ·Ad log(T/d) +Ad log(T/d)

)
.

Beyond attaining first-order regret, the bound in this example is minimax optimal when the number
of actions is constant [46]. A natural direction for future work is to extend the result to large action
spaces. Another more practical choice for the oracle in this setting is the algorithm of Luo et al. [48],
which has slightly worse regret RegKL(T ) ≤ Õ(d2), but runs in time O(Td2.5) per step.

While first-order regret bounds for contextual bandits have primarily been investigated for finite
classes prior to this work, an advantage of working within the regression oracle framework is that we
can easily lift our first-order guarantees to rich, nonparametric function classes.
Example 3 (High/infinite-dimensional linear functions). Suppose that F takes the form F ={

(x, a) 7→ 1
2 (1 + 〈w, φ(x, a)〉) | ‖w‖2 ≤ 1

}
, where ‖φ(x, a)‖2 ≤ 1 is a fixed feature map. For this

setting, Rakhlin and Sridharan [55, Section 6.1] show that the FTRL algorithm with log-barrier
regularization has8 RegKL(T ) ≤ O(

√
T log(T )). This algorithm can be implemented in timeO(d)

per step, and satisfies the dimension-independent rate E[RegCB(T )] ≤ O
(
(AL?)1/2T 1/4 +A

√
T
)
.

Let us interpret the bound in Example 3. First, we recall that the minimax optimal rate for this setting
is A1/2T 3/4, which the bound above always achieves in the worst case [1, 29]; this “worse-than-

√
T ”

rate is the price we pay for working with an expressive function class. On the other hand, if L? is
constant, the bound in Example 3 improves to O(A

√
T ), which beats the worst-case rate. While one

might hope that a tighter rate of the form, e.g., (L?)3/4, might be possible, by adapting a lower bound
in Srebro et al. [59, Section 4], one can show that this result cannot be improved.

Lastly, we highlight that the logarithmic loss is well-suited to generalized linear models.
6See Proposition 6 for a proof that the loss `log(ŷ, y) is mixable over the domain [0, 1].
7Our setup directly reduces to universal portfolio selection as follows: When yt is binary, we reduce by using

features φ(xt, at) when yt = 1, and using features 1d − φ(xt, at) when yt = 0. The case where yt ∈ [0, 1]
can be reduced to this setting by sampling from Ber(yt).

8This is technically only proven for the case where y ∈ {0, 1}, but the proof easily extends to y ∈ [0, 1].
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Example 4 (Generalized linear models). Let F =
{

(x, a) 7→ σ(〈w, φ(x, a)〉) | w ∈ Rd, ‖w‖2 ≤ 1
}

,
where σ(t) = 1/(1 + e−t) is the logistic link function and φ(x, a) is a fixed feature map. In this
case, the map w 7→ `log(σ(〈w, φ(x, a)〉), y) is equivalent to the standard logistic loss function
applied to 〈w, φ(x, a)〉, and we can use the algorithm from Foster et al. [33] to obtain RegKL(T ) ≤
O(d log(T/d)) and RegCB(T ) ≤ Õ(

√
L? ·Ad+Ad).

Beyond the algorithmic examples above, for general function classes Bilodeau et al. [14] provide
a tight characterization for the minimax optimal rates for online regression with the logarithmic loss
in terms of sequential covering numbers [55] for the class F . We can use this result in tandem with
Theorem 1 to give new regret bounds for general classes.

5 Experiments

We compared the performance of FastCB to that of the de-facto alternative, SquareCB [29] in the
large-scale contextual bandit evaluation suite (“bake-off”) of Bietti et al. [13]. We found that FastCB
typically enjoys improved performance, particularly on datasets where the optimal loss L? is small.
As a secondary observation, we found that using generalized linear models with the logarithmic
loss rather than a linear model with the square loss (as in prior work [13, 35]) leads to substantial
improvements, even without changing the SquareCB allocation rule. We summarize results here;
further details are given in Appendix E.

Datasets. The contextual bandit bake-off is a collection of over 500 multiclass, multilabel, and
cost-sensitive classification datasets available on the openml.org platform [64]. The collection
was introduced in Bietti et al. [13] for the purpose of benchmarking oracle-based contextual bandit
algorithms. Following Bietti et al. [13], we use the multiclass classification datasets from the
collection (each context x has a “correct” label y associated with it) to simulate bandit feedback by
assigning loss 0 if the learner predicts the correct label and 1 otherwise.

Algorithms and oracle. We use the standard implementation of SquareCB in the Vowpal Wabbit
(VW) online learning library,9 as used by Foster et al. [35]. We also implement FastCB in VW.

For both algorithms, we instantiate the oracle as performing online logistic regression with a
fixed dataset-dependent feature map. This choice is convenient because i) it naturally produces
predictions in [0, 1], as required by FastCB, and ii), it formally meets our oracle requirements, since it
is equivalent to online log loss regression with a generalized linear model. It can also be viewed as an
admissible online square loss oracle, as required by SquareCB (see Appendix E for further discussion).
We additionally instantiate SquareCB with a linear model and the square loss, which was shown to be
the strongest non-adaptive method in prior evaluations [35]. We do not compare with high-performing
adaptive algorithms like RegCB and AdaCB [13, 35] as these algorithmic modifications are somewhat
complementary, and we expect they can be incorporated into FastCB. All oracles are trained with the
default VW learning rule, which performs online gradient descent with adaptive updates [27, 41, 56].

For both FastCB and SquareCB, we apply inverse gap weighting (the reweighted and original version,
respectively) with a time-varying learning rate schedule in which we set γ = γt in Line 6 of
Algorithm 1 at round t, and likewise for SquareCB. Following Foster et al. [35], we set γt = γ0t

ρ,
where γ0 ∈ {10, 50, 100, 400, 700, 103} and ρ ∈ {.25, .5} are hyperparameters.

Evaluation. We evaluate the performance of each algorithm using progressive validation (PV)
loss, defined as LPV(T ) = 1

T

∑T
t=1 `t(at) [15]. Following Bietti et al. [13], we define a given

algorithm as beating another algorithm significantly on a given dataset using an approximate Z-test.
For each pair (a, b) of algorithms, Figure 1 (top row) displays the number of datasets where a beats
b significantly, minus the number of datasets where b beats a significantly. Figure 1 (bottom row)
shows the progressive validation loss for the best-performing hyperparameter configuration for each
algorithm as a function of the number of examples. We consider 10 replicates for each dataset, where
each replicate has the example order randomly permuted, and plot the average progressive validation
loss across the replicates. Error bands in each plot correspond to significance p < 0.05 under the
Z-test (cf. (41)). See Appendix E for details.

Results. We find (Figure 1, top row) that FastCB with the logistic loss oracle (FastCB.L) has
a positive win-loss difference against SquareCB with both logistic and square loss oracles

9https://vowpalwabbit.org
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↓ vs→ S.S S.L F.L
SquareCB.S - -55 -66
SquareCB.L 55 - -11
FastCB.L 66 11 -

↓ vs→ S.S S.L F.L
SquareCB.S - -54 -64
SquareCB.L 54 - -3
FastCB.L 64 3 -
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Figure 1: Top: Head-to-head win-loss differences. Each entry indicates the statistically significant win-
loss difference between the row algorithm and the column algorithm. Top-Left: All hyperparameters
are optimized on each dataset. Top-Right: Best fixed hyperparameter configuration across all datasets;
only the oracle’s learning rate is optimized per-dataset. Bottom: Progressive validation results for
representative datasets depicting significant wins for FastCB.L (left, center) and a loss (right).

(SquareCB.L/SquareCB.S), indicating the strongest overall performance. This holds both when hyper-
parameters are optimized on a per-dataset basis and for the best global hyperparameter configuration.

Perhaps surprisingly, our results suggest that the largest gains come from switching from the square
loss oracle to the logistic loss oracle (SquareCB.S vs. SquareCB.L), while the gains from switching
from the original inverse gap weighting strategy to our reweighted version (SquareCB.L vs. FastCB.L)
are more marginal. Inspecting the results in more detail, we find that when we compare FastCB.L and
SquareCB.L with hyperparameters optimized on a per-dataset basis, FastCB.L wins on 14/17 of the
datasets in which either algorithm wins significantly, and that all but two of these 14 datasets have
L? ≤ 0.2. This suggests that the reweighted inverse gap weighting strategy is indeed helpful when
L? is small. Figure 1 (bottom row) displays progressive validation performance for FastCB.L and
SquareCB.L for three representative datasets which illustrate this phenomenon.

The fact that FastCB.L does not strictly improve over SquareCB.L on every dataset, in spite of being
very similar, might be attributed to the fact that the constants in the per-round inequality (17) are worse
than those in the corresponding inequality for SquareCB.L, suggesting worse performance when L? is
not small. Thus, a fruitful future direction might be to find a strategy with optimal constants for (17).

6 Discussion

We have given the first efficient algorithm with optimal first-order regret for contextual bandits,
resolving a variant of the open problem posed by Agarwal et al. [5]. Let us briefly mention some
extensions. First, we believe that our techniques can also be used to obtain first-order guarantees for
stochastic contextual bandits with an offline log loss oracle (à la Simchi-Levi and Xu [58])—albeit
with a more technical analysis. As another extension, in Appendix D we show how to use our method
to efficiently obtain a first-order regret bound when working with rewards rather than losses. Such
a guarantee is useful when no policy accumulates much reward, as is common in personalization
applications. Several other extensions appear to be straightforward, including accommodating infinite
action spaces [34].

We close with some directions for future work. Directly relevant to our theoretical results is to
continue the investigation into adaptivity in contextual bandits and reinforcement learning. More
broadly, while triangular discrimination has been used in various mathematics disciplines, we are not
aware of many applications in algorithm design. Are there other uses for the triangular discrimination
in machine learning? We look forward to pursuing these directions.
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A Further Related Work

First-order regret bounds have a long history throughout statistical learning [65, 54, 59], online
learning [36, 10, 21, 22, 47, 42, 30], and bandits [7, 31, 5, 49, 6]. Below we highlight some of the
most relevant lines of work.

Statistical learning and plug-in classification. Beginning with the work of Vapnik and Chervo-
nenkis [65] for VC classes, classical work in statistical learning [54, 59] provides first-order regret
(or, excess risk) bounds for empirical risk minimization which, in our setting, corresponds to the
(typically intractable) policy optimization problem argminπ∈Π

∑T
t=1 `t(π(xt)). These results are

also sometimes referred to as relative deviation bounds.

In the realizable setting (i.e., under Assumption 1), the process of fitting a model f̂ for the losses
using regression and then performing classification with the induced classifier πf̂ is often referred to
as plug-in classification [69, 8, 26]. While these works establish worst-case optimal guarantees for
plug-in classifiers, first-order regret bounds are—to the best of our knowledge—unexplored, and our
observations regarding the suboptimality of least-squares and optimality of log loss regression are
new.

Bandits. First-order regret bounds for multi-armed bandits appear in Allenberg et al. [7] (see also
Foster et al. [31], Bubeck and Sellke [18]), and have been extended to the semi-bandit framework
[50, 49] and linear bandits [39]. For contextual bandits, Agarwal et al. [5] show that many common
algorithms fall short of achieving first-order regret, and we are not aware of any optimal first-order
algorithms outside the solution of Allen-Zhu et al. [6], even if one disregards efficiency or considers
additional assumptions such as realizability.

On the technical side, Bubeck and Sellke [18] provide first-order regret bounds for Thompson
sampling for the multi-armed bandit in the Bayesian setting. Their approach takes advantage of
a certain nonnegative χ2-divergence which is closely related to the triangular discrimination we
work with. Curiously, their analysis uses this divergence to measure distance between (posterior)
distributions over actions, whereas we use the triangular discrimination to measure distance between
regression functions. It would be interesting to understand whether there are deeper (e.g., primal-dual)
connections between these approaches.

Fast rates under margin/gap conditions. Another line of work on plug-in classifiers aims for
faster rates under various margin assumptions, and—similar to our work—observes that least-squares
can be suboptimal in certain settings [8]. Fast rates based on margin conditions are distinct from
first-order bounds (neither type of bound implies the other in general), but it would be interesting
to understand their relationship more closely. Recent work [35] extends these developments to
contextual bandits and provides logarithmic regret bounds based on similar gap/margin conditions.
As in statistical learning, these types of guarantees are incomparable to first-order regret bounds.

Heteroscedastic regression. Our observations regarding suboptimality of least-squares for plug-in
classification are also closely related to regression with heteroscedastic noise (Carroll [19]; Takeshi
[60, Chapter 6]). Consider a regression setting where we receive variables {(xi, yi)}ni=1 i.i.d., with
yi = f?(xi) + εi for some f? ∈ F , where E[εi | xi] = 0, and our goal is to produce an estimator
such that the L1-error E|f̂(x) − f?(x)| is small. In the heteroscedastic model, the noise variance
σ2
x := E[ε2

i | xi = x] may vary as a function of x. Using the same construction as Theorem 2, one
can show that standard least-squares incurs error scaling with the worst-case variance supx σ

2
x, while,

if the variances were known, weighted least-squares with weights wx := 1/σ2
x would yield error

scaling with the more favorable average variance E
[
σ2
x

]
. Key to our results is that for responses in

[0, B], we have E
[
σ2
x

]
≤ B · E[f?(x)] and, as we show, the logarithmic loss achieves error scaling

with the latter quantity without knowledge of the variances. We mention in passing that regression
with heteroscedastic noise has found recent use in the context of reinforcement learning with linear
function approximation [73, 72].
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B Proofs for Plug-In Classification Results (Section 3.1)

B.1 Proof of Theorem 2

Theorem 2 (Failure of least-squares for plug-in classification). Let A = {1, 2} and X = {1, 2}. For
every n > 108, there exists a function class F ⊆ (X ×A → [0, 1]) with |F| = 2, and a realizable

distribution D such that L? ≤ 27

n < 1, yet L(π̂LS)− L? ≥ 2−5
√

1
n with probability at least 1/10.

Proof. Let L̂LS(f) = 1
n

∑n
t=1

∑
a∈A(f(xt, a)− `t(a))2 be the empirical square loss, so that f̂LS =

argminf∈F L̂LS(f). We adopt the shorthand εn = 1/n throughout the proof.

Construction. We define X =
{
x(1), x(2)

}
and A =

{
a(1), a(2)

}
, so that there are only two

possible contexts and actions.

The data-generating process for our construction has three parameters, µn, νn, and pn. We choose
PD(x = x(1)) = 1− pn, and define f? and the conditional loss distribution as follows:

• f?(x(1), a(1)) = µn and f?(x(1), a(2)) = νn, where µn < νn. We choose `(a(1)) ∼
Ber(µn) | x(1) and `(a(2)) = νn a.s. | x(1).

• f?(x(2), a(1)) = f?(x(2), a(2)) = 1
2 . We choose `(a(1)) ∼ Ber( 1

2 ) | x(2) and `(a(2)) =
1
2 a.s. | a(2).

We take F = {f?, f̃}, where f̃ will be fully specified in the sequel, but is chosen to satisfy
f̃(x, a(2)) = f?(x, a(2)) for all x. This, combined with the fact that `(a(2)) is deterministic condi-
tioned on x, means that our analysis will only concern the realized outcomes for `(a(1)).

The high level idea for our construction is to set pn, µn ∝ εn = 1/n, which ensures that L? ≤
(1 − pn)µn + pn . 1

n , then show that if we choose f̃(·, a(1)) ≈ (
√
εn, 0), we have f̂LS = f̃ with

constant probability. We then choose νn ≈
√
εn/2, which implies that πf̃ (x(1)) = a(2) 6= π?(x(1)),

and consequently

L(π̂LS) = L(πf̃ ) & (1− pn) · f?(x(1), πf̃ (x(1))) = (1− pn) · νn &
√
εn.

We make this approach formal below.

Bad event. Let n1 and n2 be the number of examples for which x = x(1) and x = x(2). Let
n1(0) and n1(1) be the number of examples for which x = x(1) and `(a(1)) = 0 or `(a(1)) = 1,
respectively, and let n2(0) and n2(1) be defined likewise. We restrict to n ≥ 4 going forward so that
εn ≤ 1/4.

Let µ̂1 = 1
n1

∑
i:xi=x(1) `(a(1)) (whenever n1 > 0), and let µ̂2 be defined likewise.

We prove the following proposition, which states that a certain event that is unfavorable for the
least-squares estimator occurs with constant probability.
Proposition 2. Let n ≥ 256. Then if we set pn = εn and µn = 27εn, the following event holds with
probability at least 1/10.

1. n2 = n2(0) = 1, and in particular µ̂2 = 0.

2. n1 ≥ 3
8n.

3. µ̂1 ≤ 3
2µn.

Going forward, we adopt the parameter setting in Proposition 2 and condition on the event in the
proposition, which we denote by E . Note that this parameter setting ensures that

L? = (1− εn)f?(x(1), a(1)) + εnf
?(x(2), a(1)) = (1− εn)µn +

εn
2
≤ 28εn,

as long as µn < νn.
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Lower bound under the bad event. Next, we observe that for both f ∈ F , since f(x, a(2))
perfectly predicts `(a(2)) for all x, we have

L̂LS(f) ≡ n1

n
(f(x(1), a(1))− µ̂1)2 +

n2

n
(f(x(2), a(1))− µ̂2)2,

up to additive noise that depends only on the realization of the dataset, not on the function f under
consideration. Since our argument only depends on the relative value of L̂LS, we identify L̂LS with
this representation going forward. We first observe that conditioned by Proposition 2 (Item 1), we
have µ̂2 = 0, so that

L̂LS(f?) ≥ n2

n
(f?(x(2), a(1))− µ̂2)2 = εn · (f?(x(2), a(1)))2 =

εn
4
.

Here we use that n2 = 1 under the bad event and that εn = 1/n. On the other hand, if we set
f̃(x(2), a(1)) = 0, we have

L̂LS(f̃) =
n1

n
(f̃(x(1), a(1))− µ̂1)2 ≤ 2(f̃(x(1), a(1)))2 + 2µ̂2

1

≤ 2(f̃(x(1), a(1)))2 + 23µ2
n

≤ 2(f̃(x(1), a(1)))2 + 217ε2
n,

where we have used Proposition 2 (Item 3). Note that as long as εn < 2−20, we have 217ε2
n < εn/8.

If this is satisfied, then by choosing f̃(x(1), a(1)) =
√
εn/16, we have

L̂LS(f̃) <
εn
4
≤ L̂LS(f?),

and we conclude that f̂LS = f̃ 6= f? whenever E occurs.

To conclude, we set νn =
√
εn/8. Since f̃(x(1), a(2)) = νn, we have f̃(x(1), a(2)) < f̃(x(1), a(1)),

so that πf̃ (x(1)) = a(2) 6= π?(x(1)); this choice satisfies µn < νn as required as long as εn < 2−20.
Finally, we observe that

L(πf̃ )− L? = (1− εn)(νn − µn) ≥ 1

2
(
√
εn/8− 27εn) > 2−5√εn,

as long as εn < 2−22.

Proof of Proposition 2. Let E1, E2, and E3 denote the respective events in Proposition 2. We lower
bound their probabilities one by one.

Event E1. We calculate

P(n2 = 1) =

n∑
i=1

εn · (1− εn)n−1 =
1

1− εn
(1− εn)1/εn ≥ e−1,

where we have used that (1 − 1/x)x ≥ e−1(1 − 1/x) for x ≥ 1. Hence, since `(a(1)) ∼ Ber( 1
2 )

given x(2), E1 happens with probability at least 1− δ1 for δ1 := 1− e−1/2.

Event E2. We recall a standard multiplicative variant of the Chernoff bound.

Lemma 2 (Chernoff bound (e.g., Boucheron et al. [16])). Let Yi ∼ Ber(µ) i.i.d.. Then for any
x ∈ [0, 1/2],

P

(
n∑
i=1

Yi ≥ (1 + x)µn

)
∨ P

(
n∑
i=1

Yi ≤ (1− x)µn

)
≤ e− 1

4x
2µn.

As long as pn = 1/n ≤ 1/4, Lemma 2 implies that n1 ≥ 3n
8 with probability at least 1− e− 3n

64 =:
1− δ2, so that event E2 holds.
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Event E3. We observe that conditioned on the realization of x1, . . . , xn, Lemma 2 implies that

µ̂1 ≤
3

2
µn

with probability at least 1− e− 1
16µnn1 . Conditioned on E2, this probability is at least 1− e− 3

128µnn.
Since µn = 128/n, which is admissible whenever n ≥ 256, we conclude that E3 holds with
probability at least 1− e−3 =: 1− δ3 given E2.

Wrapping up. Taking a union bound, we have that E =
⋃3
i=1 Ei occurs with probability at least

1−
∑3
i=1 δi ≥ e−1/2− e−12 − e−3 ≥ 1/10.

B.2 Proof of Theorem 3

B.2.1 Overview of Results

Recall that we work in the plug-in classification setting of Section 3.1, where X is the feature/context
space, A is the label/action space, and D is the joint distribution over context-loss pairs (x, `). We
take a class of regression functions F ⊆ (X × A → [0, 1]) as a given and make the following
realizability assumption.
Assumption 3. Define f?(x, a) = ED[`(a) | x]. We assume f? ∈ F .

Under realizability, the optimal classifier is π?(x) := argmina∈A f
?(x, a), and we have L(π) =

E[f?(x, π(x))]. Motivated by realizability, the plug-in approach to classification finds and estimator
f̂ ∈ F and returns the induced classifier π̂(x) := argmina∈A f̂(x, a). In this section, we estimate
the losses using the following log loss regression problem.

f̂KL ← argmin
f∈F

1

n

n∑
i=1

∑
a∈A

`i(a) log(1/f(xi, a)) + (1− `i(a)) log(1/(1− f(xi, a))). (19)

For the resulting classifier π̂KL := πf̂KL
, we prove the following theorem.

Theorem 3 (First-order regret bound for plug-in classification). Let δ ∈ (0, 1). Suppose that Assump-
tion 3 holds. Then with probability at least 1− δ, we have

L(π̂KL)− L? ≤ 16

√
L? ·A (log |F|+ log(A/δ))

n
+ 68

A (log |F|+ log(A/δ))

n
.

Multiclass classification. We also provide a refinement of Theorem 3 for the important special
case of multiclass classification. Here, rather than observing a cost function ` ∈ [0, 1]A we simply
observe a label y ∈ A and the goal is to predict the correct label. Formally, the distribution D is
supported on X ×A and we measure the error of a classifier as err(π) := PD[π(x) 6= y]. This can
be seen as a special case of cost-sensitive classification by defining loss function `(a) = 1{a 6= y},
and the realizability assumption is as before, so that f?(x, a) = PD[a 6= y | x].

In this setting, rather than reducing to Bernoulli MLE, it is more natural to reduce to multinomial
MLE. Since our function class is designed to predict the probability that a given action is wrong (that
is, PD[y = a | x] = 1− f?(x, a)), the multinomial MLE problem is

f̂KL ← argmax
f∈F

1

n

n∑
i=1

log(1− f(xi, yi)).

The resulting policy is π̂KL := argmina f̂KL(x, a), for which we establish the following guarantee.
Theorem 5. Let δ ∈ (0, 1) and consider the multiclass classification setting under Assumption 3.
Then with probability at least 1− δ,

err(π̂KL)− err(π?) ≤ 8

√
err(π?) · 2 log(|F|/δ)

n
+ 34

log(|F|/δ)
n

.

Compared to Theorem 3, we see that by working in the simpler multiclass classification setting, we
can remove the dependence on A from the theorem.
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B.2.2 Preliminaries

For discrete distributions p, q ∈ ∆A, the Hellinger distance is defined as

D2
H(p ‖ q) =

1

2

∑
a

(
√
pa −

√
qa)2.

For scalars p, q ∈ [0, 1] we overload notation and interpret D2
H(p ‖ q) ≡ D2

H((p, 1− p) ‖ (q, 1− q))
as the Hellinger divergence between the implied Bernoulli distributions. We similarly overload
D∆(p ‖ q) ≡ D∆((p, 1− p) ‖(q, 1− q)) as the Bernoulli triangular discrimination when given
scalar arguments.

The following useful results relate Hellinger distance to the triangular discrimination for Bernoulli
distributions and to a related quantity for multinomial distributions.

Proposition 3. For all p, q ∈ [0, 1], we have

D2
H(p ‖ q) ≥ 1

4
D∆(p ‖ q) ≥ 1

4

(p− q)2

(p+ q)
.

Proposition 4. Let p, q ∈ ∆(A) be probability mass functions. Then

max
a∈A

(pa − qa)2

(1− pa) + (1− qa)
≤ 4D2

H(p ‖ q).

B.2.3 Proof of Theorem 3 and Theorem 5

We focus on proving Theorem 3 and provide a sketch for Theorem 5, which is quite similar. For the
former, the core of the argument is a generalization guarantee for f̂KL.

Theorem 6. Under the conditions of Theorem 3, with probability at least 1− δ, we have

ED

[∑
a∈A

(f̂KL(x, a)− f?(x, a))2

f̂KL(x, a) + f?(x, a)

]
≤ 4A (log |F|+ log(A/δ))

n
. (20)

Theorem 6 builds on classical convergence results for maximum-likelihood estimators in well-
specified settings, which provide bounds of the form

ED
[
D2

H(f̂KL(x, a) ‖ f?(x, a))
]
≤ O

(
log(|F|/δ)

n

)
for any fixed action [cf. 63, 71]. Theorem 6 follows quickly from this classical analysis by applying
Proposition 3, which shows that the Hellinger divergence between Bernoulli distributions upper
bounds the triangular discrimination that appears on the left-hand side of (20).

Theorem 3 immediately follows by combining Theorem 6 with the refined Cauchy-Schwarz lemma
(Lemma 1) which we restate and prove here.

Lemma 1 (Regret decomposition for triangular discrimination). For any f : X ×A → [0, 1],

L(πf )− L? ≤ 8(L? · ED[D∆(f?(x, ·) ‖ f(x, ·))])1/2
+ 17ED[D∆(f?(x, ·) ‖ f(x, ·))]. (15)

Proof of Lemma 1. Let f ∈ F be fixed. We first state a simple technical lemma.

Lemma 3. For any function f ∈ F and policy π : X → A,

ED[f?(x, π(x)) + f(x, π(x))] ≤ ED[D∆(f?(x, ·) ‖ f(x, ·))] + 4L(π).

Going forward, define γ(x, a) := f?(x, a)− f(x, a) and s(x, a) := f?(x, a) + f(x, a), and ∆ :=
ED[D∆(f?(x, ·) ‖ f(x, ·))]. Let us adopt the shorthand E ≡ ED. We proceed to bound the cost-
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sensitive regret:
L(πf )− L(π?) ≤ E[f?(x, πf (x))− f(x, πf (x)) + f(x, π?(x))− f?(x, π?(x))]

≤ E

[√
max{s(x, πf (x)), s(x, π?(x))}
max{s(x, πf (x)), s(x, π?(x))}

· (|γ(x, πf (x))|+ |γ(x, π?(x))|)

]

≤
√
E[max{s(x, πf (x)), s(x, π?(x))}] ·

 ∑
π∈{πf ,π?}

√
E
[

|γ(x, π(x))|2
max{s(x, πf (x)), s(x, π?(x))}

]
≤
√

E[s(x, πf (x)) + s(x, π?(x)))] ·

(√
E
[
γ(x, πf (x))2

s(x, πf (x))

]
+

√
E
[
γ(x, π?(x))2

s(x, π?(x))

])

≤
√

E[(s(x, πf (x)) + s(x, π?(x)))] · 2
√
E
[∑
a

γ(x, a)2

s(x, a)

]
=
√

E[(s(x, πf (x)) + s(x, π?(x)))] · 2
√

∆.

Here, the first inequality uses that f(x, πf (x)) ≤ f(x, π?(x)) by the definition of πf . The second
inequality introduces the s and γ quantities, while the third follows from Cauchy-Schwarz. In the
fourth we use that s(x, πf (x)) ≤ max{s(x, πf (x)), s(x, π?(x))} and analogously for π?. Finally
we sum over all actions to eliminate the dependence on the policies to introduce the triangular
discrimination ∆. Applying Lemma 3, we additionally observe that

E [s(x, πf (x)) + s(x, π?(x))] ≤ 2∆ + 4 (L(πf ) + L(π?)) .

After applying standard simplifications, this yields

L(πf )− L(π?) ≤ 2
√

∆ ·
√

2∆ + 4(L(πf ) + L(π?)) ≤ 2
√

2∆ + 4
√
L(π?)∆ + 4

√
L(πf )∆

(21)

≤ 6
√

2∆ + (L(πf ) + L(π?))/2.

Re-arranging, we deduce that L(πf ) ≤ 12
√

2∆ + 3L(π?), and plugging this back into the first
inequality in (21) gives

L(πf )− L(π?) ≤ 2
√

∆ ·
√

2∆ + 4(L(πf ) + L(π?)) ≤ 2
√

∆ ·
√

(2 + 48
√

2)∆ + 16L(π?)

≤ 8
√
L(π?)∆ + 17∆.

Proof sketch for Theorem 5. The majority of the calculations in this proof are very similar to
those of Theorem 3, so we highlight the two main differences. First, rather than use the triangular
discrimination-type bound in Theorem 6, we use a Hellinger bound on the maximum likelihood
estimate of the multinomial parameters. Specifically, using essentially the same argument as in Theo-
rem 6, we can prove that with probability at least 1− δ,

ED
[
D2

H(p̂(· | x) ‖ p?(· | x))
]
≤ 2 log |F|/δ

n
,

where p?(· | x) := PD[y = · | x] = 1− f?(x, ·) and p̂(· | x) := 1− f̂KL(x, ·).

The second change concerns the way we bound the quantity

(f̂KL(x, π(x))− f?(x, π(x)))2/(f̂KL(x, π(x)) + f?(x, π(x))),

which is done throughout the proof of Lemma 1. Rather than naively introduce a sum over all actions
as was done previously, we instead apply Proposition 4, which relates the multinomial Hellinger
divergence to the triangular discrimination-type quantity above. As a result, for any policy π we have

ED

[
f̂KL(x, π(x))− f?(x, π(x)))2

f̂KL(x, π(x)) + f?(x, π(x))

]
= ED

[
(p?(π(x) | x)− p̂(π(x) | x))

2

(1− p?(π(x) | x)) + (1− p̂(π(x) | x))

]
≤ 2ED

[
D2

H(p̂(· | x) ‖ p?(· | x))
]
.

All other calculations are unaffected.
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B.2.4 Proofs for Supporting Results

Proof of Proposition 3. Observe that we can write

D2
H(p ‖ q) =

1

2
(
√
p−√q)2 +

1

2
(
√

1− p−
√

1− q)2.

For each of these terms, we create a difference of squares as follows

(
√
x−√y)2 =

(x− y)2

(
√
x+
√
y)2
≥ (x− y)2

2(x+ y)
,

where the last inequality uses the fact that 2
√
xy ≤ x + y. Applying this argument to both terms

yields the result.

Proof of Proposition 4. This is an immediate consequence of the data processing inequality for
Hellinger divergence and Proposition 3. Indeed, by data processing, we have

D2
H(p ‖ q) ≥ D2

H((pa, 1− pa) ‖ (qa, 1− qa)),

since the latter is the distribution of the random variable Y := 1{X = a} when X ∼ p (resp. q).
Now that we have passed to the Bernoulli Hellinger divergence, we simply apply Proposition 3 and
drop one of the two terms.

Proof of Theorem 6. The initial steps of this proof parallel the classical analysis of maximum
likelihood estimators [see, e.g., 71]. We start by establishing a symmetrization inequality. Let
D := {(xi, `i)}ni=1 and D′ := {(x′i, `′i)}ni=1 denote two i.i.d. datasets of n examples, let C(f,D)

be any function of a regression function f and dataset D, and let f̂ be any estimator that takes the
dataset D and outputs a function in F . We first show that

ED
[
exp
(
C(f̂(D), D)− logED′

[
exp(C(f̂(D), D′)

])
− log |F|)

]
≤ 1. (22)

This is a symmetrization inequality because it relates the “training error” C(f̂(D), D) to the error
C(f̂(D), D′) measured on the “ghost sample” D′. The unusual form of the expression involving the
ghost sample is to accommodate the fact that C may be unbounded.

To prove (22), let µ denote the uniform distribution over F , and observe that for any distribution
µ̂ ∈ ∆(F) and any function g : F → R, we have∑

f∈F

µ̂(f)g(f) ≤ max
f∈F

g(f) ≤ log
∑
f∈F

exp(g(f)) = log (Ef∼µ exp(g(f))) + log |F|.

Now for any D we take µ̂(f) := 1{f = f̂(D)} and g(f) := C(f,D)− logED′ exp(C(f,D′)) to
obtain

C(f̂(D), D)− logED′ exp(C(f̂(D), D′)) ≤ log

(
Ef∼µ

exp(C(f,D))

ED′ exp(C(f,D′))

)
+ log |F|.

We will exponentiate this inequality and take expectation over the initial dataset D. When we do this,
the first term on the right-hand side simplifies to

ED exp

(
log

(
Ef∼µ

[
exp(C(f,D))

ED′ exp(C(f,D′))

]))
= Ef∼µ

[
ED exp(C(f,D))

ED′ exp(C(f,D′))

]
= 1.

Re-arranging, we obtain (22). With the exponential moment bound in (22), a standard application of
the Chernoff method yields that for any δ ∈ (0, 1) with probability at least 1− δ we have

− logED′ exp(C(f̂(D), D′)) ≤ −C(f̂(D), D) + log |F|+ log(1/δ).

This high-probability bound holds for any fixed functional C. To apply it, for each a ∈ A, we define

Ca(f,D) := −1

2

n∑
i=1

`i(a) log(f?(xi, a)/f(xi, a)) + (1− `i(a)) log((1− f?(xi, a))/(1− f(xi, a))),
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where `i(a) is defined as in (19). We apply the bound for each Ca, then take a union bound over all
a ∈ A and sum up the resulting inequalities, which gives that with probability at least 1− δ,∑

a∈A
− logED′ exp(Ca(f̂(D), D′)) ≤

∑
a∈A
−Ca(f̂(D), D) +A (log |F|+ log(A/δ)) .

We will apply this inequality with f̂KL, which is the maximum likelihood estimate. Then, since
f? ∈ F and f̂KL minimizes the log loss, we have that

∑
a−Ca(f̂KL(D), D) ≤ 0. On the other hand,

for each action a ∈ A, the corresponding term on the left-hand side can be simplified to

− logED′ exp

(
−1

2

n∑
i=1

(
`′i(a) log

f?(x′i, a)

f̂KL(x′i, a)
+ (1− `′i(a)) log

1− f?(x′i, a)

1− f̂KL(x′i, a)

))

Now, let y′i(a) ∼ Ber(`′i(a)). Then by Jensen’s inequality, we have

≥ − n logEx′,`′ Ey′|`′ exp

(
−1

2

(
y′(a) log

f?(x′, a)

f̂KL(x′, a)
+ (1− y′(a)) log

1− f?(x′, a)

1− f̂KL(x′, a)

))

= −n logEx′,`′ Ey′|`′

( f?(x′, a)

f̂KL(x′, a)

)−y′(a)/2(
1− f?(x′, a)

1− f̂KL(x′, a)

)−(1−y′(a))/2


= −n logEx′

[√
f?(x′, a)f̂KL(x′, a) +

√
(1− f?(x′, a))(1− f̂KL(x′, a))

]
.

Here the last line holds because the model is well-specified; in particular P[y′(a) = 1 | x′] =
f?(x′, a). Continuing, observe that for any random variables u, v taking values in [0, 1] we have

− logE
[√

uv +
√

(1− u)(1− v)
]

= − log
(

1− E
[
1−
√
uv −

√
(1− u)(1− v)

])
≥ 1

2
E
[
D2

H(u ‖ v)
]
,

(23)

where the last step uses that x ≤ − log(1−x) for x ∈ [0, 1] along with the definition of the Hellinger
divergence. Together, these inequalities establish that

1

2

∑
a∈A

Ex
[
D2

H(f?(x, a) ‖ f̂KL(x, a))
]
≤ A (log |F|+ log(A/δ))

n
.

To conclude, we simply apply Proposition 3, which yields the result.

Proof of Lemma 3. Let f ∈ F be fixed and define γ(x, a) := f?(x, a) − f(x, a) and
s(x, a) := f?(x, a) + f(x, a). By the triangle inequality, the AM-GM inequality, and an appli-
cation of Theorem 6, we have

ED[s(x, π(x))] ≤ ED|γ(x, π(x))|+ 2L(π?)

≤ ED

[√
s(x, π(x))

|γ(x, π(x))|√
s(x, π(x))

]
+ 2L(π?)

≤ 1

2
ED[s(x, π(x))] +

1

2
ED
[
γ(x, π(x))2

s(x, π(x))

]
+ 2L(π?)

≤ 1

2
ED[s(x, π(x))] +

1

2
ED

[∑
a

γ(x, a)2

s(x, a)

]
+ 2L(π?)

≤ 1

2
ED[s(x, π(x))] +

1

2
ED[D∆(f?(x, ·) ‖ f(x, ·))] + 2L(π?).

Re-arranging yields the result.
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C Proofs for Contextual Bandit Results (Section 2)

C.1 Online Regression Oracles

In this section we briefly formalize the notion of an online regression oracle sketched in the introduc-
tion and Assumption 2. The treatment here follows Foster and Rakhlin [29].

We consider the following model for the oracle AlgKL.

For t = 1, . . . , T :

– Nature selects context-action pair (xt, at) ∈ X ×A.
– Algorithm produces prediction ŷt ∈ [0, 1].
– Nature selects outcome yt ∈ [0, 1].

We model the oracle as a sequence of mappings Alg
(t)
KL : (X ×A)× (X ×A× R)

t−1 → [0, 1], so
that ŷt = Alg

(t)
KL

(
xt, at ; {(xi, , ai, yi)}t−1

i=1

)
above. Any algorithm of this type induces a mapping

ŷt(x, a) := Alg
(t)
KL

(
x, a ; {(xi, , ai, yi)}t−1

i=1

)
, (24)

which may be understood as the prediction the algorithm would make at time t if we froze its internal
state and selected (xt, at) = (x, a).

C.2 Proof of Theorem 1

Theorem 1 (Main theorem). Suppose Assumptions 1 and 2 hold. Then Algorithm 1 guarantees that
for all sequences with E

[∑T
t=1 `t(π

?(xt))
]
≤ L?, by choosing γ =

√
AL?/3RegKL(T ) ∨ 10A,

E[RegCB(T )] ≤ 40
√
L? ·ARegKL(T ) + 600ARegKL(T ). (6)

Proof. Define LT =
∑T
t=1 `t(at) and L?T =

∑T
t=1 `t(π

?(xt)). All of the effort in this proof will be
to show that for any choice γ ≥ 10A, Algorithm 1 has

E[RegCB(T )] ≤ 10A

γ
E[L?T ] + 28γ ·RegKL(T ). (25)

The bound in (6) immediately follows from this guarantee by using choice of γ in the theorem
statement.

Define a filtration

Ft−1 = σ((x1, a1, `1(a1)), . . . , (xt−1, at−1, `t−1(at−1)), xt) (26)

and let Et[·] := E[· | Ft]. Next, define the following conditional-expected versions of the contextual
bandit regret and log loss regret, respectively

RegCB(T ) =

T∑
t=1

Et−1[`t(at)− `t(π?(xt))] =

T∑
t=1

∑
a

pt,a(f?(xt, a)− f?(xt, π?(xt)))

and

RegKL(T ) =

T∑
t=1

Et−1[`log(ŷt(xt, at), `t(at))− `log(f?(xt, at), `t(at))].

Our starting point is to observe that E[RegCB(T )] = E
[
RegCB(T )

]
and E

[
RegKL(T )

]
≤

RegKL(T ), where the latter holds since RegKL(T ) is a deterministic upper bound on the log
loss regret of the oracle. So it suffices to relate the conditional-expected versions of these quantities.

The main step of the proof is to upper bound RegCB(T ), using the first-order per-round inequality
Theorem 4 (proven in Appendix C.3), which we restate here for completeness.
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Theorem 4 (First-order per-round inequality). Let y ∈ [0, 1]A be given and b ∈ argmina ya. Define
pa = yb

Ayb+γ(ya−yb) for a 6= b, and pb = 1 −
∑
a6=b pa. If γ ≥ 2A, then for all f ∈ [0, 1]A and

a? ∈ argmina fa, we have∑
a

pa(fa − fa?)︸ ︷︷ ︸
CB regret

≤ 5A

γ

∑
a

pafa︸ ︷︷ ︸
bias from exploring

+ 7γ
∑
a

pa
(ya − fa)2

ya + fa︸ ︷︷ ︸
error from exploiting

. (17)

Applying Theorem 4 for each round t, we are guaranteed that

RegCB(T ) ≤ 5A

γ

T∑
t=1

∑
a

pt,af
?(xt, a) + 7γ

T∑
t=1

∑
a

pt,a
(ŷt(xt, a)− f?(xt, a))2

ŷt(xt, a) + f?(xt, a)

=
5A

γ
LT + 7γ ·Err∆(T ),

where LT :=
∑T
t=1

∑
a pt,af

?(xt, a) and

Err∆(T ) :=

T∑
t=1

∑
a

pt,a
(ŷt(xt, a)− f?(xt, a))2

ŷt(xt, a) + f?(xt, a)
.

Next, we relate the triangular discrimination-type error Err∆(T ) to the log loss regret using the
following proposition (proven in the sequel).
Proposition 5. If y ∈ [0, 1] is a random variable with E[y] = µ, then for any ŷ ∈ [0, 1],

E[`log(ŷ, y)− `log(µ, y)] = dKL(µ ‖ ŷ) ≥ 1

2
· (ŷ − µ)2

ŷ + µ
. (27)

In particular, since at and `t are conditionally independent given Ft−1, this implies that

Err∆(T ) ≤ 2

T∑
t=1

∑
a

pt,adKL(f?(xt, a) ‖ ŷt(x, at)) = 2RegKL(T ),

so that
RegCB(T ) ≤ 5A

γ
LT + 14γ ·RegKL(T ).

To conclude, let L
?

T =
∑T
t=1 f

?(xt, π
?(xt)). Then this inequality can be written as

LT − L
?

T ≤
5A

γ
LT + 14γ ·RegKL(T ).

Since 1/(1− ε) ≤ 1 + 2ε for all ε ≤ 1/2, this implies that whenever γ ≥ 10A,

LT − L
?

T ≤
10A

γ
L
?

T + 28γ ·RegKL(T ).

Noting that E[L
?

T ] = E[L?T ] and E[LT ] = E[LT ], this establishes (25).

Proof of Proposition 5. For the equality in (27), we have
E[`log(ŷ, y)− `log(µ, y)] = E[y log(µ/ŷ) + (1− y) log((1− µ)/(1− ŷ))] = dKL(µ ‖ ŷ).

To prove the inequality, let fŷ(µ) = dKL(µ ‖ ŷ). By Taylor’s theorem, we have

fŷ(µ) = fŷ(ŷ) + f ′ŷ(ŷ)(µ− ŷ) +
1

2
f ′′ŷ (ȳ)(µ− ŷ)2,

for some ȳ ∈ conv({ŷ, µ}). Observe that
f ′ŷ(z) = log(z/ŷ)− log((1− z)/(1− ŷ)),

so that we have fŷ(ŷ) = f ′ŷ(ŷ) = 0. Further

f ′′ŷ (ȳ) =
1

ȳ
+

1

1− ȳ
≥ 1

max{ŷ, µ}
≥ 1

ŷ + µ
,

which establishes the result.
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C.3 Proof of Theorem 4

Theorem 4 (First-order per-round inequality). Let y ∈ [0, 1]A be given and b ∈ argmina ya. Define
pa = yb

Ayb+γ(ya−yb) for a 6= b, and pb = 1 −
∑
a6=b pa. If γ ≥ 2A, then for all f ∈ [0, 1]A and

a? ∈ argmina fa, we have∑
a

pa(fa − fa?)︸ ︷︷ ︸
CB regret

≤ 5A

γ

∑
a

pafa︸ ︷︷ ︸
bias from exploring

+ 7γ
∑
a

pa
(ya − fa)2

ya + fa︸ ︷︷ ︸
error from exploiting

. (17)

Proof. To begin, we observe that by the AM-GM inequality,∑
a

pa(fa − fa?) =
∑
a 6=a?

pa(ya − fa?) +
∑
a6=a?

pa(fa − ya)

≤
∑
a6=a?

pa(ya − fa?) +
1

4γ

∑
a 6=a?

pa(fa + ya) + γ
∑
a 6=a?

pa
(ya − fa)2

ya + fa
. (28)

We focus on bounding the first term in (28), then return to the other terms at the end of the proof. We
have ∑

a6=a?
pa(ya − fa?) =

∑
a 6=a?

pa(ya − yb) + (1− pa?)(yb − fa?)

=
∑

a/∈{a?,b}

pa(ya − yb) + (1− pa?)(yb − fa?). (29)

Recall that for a 6= b we set pa = yb
Ayb+γ(ya−yb) and for pb we set pb = 1 −

∑
a6=b pa. With this

setting, the first term in (29) is bounded as∑
a/∈{a?,b}

pa(ya − yb) ≤
∑

a/∈{a?,b}

yb(ya − yb)
Ayb + γ(ya − yb)

≤ Ayb
γ
. (30)

It remains to bound the term
(1− pa?)(yb − fa?).

If fa? ≥ yb this is trivially negative, so we assume going forward that fa? ≤ yb, and upper bound as

(1− pa?)(yb − fa?) ≤ yb − fa? .
We now appeal to the following lemma.
Lemma 4. The distribution p in Theorem 4 ensures that

yb − fa? ≤
A

4γ
yb + 2γ · pa?

(ya? − fa?)2

ya? + fa?
. (31)

Combining (28), (30), and (31), we arrive at the bound.∑
a

pa(fa − fa?) ≤ 1

4γ

∑
a

pa(fa + ya) + 2γ
∑
a

pa
(ya − fa)2

ya + fa
+

2A

γ
yb. (32)

To conclude, we relate the non-triangular terms above to
∑
a pafa, which corresponds to the learner’s

expected loss. For the first term, we use the following basic result.
Lemma 5. For any distribution p ∈ ∆A,∑

a

paya ≤ 3
∑
a

pafa +
∑
a

pa
(ya − fa)2

ya + fa
.

Applying this gives∑
a

pa(fa − fa?) ≤ 1

γ

∑
a

pafa + 3γ
∑
a

pa
(ya − fa)2

ya + fa
+

2A

γ
yb,
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where we have used that γ ≥ 1 to simplify. Our final step is to relate the last term above to fa? . To
do this, we observe that if γ ≥ 2A, then Lemma 4 implies (after rearranging), that

yb ≤ 2fa? + 4γ · pa?
(ya? − fa?)2

ya? + fa?
,

so that
2A

γ
yb ≤

4A

γ
fa? + 8Apa?

(ya? − fa?)2

ya? + fa?
≤ 4A

γ
fa? + 4γ · pa?

(ya? − fa?)2

ya? + fa?
.

With this, we have∑
a

pa(fa − fa?) ≤ 1

γ

∑
a

pafa + 7γ
∑
a

pa
(ya − fa)2

ya + fa
+

4A

γ
fa? ,

Finally, since a? ∈ argmina fa, we have fa? ≤
∑
a pafa, so we can simplify to∑

a

pa(fa − fa?) ≤ 5A

γ

∑
a

pafa + 7γ
∑
a

pa
(ya − fa)2

ya + fa
.

C.3.1 Proofs for Supporting Lemmas

Proof of Lemma 4. Assume that yb ≥ fa? , or else we are done. We consider two cases.

Case 1: a? = b. In this case, by the AM-GM inequality

yb − fa? = ya? − fa? ≤
ya? + fa?

8γpa?
+ 2γ · pa?

(ya? − fa?)2

ya? + fa?
.

Since a? = b, we have

pa? = pb = 1−
∑
a6=b

yb
Ayb + γ(ya − yb)

≥ 1/A,

so we can further upper bound by

A

8γ
(ya?+fa?)+2γ·pa?

(ya? − fa?)2

ya? + fa?
≤ A

4γ
ya?+2γ·pa?

(ya? − fa?)2

ya? + fa?
=

A

4γ
yb+2γ·pa?

(ya? − fa?)2

ya? + fa?
,

where we have used that fa? ≤ yb = ya? , where the latter holds since, for this case, we are assuming
a? = b.

Case 2: a? 6= b. Observe that in this case, we have

ya? ≥ yb, and fb ≥ fa? . (33)

Since a? 6= b, using the definition of pa? , we have

yb − fa? = pa?
Ayb + γ(ya? − yb)

yb
(yb − fa?)

= Apa?(yb − fa?) + γ · pa?
(ya? − yb)(yb − fa?)

yb
,

which we can rewrite as

yb − fa? = Apa?(yb − fa?)− γ · pa?
(yb − fa?)2

yb︸ ︷︷ ︸
A

+ γ · pa?
(ya? − fa?)(yb − fa?)

yb︸ ︷︷ ︸
B

.

For the term A above, we observe that by the AM-GM inequality,

Apa?(yb − fa?) ≤ A2

4γ
pa?yb + γpa?

(yb − fa?)2

yb
, (34)
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so that

A ≤ A2

4γ
pa?yb ≤

A

4γ
yb,

where we have used that pa? ≤ 1/A when a? 6= b.

Next, to bound B, we observe that ya? ≥ yb ≥ fa? ≥ 0. Since the function a 7→ (a−b)
a is increasing

for a, b ≥ 0, we have that (yb−fa? )
yb

≤ (ya?−fa? )
ya?

and consequently

(ya? − fa?)(yb − fa?)

yb
≤ (ya? − fa?)2

ya?
≤ 2

(ya? − fa?)2

ya? + fa?
,

where the second inequality uses that ya? ≥ fa? .

Altogether, we have that when a? 6= b,

yb − fa? = A + B ≤ A

4γ
yb + 2γ · pa?

(ya? − fa?)2

ya? + fa?
. (35)

The result now follows by combining the two cases.

Proof of Lemma 5. First, we write∑
a

paya =
∑
a

pafa +
∑
a

pa(ya − fa).

By the AM-GM inequality, we have∑
a

pa(ya − fa) ≤ 1

2

∑
a

pa(ya + fa) +
1

2

∑
a

pa
(ya − fa)2

ya + fa
,

so that ∑
a

paya ≤
1

2

∑
a

paya +
3

2

∑
a

pafa +
1

2

∑
a

pa
(ya − fa)2

ya + fa
,

and after rearranging, ∑
a

paya ≤ 3
∑
a

pafa +
∑
a

pa
(ya − fa)2

ya + fa
.

C.4 Auxiliary Results

Proposition 6. When ŷ, y ∈ [0, 1], the logarithmic loss ŷ 7→ `log(ŷ, y) is 1-exp-concave and
1-mixable.

Proof of Proposition 6. Let fy(ŷ) = `log(ŷ, y). From Hazan et al. [38], the loss is α-exp-concave
if and only if f ′′y (ŷ) ≥ α(f ′y(ŷ))2 for all ŷ, y ∈ [0, 1]. We observe that f ′y(ŷ) = −yŷ + 1−y

1−ŷ and
f ′′y (ŷ) = y

ŷ2 + 1−y
(1−ŷ)2 . Since y ∈ [0, 1], Jensen’s inequality implies that

(f ′y(ŷ))2 ≤ y
(
−1

ŷ

)2

+ (1− y)

(
1

1− ŷ

)2

= f ′′y (ŷ),

so we may take α = 1.

Mixability is an immediate consequence of exp-concavity [21].
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D Extensions

D.1 Small Rewards

In this section we sketch an extension of FastCB to the setting where the learner observes rewards
rt(a) ∈ [0, 1] rather than losses `t(a), and aims to achieve high reward rather than low loss. As before,
we assume access to a function class F such that the Bayes predictor f?(x, a) := E[r(a) | x] ∈ F .
Formally, we define regret for this setting as

RegCB(T ) =

T∑
t=1

rt(π
?(xt))−

T∑
t=1

rt(at),

where π?(x) := argmaxa∈A f
?(x, a) is the optimal policy.

Our aim here is to provide regret bounds that adapt whenever the reward of the optimal policy is
small. This type of guarantee is natural if we believe a-priori that rewards are typically very small,
which is common in personalization and recommendation applications, where clicks are often used
as reward signal, yet click-through rates are typically well below 1%. In such settings, it is favorable
to have regret scaling with the reward R? of the optimal policy. Note that this is not equivalent to
an L? bound after the translation rt(a) = 1− `t(a), since having low reward corresponds to having
high loss.

FastCB can be adapted to the small-reward setting achieve

E[RegCB(T )] ≤ O
(√

R? ·ARegKL(T ) +ARegKL(T )
)

whenever E
[∑T

t=1 rt(π
?(xt))

]
≤ R?. The algorithm remains essentially as described in Algorithm 1,

with the only difference being that we change the reweighted inverse gap weighting strategy used
in Line 6. The new strategy and corresponding per-round inequality are described in the following
theorem.
Theorem 7. Let y ∈ [0, 1]A be given and b := argmaxa ya. Define pa = yb

Ayb+γ(yb−ya) for a 6= b

and pb = 1−
∑
a 6=b pa. If γ ≥ 4A, then for all f ∈ [0, 1]

A and a? ∈ argmaxa fa, we have∑
a

pa(fa? − fa) ≤ 9A

γ

∑
a

pafa + 10γ
∑
a

pa
(ya − fa)2

ya + fa
.

Observe that the left hand side is the per-round regret of the learner when f is the reward (rather than
loss) model, which contrasts with the left-hand side in Theorem 4. On the other hand, the right-hand
side only differs from that of Theorem 4 in the constants. As such, it naturally yields an R? bound
when applied with y = ŷt(xt, ·) as in Algorithm 1.

It should be noted that achieving R?-based first-order bounds for contextual bandits appears to be
considerably easier than achieving L?-based bounds. Indeed, the standard analysis of the Exp4
algorithm already yields a O(

√
R? ·A log |Π|) regret bound, under the benign assumption that the

policy class contains the policy that selects actions uniformly at random on every context [9, Theorem
7.1]. On the other hand, Exp4 cannot achieve an L?-based bound without modifications [6].

Proof of Theorem 7. The proof parallels that of Theorem 4. We start by adding and subtracting ya
and applying the AM-GM inequality∑

a

pa(fa? − fa) =
∑
a6=a?

pa(fa? − ya) +
∑
a6=a?

pa(ya − fa)

≤
∑
a 6=a?

pa(fa? − ya) +
1

4γ

∑
a6=a?

pa(ya + fa) + γ
∑
a6=a?

pa
(ya − fa)2

ya + fa
.

For the first term above, let us consider two cases.

Case 1. First, if yb ≥ fa? then∑
a 6=a?

pa(fa? − ya) ≤
∑

a/∈{a?,b}

pa(fa? − ya) ≤
∑

a/∈{a?,b}

pa(fa? − ya)1{fa? ≥ ya}.
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Here we have simply dropped negative terms. Now, using the definition of pa for a 6= b, we have

pa(fa? − ya)1{fa? ≥ ya} =
yb(fa? − ya)

Ayb + γ(yb − ya)
1{fa? ≥ ya} ≤

yb(fa? − ya)

γ(yb − ya)
1{fa? ≥ ya}.

Observe that yb/(yb − ya) ≤ fa?/(fa? − ya), since yb ≥ fa? ≥ ya ≥ 0. This yields

1{fa? ≥ ya}
yb(fa? − ya)

γ(yb − ya)
≤ 1{fa? ≥ ya}

fa?(fa? − ya)

γ(fa? − ya)
≤ fa?

γ
.

And so, if yb ≥ fa? we have the bound∑
a

pa(fa? − fa) ≤ Afa?

γ
+

1

4γ

∑
a6=a?

pa(fa + ya) + γ
∑
a6=a?

pa
(ya − fa)2

ya + fa
.

Case 2. If yb ≤ fa? then for the first term, we write∑
a6=a?

pa(fa? − ya) =
∑

a/∈{a?,b}

pa(yb − ya) + (1− pa?)(fa? − yb) ≤
∑

a/∈{a?,b}

pa(yb − ya) + (fa? − yb).

(36)

For the first term in (36), using the definition of pa, we have∑
a/∈{a?,b}

pa(yb − ya) =
∑

a/∈{a?,b}

yb(yb − ya)

Ayb + γ(yb − ya)
≤

∑
a/∈{a?,b}

yb
γ
≤ Ayb

γ
≤ Afa?

γ
. (37)

For the second term, we first note that pb = 1−
∑
a6=b pa ≥ 1−

∑
a 6=b

yb
Ayb
≥ 1

A , then consider two
subcases.

Case 2a (yb ≤ fa? and a? = b). Here we simply use the AM-GM inequality to show that

fa? − yb = fa? − ya? ≤
fa? + ya?

8γpa?
+ 2γpa?

(ya? − fa?)2

ya? + fa?

≤ A

4γ
fa? + 2γpa?

(ya? − fa?)2

ya? + fa?
.

Here the first inequality is AM-GM, while the second uses that ya? = yb ≤ fa? (by the conditions
for this case), along with the fact that pa? = pb ≥ 1/A.

Case 2b (yb ≤ fa? and a? 6= b). In this case, we have

yb ≥ ya? , and fa? ≥ fb.

Using the definition for pa? , we have

fa? − yb = pa?
Ayb + γ(yb − ya?)

yb
(fa? − yb) = pa?A(fa? − yb) + pa?γ

(yb − ya?)(fa? − yb)
yb

≤ pa?A(fa? − yb) + pa?γ
(fa? − ya?)(fa? − yb)

fa?

= pa?A(fa? − yb) + pa?γ
(fa? − ya?)2

fa?
+ pa?γ

(fa? − ya?)(ya? − yb)
fa?

≤ pa?A(fa? − yb) + pa?γ
(fa? − ya?)2

fa?

≤ pa?A(fa? − ya?) + pa?γ
(fa? − ya?)2

fa?
.

Here, in the first inequality we use that a 7→ (a− b)/a is increasing in a, for a, b ≥ 0 along with the
fact that fa? ≥ yb ≥ ya? . The second and third inequalities both use that ya? ≤ yb.
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Now by the AM-GM inequality, we have

pa?A(fa? − ya?) ≤ pa?A
2

4γ
fa? + pa?γ

(fa? − ya?)2

fa?

≤ A

4γ
fa? + pa?γ

(fa? − ya?)2

fa?
,

where the second inequality uses the fact that pa? ≤ 1/A since a? 6= b. Finally, we use that ya? ≤ fa?
to conclude that in this case,

fa? − yb ≤
A

4γ
fa? + 4γpa?

(fa? − ya?)2

fa? + ya?
. (38)

This bound applies to both Case 2a and 2b.

Wrapping up. Returning to Case 2 and combining (36), (37), and (38), we have∑
a6=a?

pa(fa? − ya) ≤ 2Afa?

γ
+ 4γpa?

(fa? − ya?)2

fa? + ya?
.

Combining this with our initial calculation, we have∑
a

pa(fa? − fa) ≤ 2Afa?

γ
+ 4γpa?

(fa? − ya?)2

fa? + ya?
+

1

4γ

∑
a 6=a?

pa(ya + fa) + γ
∑
a 6=a?

pa
(ya − fa)2

ya + fa

≤ 4γ
∑
a

pa
(ya − fa)2

ya + fa
+

1

4γ

∑
a

pa(ya + fa) +
2A

γ
fa? .

Next, we can apply Lemma 5 as-is, which yields∑
a

pa(fa? − fa) ≤ 1

γ

∑
a

pafa + 5γ
∑
a

pa
(ya − fa)2

ya + fa
+

2A

γ
fa? .

This inequality, after using assumption the that γ ≥ 4A and rearranging, implies

fa? ≤ 2(1 + 1/γ)
∑
a

pafa + 10γ
∑
a

pa
(ya − fa)2

ya + fa
≤ 4

∑
a

pafa + 10γ
∑
a

pa
(ya − fa)2

ya + fa
.

Plugging this bound in for the final expression gives∑
a

pa(fa? − fa) ≤ 1

γ

∑
a

pafa + 5γ
∑
a

pa
(ya − fa)2

ya + fa
+

8A

γ

∑
a

pafA + 20A
∑
a

pa
(ya − fa)2

ya + fa

≤ 9A

γ

∑
a

pafa + 10γ
∑
a

pa
(ya − fa)2

ya + fa
,

as desired.

E Details for Experiments

E.1 Assets and Computing Resources

Assets. The code for the contextual bandit evaluation setup of Bietti et al. [13], which we used as a
starting point, is publicly available at https://github.com/albietz/cb_bakeoff. Likewise, the
source code for Vowpal Wabbit, upon which our implementation is built, is publicly available at https:
//github.com/vowpalwabbit/vowpal_wabbit/. The source code used to run the experiments is
included in the supplementary material.

All datasets used in the experiments are publicly available via the OpenML collection (https:
//www.openml.org). Readers can refer to the information page for each respective dataset (e.g.,
https://www.openml.org/d/1041 for dataset 1041) for copyright information.
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Computing resources. Experiments were run on a single n1-highcpu-32 instance on Google
Compute Engine. The total compute time required to run the experiments was under 12 hours.

E.2 Additional Details

Datasets. We restrict to a subset of the bake-off suite consisting of 516 multiclass classification
datasets in the same fashion as Foster et al. [35].

Algorithms and oracle. For SquareCB.L and FastCB.L we take F to be a class of generalized linear
models:

F =
{

(x, a) 7→ σ(〈w, φ(x, a)〉) | w ∈ Rd
}
, (39)

where σ(t) = 1/(1 + e−t) is the logistic link function and φ(x, a) is a fixed (dataset-dependent)
feature map. This choice is convenient because i) it naturally produces predictions in [0, 1], as
required by FastCB, and ii), we have that `log(σ(〈w, φ(x, a)〉), y) = `logistic(〈w, φ(x, a)〉, y), so that
online regression with the logarithmic loss is equivalent to online logistic regression (cf. Example 4).

Even though SquareCB is designed for the square loss rather than the log loss, one can show that
under the realizability assumption (Assumption 1), any log loss oracle is admissible for SquareCB.
Indeed, for any log loss oracle satisfying Assumption 2, realizability and Pinsker’s inequality imply
that

E

[
T∑
t=1

(ŷt(xt, at)− f?(xt, at))2

]
≤ 2E

[
T∑
t=1

dKL(f?(xt, at) ‖ ŷt(xt, at))

]
≤ 2RegKL(T ), (40)

which means that the oracle is a valid square loss oracle for SquareCB in the sense of Assumption 2b
in Foster and Rakhlin [29].

The oracle is trained with the default VW learning rule, which performs online gradient descent
with adaptive updates [27, 41, 56]. We treat the algorithm’s step size parameter as a tunable
hyperparameter.

For SquareCB.S, we configure SquareCB exactly as described in Foster et al. [35]. We take F to be
the class of linear models

F =
{

(x, a) 7→ 〈w, φ(x, a)〉 | w ∈ Rd
}
,

and the oracle applies the default VW learning rule to the square loss. We use the same hyperparameter
range as for SquareCB.L and FastCB.L, both for the SquareCB learning rate and for the VW learning
rule’s step size.

Tables in Figure 1. For both tables, each cell (a, b) plots the number of datasets in which algorithm
a significantly beats b, minus the number of datasets in which b significantly beats a. Following Bietti
et al. [13], we define a significant win using a heuristic based on an approximate Z-test. If pa and pb
are the final PV loss values for algorithms a and b, respectively, we say that a significantly beats b if

1− Φ

 pa − pb√
pa(1−pa)

n + pb(1−pb)
n

 < 0.05, (41)

where n is the number of examples and Φ is the Gauss error function.

In the left table, we choose the configuration (hyperparameters for SquareCB/FastCB and learning
rate for the VW learner) with lowest final PV loss for each algorithm on a per-dataset basis. In the
right table, for each algorithm we choose the hyperparameter configuration with best performance on
a held-out collection of 200 datasets using the method described in Bietti et al. [13]. We keep this
configuration fixed and tune only the learning rate for the VW learner on each dataset.

Plots in Figure 1. Each plot shows the progressive validation lossLPV(t) as a function of the number
of examples t, for the best-performing (in terms of final PV loss) hyperparameter configuration for
each algorithm. We consider 10 replicates for each dataset, where each replicate has the example order
randomly permuted, and plot the average progressive validation loss across the replicates. Error bands
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in each plot correspond to significance p < 0.05 under the Z-test in (41), setting n = t ·(#replicates)
at each time t.

The algorithm Supervised.L included in each of the plots is an oracle benchmark that runs online
logistic regression using the true label for each example (which the bandit algorithms do not have
access to). The only hyperparameter for this algorithm is the learning rate for the VW learning rule.

E.3 Additional Figures

Figure 2 shows the results for the experiment in Figure 1 (Top-Left) with two additional adaptive
algorithms, AdaCB and RegCB, included. These algorithms were found to have the strongest overall
performance on the bake-off suite in Foster et al. [35] using the same online square loss oracle as
SquareCB.S, and are considered state-of-the-art [13, 35]. We see in that switching SquareCB from
regression with the square loss to the logistic loss (SquareCB.L) is already enough to outperform
AdaCB and RegCB, and that the performance of FastCB.L is even stronger. It would be interesting
to understand how the performance of AdaCB and RegCB improves if we switch to the generalized
linear model (39) in the same fashion as SquareCB.L/FastCB.L, but it is unclear how to efficiently
compute the confidence sets required by these algorithms in this case. We leave this for future work.

↓ vs→ R.S A.S S.S S.L F.L
RegCB.S - 6 46 -6 -12
AdaCB.S -6 - 42 -8 -18
SquareCB.S -46 -42 - -55 -66
SquareCB.L 6 8 55 - -11
FastCB.L 12 18 66 11 -

Figure 2: Head-to-head win-loss differences. Each entry indicates the statistically significant win-loss
difference between the row algorithm and the column algorithm. Hyperparameters are per-dataset.
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