
Published as a conference paper at ICLR 2024

A APPENDIX

A.1 TRANSFERABILITY ACROSS DATASETS

In this section, we extend the evaluation of our defense approach, LRR, to additional datasets to
investigate its transferability. Specifically, we test LRR’s performance on the challenging LaSOT
(Fan et al., 2019), NFS (Kiani Galoogahi et al., 2017) and TrackingNet (Muller et al., 2018) datasets.
The LaSOT is a large-scale dataset containing 280 videos. On the other hand, the NFS dataset
consists of 100 videos captured using a high-speed camera and is divided into two variants: NFS30
and NFS240, which have frame rates of 30 fps and 240 fps, respectively. Additionally, TrackingNet
encompasses a diverse set of 511 video sequences, offering a broad range of real-world scenarios to
rigorously evaluate tracking algorithms.

Table 7: Results of LRR defense over four extended datasets.
SiamRPN++ Attacks LaSOT Prec. (%) NFS30 Prec. (%) NFS240 Prec. (%) TrackingNet Prec. (%)

Org. LRR Org. LRR Org. LRR Org. LRR

Res50

wo.Atk 48.8 48.7 59.9 56.0 71.2 69.9 69.4 67.7
RTAA 20.5 46.3 22.4 56.5 37.4 69.6 13.9 65.7

IoUAttack 39.6 46.5 42.0 55.5 65.3 67.8 61.9 65.9
CSA 17.5 45.3 19.6 58.0 33.5 70.5 39.7 66.5

SPARK 19.6 48.5 40.5 59.3 16.2 70.6 29.6 55.1

MobileV2

wo.Atk 44.8 44.0 57.2 55.8 69.0 66.7 63.6 63.9
RTAA 12.5 40.7 16.8 55.0 25.3 68.1 5.2 62.5

IoUAttack 29.6 41.4 30.7 47.8 55.8 66.3 54.1 60.8
CSA 11.3 37.8 17.6 55.6 21.4 64.7 30.2 59.5

SPARK 10.2 43.9 19.5 56.8 7.0 66.5 17.1 54.1

From Table 7, we can observe that our LRR exhibits excellent transferability over large-scale
datasets. It successfully defends against adversarial tracking attacks across these challenging
datasets.

A.2 DETAILED ANALYSIS OF LRESAMPLENET’S IMPACT

To validate the effectiveness of our primary contribution, we conducted experiments to demon-
strate the influence of the LResampleNet in LRR. Given the independent training of STIR and
LResampleNet, STIR should be capable of estimating the perturbation by using spatial-temporal
information. We evaluated STIR without resampling and assessed performance on clean data and
four attackers across three datasets on two trackers from the SiamRPN++ family. In Table 2, we
present the increase in precision for the OTB100 and UAV123 datasets and the rise in EAO value
for VOT2019. The results indicate that tracking outcomes without the LResampleNet are less ef-
fective than LRR in defending against adversarial tracking attacks. However, it has been observed
that using STIR alone causes less damage to the clean data when compared to the LRR approach.
This suggests that LRR has the potential to damage clean data. Nevertheless, considering the overall
results, an accuracy of less than 2% for OTB100 and UAV123, or an EAO of 0.01 for VOT2019 can
be deemed acceptable, considering the enhanced robustness defense capability that LRR offers.

A.3 VISUALIZATION INSIGHTS

Given the template of the object of interest and an incoming frame, a tracker (e.g., SiamRPN++) aims
to predict the object’s position by correlating the deep features of both the template and the frame.
An attack introduces adversarial perturbation to the frame with the intent to mislead the correlation
process. We illustrate the comparison of LRR with and without defense visually in Section 4.2 at
the image level, and we aim to delve deeper into the comparison at the correlation level.

More specifically, we provide visualizations in Figure 4 that demonstrate correlation maps from
frames processed by our LRR method align much more closely with those unmarred by attack
than other defense approaches. As the visualization illustrates, our LRR exhibits lower correla-
tion map differences than DISCO (Ho & Vasconcelos, 2022) and STIR. This is because LRR ef-
fectively achieves semantic consistency between the reconstructed frame and the object template,
while DISCO and STIR are primarily designed for image quality restoration and overlook the se-
mantic consistency of the template. We observe that DISCO and STIR maintain relatively lower

14



Published as a conference paper at ICLR 2024

wo.Def

overlap 43.5553

1.5039

LRR

overlap 96.1045

0.4499

DISCO

overlap 66.4731

0.7188

STIR

overlap 80.5274

0.4563

wo.Attack

wo.Def

overlap 45.2508

0.6229

LRR

overlap 85.2756

0.4119

DISCO

overlap 47.6398

0.4536

STIR

overlap 72.2375

0.4326

wo.Attack

After AttackedBefore Attack After Reconstructed
wo.Def

overlap 8.082

1.3164

LRR

overlap 87.6227

0.5813

DISCO

overlap 68.5944

0.6227

STIR

overlap 80.4326

0.6501

wo.Attack

Ground Truth

Prediction

Figure 4: Visualization comparison before & after defense from DISCO, STIR and LRR.

overlap with the ground truth compared to our LRR, highlighting the efficacy and precision of the
LRR method in maintaining semantic integrity amidst adversarial perturbations.

Furthering our exploration, we investigate the impact of the resampling module in STIR, informed
by the guidance of text embedding through visualization. the LResampling module does not change
the features of input frames directly but changes the rendering process of STIR. To elaborate, STIR
can reconstruct the colors of any given coordinates as equation 4. Naively, we feed STIR with grid

15



Published as a conference paper at ICLR 2024

Table 8: Comparing DISCO, STIR, LRR wo.Lang. and LRR under Four Attacks.
SiamRPN++ Defends OTB100 Prec. (%) VOT2019 EAO UAV123 Prec. (%)

Cln. RTAA IoU CSA SPARK Cln. RTAA IoU CSA SPARK Cln. RTAA IoU CSA SPARK

Res50

wo.Def 91.4 32.7 75.9 47.2 69.8 0.277 0.080 0.153 0.089 0.079 79.5 41.2 70.5 46.5 40.8

DISCO 86.0 86.3 78.6 83.6 85.7 0.249 0.244 0.190 0.204 0.248 79.1 76.8 75.9 77.7 76.0

STIR 88.1 85.9 84.0 85.9 87.7 0.268 0.247 0.213 0.219 0.256 79.5 77.0 78.2 79.7 77.9

LRR wo.Lang 88.1 86.1 84.4 86.0 87.8 0.270 0.250 0.219 0.222 0.254 79.6 77.4 78.4 79.8 78.1

LRR 87.8 86.9 85.3 89.4 89.3 0.262 0.255 0.217 0.237 0.269 79.3 77.7 78.6 81.8 79.3

MobileV2

wo.Def 85.5 25.6 67.8 40.9 32.2 0.267 0.062 0.125 0.083 0.037 80.3 39.3 66.2 42.2 22.5

DISCO 82.9 78.7 75.0 79.9 80.1 0.175 0.161 0.132 0.166 0.208 74.6 76.2 73.3 72.9 75.3

STIR 85.5 80.7 79.0 79.8 83.7 0.238 0.204 0.163 0.216 0.225 78.4 77.7 74.9 75.7 78.2

LRR wo.Lang 86.1 81.2 79.0 81.1 84.5 0.238 0.201 0.151 0.219 0.228 79.6 78.0 75.3 76.0 78.4

LRR 85.6 83.2 82.1 83.9 85.4 0.240 0.205 0.166 0.223 0.239 79.1 78.7 75.9 76.2 79.0

After AttackedBefore Attack After Reconstructed

wo.Def

overlap 55.3453

1.6905

LRR.Lang

overlap 90.9283

0.7263

LRR wo.Lang.

overlap 57.8643

1.0951

wo.Attack

Ground Truth

Prediction

Figure 5: Visualization comparison ResampleNet with & without language guidance when the input
frame contains the object of interest.

coordinates (discrete integral coordinates). In this context, we employ the LResampleNet to predict
coordinate offsets (non-integral values) around the grid coordinates as illustrated in equation 5,
and subsequently, STIR can render an image based on the predicted offsets and grid coordinates.
LResampleNet carries dual advantages:

If the input frame contains the object of interest, the predicted coordinates are based on the text
embedding and can highlight the object automatically. As the visualization of correlation maps
shown in Figure 5, our final version could suppress noises from adversarial perturbations. Without
language guidance, the overlap of LRR wo.Lang’s results with respect to the ground truth is much
smaller than the LRR .Lang (57.86 vs. 90.93).

If the input frame does not contain the object of interest, the predicted coordinates are around
the grid coordinates and will keep the high restoration quality. As shown in Figure 6, LRR could
recover the quality and make the prediction similar to the frame without attack.

Moreover, in Table 8, with our LResampleNet, two variants of LRR outperform STIR and DISCO
on all datasets and attacks.

Furthermore, we provide the visualizations of clean frames, adversarial frames after attacks, and
reconstructed frames after defense, validating the effectiveness of our method in terms of image
quality variations. In particular, we consider three typical attacks, i.e., CSA, IoUAttack, and SPARK,
respectively, and show their results in Figure 7, Figure 8, and Figure 9. From the visualization
results, we observe that: First, The three attacks can generate adversarial perturbations with different

16



Published as a conference paper at ICLR 2024

After AttackedBefore Attack After Reconstructed

wo.Def

overlap 38.6812

0.6195

LRR.Lang

overlap 80.1631

0.3677

LRR wo.Lang.

overlap 78.9543

0.4072

wo.Attack

00.00

Prediction of wo.Attack

Prediction

Figure 6: Visualization comparison ResampleNet with & without language guidance when the input
frame does not contain the object of interest.

Clean Frame Adv. Frame Recon.Frame Clean Frame Adv. Frame Recon.Frame

Diff. Map = Cln - Adv. Diff. Map = Cln - Rec.

Diff. Map = Cln - Adv. Diff. Map = Cln - Rec.

Diff. Map = Cln - Adv. Diff. Map = Cln - Rec.

Diff. Map = Cln - Adv. Diff. Map = Cln - Rec.

Figure 7: Visualization of clean frames, adversarial frames from CSA, and reconstructed adversarial
frames based on our method. We also show the difference map between the adversarial frame and
the corresponding clean frame and the difference map between the reconstructed adversarial frame
and the corresponding clean frame

textures according to the difference maps shown in the figures. Second, for all attacks, our method
can eliminate all adversarial perturbations effectively, though they have different textures.

17



Published as a conference paper at ICLR 2024

Clean Frame Adv. Frame Recon.Frame Clean Frame Adv. Frame Recon.Frame

Diff. Map = Cln - Adv. Diff. Map = Cln - Rec.

Diff. Map = Cln - Adv. Diff. Map = Cln - Rec.

Diff. Map = Cln - Adv. Diff. Map = Cln - Rec.

Diff. Map = Cln - Adv. Diff. Map = Cln - Rec.

Figure 8: Visualization of clean frames, adversarial frames from IoUAttack, and reconstructed ad-
versarial frames based on our method. We also show the difference map between the adversarial
frame and the corresponding clean frame and the difference map between the reconstructed adver-
sarial frame and the corresponding clean frame

18



Published as a conference paper at ICLR 2024

Clean Frame Adv. Frame Recon.Frame Clean Frame Adv. Frame Recon.Frame

Diff. Map = Cln - Adv. Diff. Map = Cln - Rec.

Diff. Map = Cln - Adv. Diff. Map = Cln - Rec.

Diff. Map = Cln - Adv. Diff. Map = Cln - Rec.

Diff. Map = Cln - Adv. Diff. Map = Cln - Rec.

Figure 9: Visualization of clean frames, adversarial frames from SPARK, and reconstructed adver-
sarial frames based on our method. We also show the difference map between the adversarial frame
and the corresponding clean frame and the difference map between the reconstructed adversarial
frame and the corresponding clean frame

19



Published as a conference paper at ICLR 2024

A.4 TRANSFERABILITY TO TRANSFORMER-BASED TRACKERS

To demonstrate the transferability of our LRR approach, we modified it for the recently proposed
ToMP-50 transformer-based tracker model (Mayer et al., 2022), using RTAA to attack and applying
LRR for defense, and assessed the outcomes across three different datasets. As substantiated in
Table 5, several observations are apparent: firstly, the application of RTAA notably degrades the ac-
curacy of the transformer-based tracker across all three datasets. Secondly, despite these aggressive
attacks, our method retains its robust defense capabilities, maintaining high tracking accuracy. This
illustrates the notable transferability of the LRR approach, maintaining its effectiveness even when
applied to newly developed tracking models, including those based on transformer architectures.

A.5 COMPARING WITH TRACKING ADVERSARIAL DEFENSE

Table 9: Comparison of LRR with RTAA’s Defense on four datasets.
SiamRPN++ Attacks OTB100 Prec. (%) VOT2019 EAO UAV123 Prec. (%) NFS30 Prec. (%)

Org. LRR RTAADef Org. LRR RTAADef Org. LRR RTAADef Org. LRR RTAADef

Res50

wo.Atk 91.4 87.8 72.0 0.277 0.262 0.197 79.5 79.3 65.2 59.9 56.0 46.6
RTAA 32.7 86.9 76.5 0.080 0.255 0.155 41.2 77.7 71.8 24.4 56.5 40.5

IoUAttack 75.9 85.3 56.1 0.153 0.217 0.136 70.5 78.6 57.0 42.0 55.5 27.0
CSA 47.2 89.4 31.6 0.089 0.237 0.079 46.5 81.8 41.4 19.6 58.0 13.1

SPARK 69.8 89.3 60.6 0.079 0.269 0.078 40.8 79.3 47.2 40.5 59.3 35.9

Table 10: Comparison of LRR with RTAA’s Defense cost on OTB100.
Module Defense cost per frame (ms)

LRR 39
RTAADef 215

We have already demonstrated the effectiveness of our proposed method compared to various de-
fense strategies; however, exploration of other defense approaches specifically designed for visual
object tracking tasks remains pending. In this section, comprehensive comparisons with RTAA (Jia
et al., 2020) are included across four datasets and against four attack methods, as illustrated in Ta-
ble 9. The RTAA defense method was implemented utilizing the codes from the official repository
to defend against the aforementioned attacks.

Clearly, our method presents several notable advantages over RTAA’s defense strategy. Firstly,
our method consistently achieves superior tracking accuracy compared to RTAA’s defense method
against all types of attacks and across all datasets examined. Secondly, the impact of our method
on clean data is minimal, preserving the integrity and accuracy of the unaffected data. In contrast,
RTAA’s defense method could notably diminish accuracy when applied to clean data. Additionally, a
comparative analysis of the time costs between LRR and RTAA on OTB100 is provided in Table 10.
This comparison elucidates the enhanced efficiency of our method over RTAA, strengthening the ar-
gument for its application in practical, time-sensitive scenarios. The methodical implementation and
rigorous evaluation underscore the robustness and reliability of our method, validating its potential
as a superior defense mechanism in visual object-tracking tasks.

A.6 DETAILED DISCUSSION OF DEFENSE EFFICIENCY

In Section 4.2, we report both the time costs of our methods and the attack costs of the attackers in
Table 6, respectively. We demonstrate that our proposed methods exhibit superior frame processing
efficiency compared to most attackers, with the exception of CSA (Yan et al., 2020), which employs
a fast perturbation generator. Furthermore, our LRR surpasses STIR in adversarial attack defense
capability, sacrificing only a negligible amount of efficiency—4ms per input frame defense. In the
case of less efficient attackers such as IoU Attack (Jia et al., 2021) and RTAA (Jia et al., 2020), we
receive attacked frame sequences at a rate of less than 0.1 frames per second (fps). In this context,
the computational cost added by LRR is practically negligible. For more efficient attackers, such as
SPARK (Guo et al., 2020b) and CSA, under the assumption that the attacker and defender utilize the
same computational resources, our LRR method trades off a portion of tracking efficiency in favor

20



Published as a conference paper at ICLR 2024

of a significant improvement in the tracker’s robustness. In real-world scenarios, where attackers
and defenders are typically deployed on separate systems, our STIR defense sustains online frame
processing at an approximate rate of 29 fps, while LRR functions at around 25 fps.

Moreover, computation time costs can be further optimized by adapting the defense policy. For
instance, by employing the target overlap ratio compared to the previous frame as a threshold, we
can bypass processing for 25% of frames and still maintain an overlap ratio not lower than 85%.

A.7 FEASIBILITY OF USING DIFFUSION FOR TRACKING DEFENSE

We explore the efficacy of the recently developed diffusion-based adversarial defense method, Diff-
Pure (Nie et al., 2022), for tracking defense. Specifically, we apply DiffPure to safeguard against
three attacks, i.e., RTAA, IoUAttack, and CSA, that are used to attack the SiamRPN++ Res50 tracker
on the OTB100 dataset. In our empirical study, we use DiffPure’s default parameters for defense but
vary the number of iterative time steps (i.e., T=1, 10, 50).

Table 11 illustrates that the three DiffPure variants enhance the precision of the tracker under dif-
ferent attacks, albeit to a lesser extent compared to our approach, LRR. Notably, DiffPure(T=50) is
86.9 times slower than LRR, requiring an average of 3391 ms for each frame, rendering it nearly
impractical for tracking tasks. Even with a reduced time step to 1, DiffPure speeds up to 146 ms per
frame, still 3.7 times slower than LRR. It is essential to note that the default DiffPure configuration
sets T=100 time steps for purification, which is impractical for tracking tasks due to time constraints.
In conclusion, further investigation is needed to understand the potential of leveraging diffusion for
tracking defense.

Table 11: Comparing DiffPure Nie et al. (2022) with LRR on OTB100 where we use them to defend
CSA and RTAA for the SiamRPN++ Res50.

Defense method Cln. RTAA IoUAttack CSA Time (ms)

w.o. Defense 91.4 32.7 75.9 47.2 -
LRR 87.8 86.9 85.3 89.4 39

DiffPure(T=1) 87.9 52.3 78.5 83.5 146
DiffPure(T=10) 88.1 53.7 78.8 84.1 742
DiffPure(T=50) 88.2 54.2 79.0 84.3 3391

A.8 COMPARING WITH RESIZING AND COMPRESSION-BASED DEFENSES

We implemented a resizing-based defense using the ‘cv.resize’ operation in OpenCV. Specifically,
for an input image I ∈ RH×W , we first downsample it by a factor r and get image I↓ ∈ RrH×rW .
Then, we upsample it to the raw resolution, generating the reconstructed image Î ∈ RH×W . Fol-
lowing this, we input the reconstructed images into trackers.

To assess the effectiveness of resizing-based defense, we varied the downsampling ratio within the
range r ∈ {0.9, 0.8, . . . , 0.1}. As shown in Table 12, we observe that: 1. Resizing proves to
enhance the tracker’s accuracy under various attacks. 2. The efficacy of this enhancement varies
depending on the attack type. Resizing significantly mitigates the impact of the SPARK attack,
elevating precision from 69.8 to 83.9, but exhibits limited effectiveness against the RTAA, where
precision increases modestly from 32.7 to 49. 3. The influence on RTAA remains constrained as
precision increases from 32.7 to 49.3. Gradually increasing r improves precision under RTAA but
adversely affects precision in clean data and IoUAttack scenarios. 4. Compared to the resizing
method, LRR consistently improves tracker precision across all attacks, showcasing a noteworthy
advantage while maintaining a high score on clean data.

Regarding compression, we utilize JPG compression for image reconstruction, adjusting compres-
sion qualities with q ∈ [98%, 96%, 94%, 92%, 90%]. The results are presented in Table 13, and the
following observations are made: 1. Compression with a high-quality requirement exhibits limited
influence on various attacks. 2. As the compression quality decreases, precision on different attacks
increases, highlighting the effectiveness of compression as a defense mechanism against adversarial

21



Published as a conference paper at ICLR 2024

Table 12: Comparison of resizing-based defense with different settings of r on OTB100.
SiamRPN++ Attacks OTB100 Prec. (%)

Org. LRR r = 0.9 r = 0.8 r = 0.7 r = 0.6 r = 0.5 r = 0.4 r = 0.3 r = 0.2 r = 0.1

Res50

wo.Atk 91.4 87.8 86.5 86.2 85.9 85.4 85.3 82.7 82.7 80.8 69.9
RTAA 32.7 86.9 49.3 56.7 62.0 69.0 72.5 77.3 80.2 80.3 69.0

IoUAttack 75.9 85.3 80.3 80.1 79.0 79.0 76.1 76.5 74.9 72.0 63.3
CSA 47.2 89.4 71.6 80.3 84.6 86.0 83.8 83.1 83.0 81.8 69.1

SPARK 69.8 89.3 83.9 85.1 88.1 87.8 86.0 87.7 85.4 82.5 72.2

Table 13: Comparison of compression-based defense with different settings of q on OTB100.

SiamRPN++ Attacks OTB100 Prec. (%)
Org. LRR q = 98% q = 96% q = 94% q = 92% q = 90%

Res50

wo.Atk 91.4 87.8 90.8 89.6 90.2 89.7 90.1
RTAA 32.7 86.9 33.5 42.9 50.1 60.6 66.1

IoUAttack 75.9 85.3 74.8 74.4 76.5 76.2 77.1
CSA 47.2 89.4 49.0 51.4 51.8 56.3 58.7

SPARK 69.8 89.3 78.1 82.1 83.6 85.4 85.9

tracking. 3. The improvements achieved by compression under attacks are limited and fall short of
the results obtained with LRR.

A.9 DETAILS OF ADVERSARIAL TRACKING ATTACKS

We implement adversarial tracking attacks via the released codes from existing tracking adversarial
attacks (i.e., RTAA (Jia et al., 2020), IoUAttack (Jia et al., 2021), CSA Yan et al. (2020), and SPARK
Guo et al. (2020b)) to implement attacks in our experiments. We detail some setups as follows.

For RTAA, we utilized their originally released code (https://github.com/VISION-SJTU/
RTAA/blob/main/DaSiamRPN/code/run_attack.py). The process follows these steps:
1. RTAA receives an incoming image and the target location where the image is the search region
cropped by the studied tracker. 2. RTAA adds adversarial perturbations to the search region and
outputs an adversarial example for the tracker to handle. At each frame, the attack optimizes the ad-
versarial perturbation iteratively ten times, with the maximum perturbation set to 10/255. 3. RTAA
outputs the optimized adversarial example as the new search region.

For the IoU Attack, we adhered to their default setups in their released code for conducting our
experiments (https://github.com/VISION-SJTU/IoUattack/blob/main/pysot/
tools/test_IoU_attack.py). Specifically, we follow the subsequent steps: 1. IoUAttack
receives the frame and targeted bounding box as inputs. 2. IoUAttack optimizes the perturbations
iteratively until the IoU score is below the predefined score (See the released code for details). 3.
IoU outputs the optimized adversarial frame to attack the tracker.

For CSA, we employed their released pre-trained perturbation generator to at-
tack each frame (https://github.com/MasterBin-IIAU/CSA/blob/
efd69a5705dd21c6701fd4ae7922f3a44647069a/pysot/pysot/tracker/
siamrpn_tracker.py). Specifically, CSA receives the clean search region and feeds it
to the pre-trained perturbation generator. Then, the generator outputs the adversarial perturbation
added to the clean search region.

In the case of SPARK (https://github.com/tsingqguo/AttackTracker/blob/
main/tools/attack_oim.py), we employed the targeted attack approach provided in
SPARK’s default setup from their released code for attacks. The procedure involves the follow-
ing steps: 1. SPARK takes the search region, cropped from the input frame, the targeted trajectory,
and the targeted tracker as inputs. 2. SPARK optimizes the perturbations, iterating 10 times every 30
frames and 2 times at other frames. The maximum perturbation allowed is 0.3. 3. SPARK generates
the optimized adversarial search region to attack the tracker.

22

https://github.com/VISION-SJTU/RTAA/blob/main/DaSiamRPN/code/run_attack.py
https://github.com/VISION-SJTU/RTAA/blob/main/DaSiamRPN/code/run_attack.py
https://github.com/VISION-SJTU/IoUattack/blob/main/pysot/tools/test_IoU_attack.py
https://github.com/VISION-SJTU/IoUattack/blob/main/pysot/tools/test_IoU_attack.py
https://github.com/MasterBin-IIAU/CSA/blob/efd69a5705dd21c6701fd4ae7922f3a44647069a/pysot/pysot/tracker/siamrpn_tracker.py
https://github.com/MasterBin-IIAU/CSA/blob/efd69a5705dd21c6701fd4ae7922f3a44647069a/pysot/pysot/tracker/siamrpn_tracker.py
https://github.com/MasterBin-IIAU/CSA/blob/efd69a5705dd21c6701fd4ae7922f3a44647069a/pysot/pysot/tracker/siamrpn_tracker.py
https://github.com/tsingqguo/AttackTracker/blob/main/tools/attack_oim.py
https://github.com/tsingqguo/AttackTracker/blob/main/tools/attack_oim.py

	Introduction
	Background and Related Works
	Language-Driven Resamplable Continuous Representation
	Overview
	Spatial-Temporal Implicit Representation (STIR)
	Language-Driven ResampleNet (LResampleNet)
	Implementation Details

	Experimental Results
	Comparison Results
	Ablation Study and Discussion

	Conclusion
	Reproducibility Statement
	Appendix
	Transferability across Datasets
	Detailed Analysis of LResampleNet's Impact
	Visualization Insights
	Transferability to Transformer-based Trackers
	Comparing with Tracking Adversarial Defense
	Detailed Discussion of Defense Efficiency
	Feasibility of using diffusion for tracking defense
	Comparing with resizing and compression-based Defenses
	Details of Adversarial Tracking Attacks




