
Quo Vadis: Supplementary Material
The supplementary material complements our work with additional information on the bird’s-eye-
view reconstruction in Appendix A. Furthermore, we provide implementation and training details on
different components and networks used in our method in Appendix B. Finally, we present visual
examples as visualizations and videos in Appendix C.

A Information on Bird’s-Eye View Reconstruction
The paper presents our approach to constructing a bird’s-eye-view (BEV) representation for a static
tracking sequence. Here, we extend the explanation by adding a description of moving cameras and
how we linearize the homography transformation for farther objects to avoid enormous distances and
unrealistic velocities.
A.1 Linearization of Homography
To get a bird’s-eye-view (BEV) representation of the tracking scene, we estimate the homography
H between the image and the ground plane. Hence, the homogenous pixel positions transform
accordingly to Equation (2) as follows:

s ·

 
x

y

1

!
= H ·

 
px

py

1

!
. (2)

This approach assumes that objects move on a perfect plane and object’s position in the image is
represented as the bottom mid-point of the object’s bounding box. Depending on the perspective
transformation of the camera, we find that minor changes in pixel value lead to enormous distances
in BEV. Given a homography matrix:

H =

 
h11 h12 h13

h21 h22 h23

h31 h32 h33

!
, (3)

the BEV coordinate y is computed as:

y =
h21 · px + h22 · py + h23

h31 · px + h32 · py + h33
. (4)

As the denominator in Equation (4) is approaching zero, the y-coordinate grows hyperbolically. This
behavior is undesired for trajectory prediction because these large jumps in the object’s position
result in unrealistic velocities for the object. Therefore, we define a threshold for which we linearly
extrapolate the transformation such that the transformed distance between two neighboring pixel
points is maximal 0.2m as shown as a red line in Figure 6b. This formulates the condition as

k
h21 · px + h22 · py + h23

h31 · px + h32 · py + h33
�

h21 · px + h22 · (py + 1) + h23

h31 · px + h32 · (py + 1) + h33
k  0.2m (5)

We call the py value for which the inequality Equation (5) is equal, the linearization threshold p
T
y .

The pixel point where the denominator of Equation (4) becomes 0 is called the horizon because no
point on the plane is projected on a lower point in the image.
To prevent this hyperbolic growth for image points closer to the horizon, we linerarize Equation (4)
around p

T
y and apply the linear transformation for all py  p

T
y as shown in Figure 6b. Thus, we

stabilize the distance between two points to prevent very unrealistic velocities, which would make
the transformed values pointless. To transform from pixel space to BEV and back, we also inverse
the linearized transformation to get a one-to-one mapping.

B Implementation Details
In this section, we provide additional information on the implementation of our method and its
key components. The source code is available at https://github.com/dendorferpatrick/
QuoVadis.
B.1 Synthetic Training Data
For training the trajectory predictor (Appendix B.2) and the depth estimator (Appendix B.3) we use
the MOTSynth dataset [19] which provides ground truth 3D positions of objects and image depth
information. We use the split suggested by Fabbri et al. [19] with 576 sequences in the training set
and 192 in the validation set.

16

https://github.com/dendorferpatrick/QuoVadis
https://github.com/dendorferpatrick/QuoVadis


(a) Horizon and Linear Threshold in Scene. (b) Linearization of BEV coordinates.

Figure 6: Demonstration of horizon and linearization threshold for sequence image. Linearization of
homography transformation is necessary to prevent enormous distances in the transformed coordinates
and unrealistic velocities.

B.2 Trajectory Predictor
For our trajectory model, we use the implementation of MG-GAN [13]. For studying the effect
of modeling social interactions on tracking, we implement a social max-pooling module following
S-GAN [23].
Model. The trajectory prediction model generates a set of K future trajectories {Ŷ k

i }k=1,...,K with
t 2 [tobs + 1, tpred] given the input trajectory Xi with t 2 [t1, tobs] for each pedestrian i. We use
tobs = 8 observation steps and tpred = 12 prediction steps as default for training the model. However,
input and output length can vary depending on the observed tracks during inference for the tracking
model.
For the multimodal MG-GAN implementation, we use nG = 3 generators from which we sample
one prediction from each generator during inference.
Training. We construct trajectories of the MOTSynth data with 8 observation and 12 prediction
steps, each step being 0.4s. The entire model is trained in a GAN framework using a prediction
model and a discriminator network. We train the network on the entire train dataset over 200 epochs,
with a learning rate � = 10�3, and using a batch size scheduler [58].
B.3 Depth Estimator
Depth estimation is a crucial part of the BEV estimation in our model. Therefore, we use a vision
transformer-based [18] network [6] for monocular dense depth estimation.
Model. The transformer-based model regresses the depth prediction as a linear combination of depth
range bins of adaptive size. The network encoder-decoder extracts visual features from the image,
which are passed to the mVit block. mVit is a lightweight vision transformer based on [18]. The
model applies an MLP on top of the mVit’s output, predicting the size of the bins for the depth range.
The encoder computes the weights of the bins by passing the features through multiple convolutional
layers with a final softmax non-linear activation function.
Training. The network trains on the synthetic MOTsynth dataset to leverage a large number of
tracking scenes of varying perspectives, weather, and light conditions. To better generalize to real-
world data, we augment the scenes with ground reflections by mirroring surfaces in the image. This
results in better performance, especially for the indoor MOT sequences, with ground reflections. We
find the model trained on synthetic data performs well on real data even without fine-tuning.
To increase the default model depth map resolution from 640 ⇥ 480 to 960 ⇥ 576 we grow the
transformer positional embedding vector size from 500 to 1000.
We trained the model using AdamW optimizer [40] with weight decay 10�2. Following [57], the
maximum learning rate �max was set to 3.5⇥ 10�4 with linear warm-up from 1

4�max ! �max for the
first 30% of the iterations followed by cosine annealing to 3

4�max. We trained the model for 20 epochs
with an image resolution of 960⇥ 576 on a training split of MOTSynth dataset with the batch size of
8 on 4 RTX8000 for one week. Then, we trained the model for 30 epochs with an image resolution
of 960⇥ 576 on the full MOTSynth dataset with a batch size of 8 on 4 RTX8000 for ten days.

17



(a) Projected MG-GAN prediction (b) MG-GAN predictions in BEV (c) Prediction of Kalman Filter in
Pixel Space

Figure 7: Demonstration of prediction for MG-GAN in BEV and Kalman filter in pixel space.

B.4 Image Segmentation
We run a pre-trained Detectron2 [73] segmentation network to get the segmentation masks of the
tracking scene images. Explicitly, we use the pre-trained COCO Panoptic Segmentation model with
Panoptic FPN [73]. The model outputs semantic labels for 134 COCO classes and panoptic object
ids, which are irrelevant to our task.
In our model, we use segmentation labels to mask ground pixels of the
scene. Therefore, we combine the following COCO classes to our ground class:
pavement, road, platform, floor, floor� wood, grass, sand, dirt.

B.4.1 Optical Flow
We estimate the optical flow using the implementation [12] of an attention-based GMA model[28].
We use the standard MMFlow configuration for the GMA pre-trained model on a mix of the datasets
[28, 17, 45, 9, 46, 30]. While the model was pre-trained on images with size (768, 368), we resized
the MOTChallenge images to (960, 540) at test time.

C Visual and Qualitative Results
This section shows a visual example of the difference between a BEV and a 2D image space prediction.
Furthermore, we want to point to the additional scene videos also provided in the Supplementary
material.
2D versus 3D. In Figure 7 we show the trajectory prediction of our MG-GAN projected into the
image (Figure 7a), the prediction in BEV (Figure 7b), and trajectory prediction in pixel space using a
Kalman Filter (Figure 7c). We find the problem of the model reasoning in pixel space and cannot
account for the effect of the camera perspective. As a consequence, this results in unrealistic motion
in image space.
In contrast, we see in Figure 7a that our model predicting in BEV understands the spatial structure
of the scene and is, therefore, able to predict the correct trajectory for the object and resolves the
long-term occlusion.
Example Videos. In addition to the written supplementary material, we provide brief video clips of
different MOT17 validation and test sequences with ByteTrack and Center Tracks.
In Figure 8, we give a brief description of the format of the provided video sequences. We show
our predictor output on the left side, the baseline tracker output in the middle, and the online BEV
prediction and reasoning on the right side. For our model, we show the tracker detection and
predictions in BEV, including their projection in the image.

D Information on computation of ID Recall
In the introduction, we present the performance of the baseline trackers compared to our trajectory
forecasting model on how well they can re-associate tracks after occlusion from occlusions. We
measure the performance as a fraction of ground-truth tracks detected and assigned correctly before
and after occlusion.
As the first step, we need to identify the ground-truth occlusion regions for every sequence. We use
the visibility scores of objects and threshold those into a binary visibility flag, stating whether an
object is visible in a given frame. Then, we apply a minimum rolling window on the visibility flags
to get connected components and to smooth the deviations of the visibility flag values. The rolling

18



Predicted 
Bounding 
Box

Detection in 
Image

Trajectory 
Prediction in 
Image and 
BEV

Matching radius 
in BEV

Tracking with 
trajectory forecasting

Input Tracker 
Baseline

Bird’s-Eye View (BEV) 
representation

Detection radius 
in BEV

Prediction 
in BEV

Figure 8: Description of supplementary sequence videos.

window also includes visible frames before and after the occlusion, where the actual IDSW may
happen. We compute the frame ids where an occlusion starts and ends by extracting all connected
components, with the visibility flag being 0. We only consider components where the object is visible
before and after the occlusion.
Finally, we check for every tracker if the tracker detected an object at the start and the end of the
occlusion component and if the track ids between the beginning and start match. We use ⌧vis = 0.1
as visibility threshold and a temporal window size ws = 5 as hyperparameters.

19


	Introduction
	Preliminaries
	Multi-object Tracking
	Trajectory Forecasting

	Methodology
	Data-driven Homography Estimation
	Forecasting
	Tracking via Forecasting

	Experimental Evaluation
	Bird's-Eye View Estimation
	Trajectory Prediction Models
	Tracking Evaluation
	Benchmark Evaluation

	Remarks and Limitations
	Conclusion
	Information on Bird's-Eye View Reconstruction
	Linearization of Homography

	Implementation Details
	Synthetic Training Data
	Trajectory Predictor
	Depth Estimator
	Image Segmentation
	Optical Flow


	Visual and Qualitative Results
	Information on computation of ID Recall

