
A Appendix / supplemental material

A.1 Bootstrapped Graph Latents (BGRL)

Bootstrapped Graph Latents (BGRL) [1] is a self-supervised graph representation learning method
used in this project. It avoids labels and negative samples by predicting alternate augmentations of
the same input graph.

A graph G = (X,A) is first augmented into two alternate views G1 = (X̃1, Ã1) and
G2 = (X̃2, Ã2) via graph augmentation functions T1 and T2, respectively. An online en-
coder Eθ with parameters θ then produces an online representation from the first augmented view,
H̃1 := Eθ(X̃1, Ã1), and a target encoder Eϕ with parameters ϕ produces a target representation
from the second augmented view, H̃2 := Eϕ(X̃2, Ã2). A prediction of the target representation,
Z̃1 := pθ(H̃1), is obtained by feeding the online representation into a node-level predictor pθ.

To update the online encoder’s parameters θ, the gradient of the cosine similarity of the predicted
target representation Z̃1 and the true target representation H̃2 is computed with respect to θ:

l(θ, ϕ) = − 2

N

N−1∑
i=0

Z̃(1,i)H̃
T
(2,i)∥∥∥Z̃(1,i)

∥∥∥∥∥∥H̃(2,i)

∥∥∥ (1)

θ ←− optimize(θ, η, ∂θl(θ, ϕ)). (2)

Here, η is the learning rate and in practice, the loss is symmetrized by also predicting the target
representation of the first view with the online representation of the second view.

The target encoder’s parameters ϕ are updated as an exponentially moving average with decay rate
τ of the online encoder’s parameters θ:

ϕ←− τϕ+ (1− τ)θ. (3)

A.2 Deep Graph Contrastive Representation Learning (GRACE)

Deep Graph Contrastive Representation Learning (GRACE) [2] is a self-supervised method for un-
supervised graph representation learning. Unlike methods relying on global readouts, GRACE di-
rectly contrasts node-level embeddings across two randomly corrupted views of the same graph.

Formally, given a graph G = (X,A), GRACE generates two augmented views G1 = (X̃1, Ã1) and
G2 = (X̃2, Ã2) by applying stochastic corruption functions T1, T2 to features and edges. Specif-
ically, GRACE uses (i) edge removal with probability pr and (ii) feature masking with probability
pm to generate diverse contexts.

A shared GNN encoder fθ then computes node embeddings U = fθ(X̃1, Ã1) and V =

fθ(X̃2, Ã2). For a node i, the embeddings (ui,vi) from the two views form a positive pair, while
embeddings from other nodes act as negatives. The similarity between two embeddings is estimated
by a critic

θ(u,v) =
g(u)⊤g(v)

∥g(u)∥ ∥g(v)∥
, (4)

where g(·) is a two-layer projection head and the similarity is scaled by a temperature τ .

The contrastive loss for node i is defined as

ℓ(ui,vi) = − log
exp(θ(ui,vi)/τ)

exp(θ(ui,vi)/τ) +
∑

k ̸=i exp(θ(ui,vk)/τ) +
∑

k ̸=i exp(θ(ui,uk)/τ)
. (5)

The final symmetric objective averages over all nodes:

J =
1

2N

N∑
i=1

[
ℓ(ui,vi) + ℓ(vi,ui)

]
. (6)
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A.3 Augmentation benchmark

To assess the computational costs associated with different augmentations and combinations of aug-
mentations, they were applied to synthetic graphs of varying sizes while measuring runtime and
memory usage.

For augmentations relevant to domain identification, synthetic graphs were generated to mimic the
structure of real domain identification data. These graphs consisted of nodes with 50 numerical
features, with feature similarities reflecting group structures, i.e., nodes within a group had more
similar features than those in different groups. For phenotype prediction augmentations, graphs were
designed to contain nodes annotated with a cell type feature and a cell size feature. Additionally,
edges were annotated with a binary indicator distinguishing ”near” from ”distant” connections.

All individual augmentations applicable to either domain identification or phenotype prediction were
tested on their respective synthetic graph types. Furthermore, combinations of augmentations, cor-
responding to those evaluated in the main experiments, were also benchmarked. Each augmentation
or combination was applied to synthetic graphs of increasing size, with each experiment repeated
three times on a single GPU. For each run, both the runtime and peak GPU memory usage were
recorded. The mean values across the three replicates were reported as the final result.

The results for domain identification augmentations are shown in Figure 1. Augmentation modes
using DropImportance exhibit higher runtime compared to baseline augmentations (DropFeatures
and DropEdges) and noise-based augmentations (SpatialNoise and FeatureNoise), though still run-
ning for 1 second or less for all graph sizes. Smoothing exhibits the highest memory usage of all the
augmentations.
Note: The relatively high runtime observed for smaller graphs primarily reflects fixed computa-
tional overheads (e.g., data loading, graph construction, and GPU initialization), which dominate
when per-graph computation is fast. These effects diminish as graph size increases, where runtime
scales more proportionally with the number of nodes and edges.

Figure 1: Benchmark of domain identification augmentations. Runtime (left) and peak GPU
memory usage (right) for domain identification augmentations across increasing graph sizes. Each
line represents either an individual augmentation or a combination of augmentations.

The results for phenotype prediction augmentations are shown in Figure 2. The runtime scaling
trends are similar to those in the domain identification results. Augmentation modes using DropIm-
portance scale worse than baseline and noise-based augmentations in both runtime and memory
usage.

Overall, the benchmark highlights substantial variability in the computational efficiency of different
augmentation strategies. Especially more complex augmentations, such as DropImportance and
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Figure 2: Benchmark of phenotype prediction augmentations. Runtime (left) and peak GPU
memory usage (right) for phenotype prediction augmentations across increasing graph sizes. Each
line represents either an individual augmentation or a combination of augmentations.

Smoothing, significantly increase runtime and memory consumption on large graphs, which also
introduces considerable computational overhead during model training.

A.4 Classification metrics

To assess the performance of the phenotype prediction model, several binary classification metrics
were used. These were computed from the predicted logits z ∈ RN and the ground truth binary
labels y ∈ {0, 1}N for all N samples.

First, the predicted logits were transformed into probabilities using the sigmoid function:

p̂ = σ(z) =
1

1 + e−z
(7)

A threshold τ ∈ [0, 1] was applied to convert probabilities into binary predictions:

ŷ = I[p̂ ≥ τ ] (8)

During validation, the threshold τ was chosen to maximize the F1 score across a set of candidate
thresholds. Once the optimal threshold was selected, the following metrics were computed:

• AUROC (Area Under the Receiver Operating Characteristic Curve): The AUROC
quantifies the probability that a randomly chosen positive sample is ranked higher than
a randomly chosen negative sample by the model’s scoring function. Formally, if s(x)
denotes the prediction score, then

AUROC = P
(
s(x+) > s(x−)

)
,

where x+ and x− are independent draws from the positive and negative classes, respec-
tively.
Equivalently, AUROC corresponds to the area under the curve tracing the true positive rate
(TPR) against the false positive rate (FPR) as the classification threshold is varied:

TPR(t) =
TP(t)

TP(t) + FN(t)
, FPR(t) =

FP(t)
FP(t) + TN(t)

,

where TP, FP, TN, FN denote true/false positives/negatives at threshold t. A value of 0.5
corresponds to random guessing, while 1.0 indicates perfect class separability.
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• Precision: Fraction of predicted positives that are correct:

Precision =
TP

TP + FP
(9)

• Recall (Sensitivity): Fraction of actual positives that are correctly identified:

Recall =
TP

TP + FN
(10)

• F1 Score: Harmonic mean of precision and recall, balancing both metrics:

F1 = 2 · Precision · Recall
Precision + Recall

(11)

A.5 Clustering evaluation metrics

To evaluate the quality of clustering results obtained, three metrics were employed: Normalized
Mutual Information (NMI), Homogeneity, and Completeness. These metrics assess how well the
predicted clustering aligns with ground truth domain labels.

NMI measures the mutual dependence between the predicted clustering C and the ground truth
labels Y , normalized by the entropy of both. It is defined as:

NMI(C, Y ) =
2 · I(C;Y )

H(C) +H(Y )
(12)

where I(C;Y ) is the mutual information between C and Y , and H(·) denotes entropy. Mutual
information is given by:

I(C;Y ) =
∑
c∈C

∑
y∈Y

P (c, y) log

(
P (c, y)

P (c)P (y)

)
(13)

Here, P (c, y) is the joint probability of a sample being in cluster c and class y, while P (c) and P (y)
are the marginal probabilities.

Homogeneity assesses whether each cluster contains only data points that belong to a single class. It
is defined as:

HOM(C, Y ) =

{
1 if H(Y |C) = 0

1− H(Y |C)
H(Y ) otherwise

(14)

where H(Y |C) is the conditional entropy of the ground truth labels given the cluster assignments,
and H(Y ) is the entropy of the ground truth.

Completeness measures whether all members of a given class are assigned to the same cluster. It is
defined as:

COM(C, Y ) =

{
1 if H(C|Y ) = 0

1− H(C|Y )
H(C) otherwise

(15)

where H(C|Y ) is the conditional entropy of the predicted cluster assignments given the true class
labels.

A.6 Possible cell type transitions for the PhenotypeShift augmentation

We allow a restricted set of biologically motivated cell type transitions, reflecting known plasticity
and differentiation processes in the tumor microenvironment:

• Tumor adaptation: Tumor cells (normal) can transition to hypoxic tumor states [3].
• Fibroblast (CAF) plasticity: Collagen CAFs may become myofibroblastic CAFs

(mCAFs) or adapt to hypoxia; mCAFs can further switch into SMA+ CAFs, PDPN+

CAFs, vascular CAFs, or hypoxic CAFs; iCAFs can adopt PDPN+ or IDO+ states; IDO+

CAFs can also adapt to hypoxia; tumor-promoting CAFs (tCAFs) can transition to hypoxic
tCAFs [4–6].
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• CD4+ T cell differentiation: CD4 T cells can give rise to regulatory T cells (Tregs), PD1+

exhausted cells, IDO+ subsets, proliferative (Ki67+) states, or TCF1/7+ progenitor-like
cells [7, 8].

• CD8+ T cell differentiation: CD8 T cells can give rise to IDO+ subsets, proliferative
(Ki67+) states, or TCF1/7+ progenitor exhausted cells [8, 9].

• Myeloid refinement: Myeloid cells can be further refined into neutrophil identities, re-
flecting annotation resolution rather than a true biological transition [10].

A.7 Hyperparameter ranges used for tuning augmentations

Table 1: Hyperparameter search ranges for graph augmentations. For each augmentation, the
tuned hyperparameters and their respective ranges are listed. Intervals denote uniform sampling
from the specified range.

Augmentation Hyperparameter Range
DropEdges p [0.1, 0.4]

DropFeatures p [0.1, 0.4]

DropImportance λp [0.4, 0.6]
µ [0.1, 0.4]

SpatialNoise σspatial [2.0, 30.0]

FeatureNoise σfeature [0.05, 1.0]

SmoothFeatures α [0.0, 0.5]

PhenotypeShift pshift [0.0, 0.3]
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