
A Table of Notations

Notation Description
T The length of decision horizon
P The transition matrix of underlying states
µ The mean reward matrix
M The set of underlying states
I The set of arms
R The set of rewards
Mt The underlying state at time t
It The chosen arm at time t
Rt The random reward at time t
Ft The history up to time t
ρ∗ The optimal long term average reward
RT Regret during the total horizon
bt The belief state at time t
B The set of belief states

c(m, i) The reward function given the state and arm
c̄(b, i) The reward function w.r.t. belief state
Q The reward distribution
H The belief state forward kernel
T̄ The transition kernel w.r.t. belief state
D The uniform upper bound of span(v)
Eπ Taken expectation respect to the true parameters µ and P under policy π
Eπk Taken expectation respect to estimated parameters µk and Pk under policy π

Table 2: Summary of notations

B Constants in Proposition 1

We consider the action-reward pair (Rt, It) as our observation of the underlying state Mt. We encode
the pair (r, i) into a variable s ∈ {1, 2, ..., 2I} through a suitable one-to-one mapping. We rewrite
our observable random vector (Rt, It) as a random variable St. Hence we can define the following
matrix A1, A2, A3 ∈ R2I×M , where

A1(s,m) = P(St−1 = s|Mt = m),
A2(s,m) = P(St = s|Mt = m),
A3(s,m) = P(St+1 = s|Mt = m),

for s ∈ {1, 2, ..., 2I}, k ∈M = {1, 2, ...,M}. It follows from Lemma 5, Lemma 8 and Theorem 3
in [8] that the spectral estimators µ̂, P̂ have the following guarantee: pick any δ ∈ (0, 1), when the
number of samples n satisfies
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(
G 2
√

2+1
1−θ

ωminσ2

)2

log

(
2(S2 + S)

δ

)
max

{
16×M1/3

C
2/3
0 ω

1/3
min

,
2
√

2M

C2
0ωminσ2

, 1

}
,

then with probability 1− δ we have
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for m ∈M up to permutation, with
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where S = 2I , C0 is a numerical constant (see Theorem 16 in [8]), σ1,−1 is the smallest nonzero sin-
gular value of the covariance matrix E[yt+1⊗yt−1], and σ = min{σmin(A1), σmin(A2), σmin(A3)},
where σmin(Ai) represents the smallest nonzero singular value of the matrix Ai, for i = 1, 2, 3. In
addition, ω = (ω(m)) represents the stationary distribution of the underlying Markov chain {Mt},
and ωmin = minm ω(m) ≥ ε = mini,j Pij . Finally, G and θ are the mixing rate parameters such
that

sup
m1

||f1→t(·|m1)− ω||TV ≤ Gθt−1,

where f1→t(·|m1) denotes the probability distribution vector of the underlying state at time t, starting
from the initial state m1. Under Assumption 3, one can take G = 2 and have the (crude) bound
θ ≤ 1− ε, see e.g. Theorems 2.7.2 and 2.7.4 in [26].

C Proof of Proposition 2

Proof. We first introduce a few notations. Let Vβ(b) be the (optimal) value function of the infinite-
horizon discounted version of the POMDP (or belief MDP) with discount factor β ∈ (0, 1) and initial
belief state b. Define vβ(b) := Vβ(b)− Vβ(s) for a fixed belief state s, where vβ is the bias function
for the discounted problem. We also introduce `1 distance to the belief space B: ρb(b, b′) := ‖b−b′‖1.
For any function f : B 7→ R, define the Lipschitz module of a function f by

lρB(f) := sup
b 6=b′

|f(b)− f(b′)|
ρb(b, b′)

.

The main idea of the proof is as follows. To bound span(v) := maxb∈B v(b)−minb∈B v(b) where v
is the bias function for our undiscounted problem, it suffices to bound the Lipschitz module of v due
to the fact that supb 6=b′ ||b− b′||1 = 2. Under our assumptions, it can be shown that the bias function
v for the undiscounted problem satisfies the relation

v(b) = lim
β→1−

vβ(b), for b ∈ B. (5)

Then applying Lemma 3.2(a) [23] yields

lρB(v) ≤ lim
β→1−

lρB(vβ) = lim
β→1−

lρB(Vβ). (6)

So it suffices to bound limβ→1− lρB(Vβ). The bound for lρB(Vβ) in turn implies that (vβ)β is a
uniformly bounded equicontinuous family of functions, and hence validates (5) by Theorem 2 in [40].

We next proceed to bound lρB(Vβ) and we will show that for any β ∈ (0, 1) we have lρB(Vβ) ≤ η
1−γ

for some constants η > 0, γ ∈ (0, 1) that are both independent of β. To this end, we consider the
finite horizon discounted belief MDP, and let Vn,β be the optimal value function for the discounted
problem with horizon length n and discount factor β. Since the reward is bounded, it is readily seen
that limn→∞ Vn,β = Vβ . Then Lemma 2.1(e) [23] suggests that

lρb(Vβ) ≤ lim inf
n→∞

lρb(Vn,β). (7)

Thus, to bound lρb(Vβ), it suffices to bound the Lipschitz module lρb(Vn,β). The strategy is to apply
the results including Lemmas 3.2 and 3.4 in [23], but it requires a new analysis to verify the conditions
there.
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To proceed, standard dynamic programming theory states that Vn,β(b) = J1(b), and J1(b) can be
computed by the backward recursion:

Jn(bn) = c̄(bn, in),

Jt(bt) = max
it∈I

{
c̄(bt, it) + β

∫
B
Jt+1(bt+1)T̄ (dbt+1|bt, it)

}
, 1 ≤ t < n, (8)

where T̄ is the (action-dependent) one-step transition law of the belief state, and Jt(bt) are finite for
each t. More generally, for a given sequence of actions i1:n, the n-step transition kernel for the belief
state is define by

T̄ (n)(A|b, i1:n) := P(bn ∈ A|b1 = b, i1:n), A ⊂ B. (9)

To use the results in [23], we need to study the Lipschitz property of this multi-step transition kernel as
we will see later. Following [23], we introduce the Lipschitz module for a transition kernel φ(b, db′)
on belief states. Let KρB(ν, θ) be the Kantorovich metric of two probability measure ν, θ defined on
B:

KρB(ν, θ) := sup
f

{∣∣∣∣∫
B
f(b)ν(db)−

∫
B
f(b)θ(db)

∣∣∣∣ , f ∈ Lip1(ρB)

}
,

where Lip1(ρB) is the set of functions on B with Lipschitz module lρB(f) ≤ 1. Then the Lipschitz
module of the transition kernel lρB(φ) is defined as:

lρB(φ) := sup
b1 6=b2

KρB(φ(b1, db′), φ(b2, db′))

ρB(b1, b2)
.

The transition kernel φ is called Lipschitz continuous if lρB(φ) < ∞. To bound lρB(Vn,β) and to
apply the results in [23], the key technical result we need is the following lemma. We defer its proof
to the end of this section. Recall that ε = min

i,j∈M
Pi,j > 0.

Lemma 1. For 1 ≤ n <∞, the n-step belief state transition kernel T̄ (n)(·|b, i1:n) in (9) is uniformly
Lipschitz in i1:n, and the Lipschitz module is bounded as follows:

lρB(T̄ (n)) ≤ C4α
n + C5,

whereC4 = 2
1−α andC5 = 1

2 + α
2 with α = 1− ε

1−ε ∈ (0, 1). As a consequence, there exist constants
n0 ∈ Z+ and γ < 1 such that lρB(T̄ (n0)) < γ for any i1:n. Here, we can take n0 = dlogα

1−C5

2C4
e,

and γ = 1
2 (1 + C5) = 3+α

4 .

With Lemma 1, we are now ready to bound lρB(Vn,β). Consider n = kn0 for some positive integer k.
We can infer from the value iteration in (8) that

Jt(bt) = sup
it:t+n0−1

{ n0−1∑
l=0

βl
∫
B
c̄(bt+l, it+l−1)T̄ (l)(dbt+l|bt, it:t+l−1)

+ βn0

∫
B
Jt+n0(bt+n0)T̄ (n0)(dbt+n0 |bt, it:t+n0−1)

}
, 1 ≤ t ≤ n− n0.(10)

Bounding c̄ in (10) by rmax = 1 (the bound for rewards) and T̄ (l) by its Lipschitz module, we obtain
the following inequality using Lemmas 3.2 and 3.4 in [23]:

lρB(Jt) ≤ rmax ·
n0−1∑
l=0

βtlI
l

ρB(T̄ (l)) + βn0 · lI
n0

ρB (T̄ (n0)) · lρB(Jt+n0),

where lI
l

ρB(T̄ (l)) is the supremum of the Lipschitz module lρB(T̄ (l)) over actions:

lI
l

ρB(T̄ (l)) := sup
it:t+l−1

sup
bt 6=b′t

KρB(T̄ (l)(dbt+l|bt, it:t+l−1), T̄ (l)(dbt+l|b′t, it:t+l−1))

ρB(bt, b′t)
, 0 ≤ l ≤ n0.
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Note that the value function in the last period Jn(bn) = c̄(bn, in) is uniformly Lipschitz in in with
Lipschitz module rmax = 1. Applying the last inequality iteratively for ni = 1 + in0 with 0 ≤ i < k
and by Lemma 1, we have

lρB(Jni) ≤
n0−1∑
t=0

βtlI
t

ρB(T̄ (t)) + βn0 · γ · lρB(Jni+1
)

≤
n0−1∑
t=0

[C4α
t + C5] + βn0 · γ · lρB(Jni+1

)

≤ η + βn0γ · lρB(Jni+1
),

where

η =
C4

1− α
+ C5n0, (11)

and C4, C5, n0, α are given in Lemma 1. Iterating over i and using lρB(Jn) = lρB(Jkn0) = rmax,
we obtain

lρB(J0) ≤ η · 1− (βn0γ)
k

1− βn0γ
+ (βn0γ)

k · rmax.

Recall that for n = kn0, Vn,β(b) = Vkn0,β(b) = J0(b). Since β < 1 and γ < 1, we then get

lim inf
k→∞

lρB(Vkn0,β) ≤ η

1− γ
.

Together with (6) and (7), we can deduce that for a belief MDP satisfying mini,j∈M Pij = ε > 0,
the span of the bias function is upper bounded by

span(v) ≤ D(ε) :=
2η(ε)

1− γ(ε)
,

where with slight abuse of notations we use η(ε) (see (11)) and γ(ε) (see Lemma 1) to emphasize
their dependency on ε. The proof is completed by simplifying the expression of D(ε).

C.1 Proof of Lemma 1

Proof. Rewriting the Kantorovich metric, we have:

K{T̄ (n)(db′|b1, i1:n), T̄ (n)(db′|b2, i1:n}

= sup
f

{∣∣∣∣∫ f(b′)T̄ (n)(db′|b1, i1:n)−
∫
f(b′)T̄ (n)(db′|b2, i1:n)

∣∣∣∣ , f ∈ Lip1

}
= sup

f

{∣∣∣∣∫ f(b′)T̄ (n)(db′|b1, i1:n)−
∫
f(b′)T̄ (n)(db′|b2, i1:n)

∣∣∣∣ , f ∈ Lip1, ||f ||∞ ≤ 1

}
.

The last equality follows from the following argument. Note that the span of a function f with
Lipschitz module 1 is bounded by Diam(B) where Diam(B) := supb1 6=b2 ||b1 − b2||1 = 2. So
for any f ∈ Lip1 we can find a constant c that ||f + c||∞ ≤ Diam(B)/2. Moreover, let φ(f) =

|
∫
f(b′)T̄ (n)(db′|b1, i1:n)−

∫
f(b′)T̄ (n)(db′|b2, i1:n)|, we know φ(f) = φ(f + c) for any constant

c. Without loss of generality, we can constrain ||f ||∞ ≤ Diam(B)/2 ≤ 1.

We introduce a few notations to facilitate the presentation. We define the n-step reward kernel Q̄(n),
where Q̄(n)(

∏n
t=1 drt|b, i1:n) is a probability measure onRn:

Q̄(n)(A1 × ...×An|b, i1:n) = P((r1, . . . , rn) ∈ A1 × ...×An|b, i1:n).

Given the initial belief b, we can define the n-step forward kernel H(n) as follows where bn+1 is the
belief at time n+ 1:

bn+1 = H(n)(b, i1:n, r1:n).
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Then it is easy to see that the belief transition kernel T̄ (n) defined in (9) satisfies

T̄ (n)(A|b, i1:n) =

∫
Rn

1{H(n)(b,i1:n,r1:n)∈A}Q̄
(n)(

n∏
t=1

drt|b, i1:n).

Then we can obtain:

∣∣∣∣∫
Rn

f(b′)T̄ (n)(db′|b1, i1:n)−
∫
Rn

f(b′)T̄ (n)(db′|b2, i1:n)

∣∣∣∣
=

∣∣∣∣∣
∫
Rn

f(H(n)(b1, i1:n, r1:n))Q̄(n)(

n∏
t=1

drt|b1, i1:n)−
∫
Rn

f(H(n)(b2, i1:n, r1:n))Q̄(n)(

n∏
t=1

drt|b2, i1:n)

∣∣∣∣∣
≤

∣∣∣∣∣
∫
Rn

f(H(n)(b1, i1:n, r1:n))

(
Q̄(n)(

n−1∏
i=0

drt|b1, i1:n)− Q̄(n)(

n∏
t=1

drt|b2, i1:n)

)∣∣∣∣∣
+

∣∣∣∣∣
∫
Rn

(
f(H(n)(b1, i1:n, r1:n))− f(H(n)(b2, i1:n, r1:n))

)
Q̄(n)(

n∏
t=1

drt|b2, i1:n)

∣∣∣∣∣ . (12)

We first bound the second term in (12). We can infer from Theorem 3.7.1 in [26] and its proof that
the impact of initial belief decays exponentially fast:

|H(n)(b1, i1:n, r1:n)−H(n)(b2, i1:n, r1:n)| ≤ C4α
n||b1 − b2||1,

where constant C4 = 2(1−ε)
ε and α = 1−2ε

1−ε < 1. So the second term of (12) can be bounded by

∣∣∣∣∣
∫
Rn

(
f(H(n)(b1, i1:n, r1:n))− f(H(n)(b2, i1:n, r1:n))

)
Q̄(n)(

n∏
t=1

drt|b2, i1:n)

∣∣∣∣∣
≤

∣∣∣∣∣
∫
Rn

∣∣∣H(n)(b1, i1:n, r1:n)−H(n)(b2, i1:n, r1:n)
∣∣∣ Q̄(n)(

n∏
t=1

drt|b2, i1:n)

∣∣∣∣∣
≤ C4α

n||b1 − b2||1, (13)

where the first inequality follows from f ∈ Lip1.

It remains to bound the first term in (12). Recall that b defines the initial probability distribution M1.
The n steps observation kernel is

Q̄(n)(

n∏
t=1

drt|b, i1:n) =
∑
m∈M

P(M1 = m)P(

n∏
t=1

drt|M1 = m, i1:n) =
∑
m∈M

b(m)P(

n∏
t=1

drt|M1 = m, i1:n).

Define a vector g ∈ RM as:

g(m) :=

∫
Rn

f(H(n)(b1, i1:n, r1:n))P(

n∏
t=1

drt|M1 = m, i1:n).
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We can rewrite the first term of (12):∣∣∣∣∣
∫
Rn

f(H(n)(b1, i1:n, r1:n))

(
Q̄(n)(

n∏
t=1

drt|b1, i1:n)− Q̄(n)(

n∏
t=1

drt|b2, i1:n)

)∣∣∣∣∣
=

∣∣∣∣∣
M∑
m=1

(b1(m)− b2(m))

∫
Rn

f(H(n)(b1, i1:n, r1:n))P(

n∏
t=1

drt|M1 = m, i1:n)

∣∣∣∣∣
=

∣∣∣∣∣
M∑
m=1

(
b1(m)− b2(m)

)
g(m)

∣∣∣∣∣
=

∣∣∣∣∣
M∑
m=1

(
b1(m)− b2(m)

)(
g(m)− maxm g(m) + minm g(m)

2

)∣∣∣∣∣
≤
∥∥b1 − b2∥∥

1
·
∥∥∥∥g(m)− maxm g(m) + minm g(m)

2

∥∥∥∥
∞

=
∥∥b1 − b2∥∥

1

1

2

(
max
m

g(m)−min
m

g(m)
)
, (14)

where the next to last equality follows from
∑M
m=1

(
b1(m)− b2(m)

)
= 0.

Next we bound maxm g(m) −minm g(m). From the equation above, it is clear that the quantity
1
2 (maxm g(m)−minm g(m)) ≤ 1, because ||f ||∞ ≤ 1. However to prove Lemma 1, we need a
sharper bound so that we can find a constant C5 < 1 (that is independent of b1, n and i1:n) with

1

2

(
max
m

g(m)−min
m

g(m)
)
≤ C5 < 1. (15)

Suppose (15) holds. Then on combining (12), (13) and (14), we obtain∣∣∣∣∫
B
f(b′)T̄ (n)(db′|b1, i1:n)−

∫
B
f(b′)T̄ (n)(db′|b2, i1:n)

∣∣∣∣ ≤ C4α
n||b1 − b2||1 + C5||b1 − b2||1.

It then follows that the Kantorovich metric is bounded by

K
(
T̄ (n)(db′|b1, i1:n), T̄ (n)(db′|b2, i1:n)

)
≤ C4α

n||b1 − b2||1 + C5||b1 − b2||1,

where C4 = 2(1−ε)
ε , α = 1− ε

1−ε , and ε = min
m,m′∈M

Pm,m′ > 0. So T̄ (n) is Lipschitz uniformly in

actions, and its Lipschitz module can be bounded as follows:

lI
n

ρB (T̄ (n)) := sup
i1:n

sup
b1 6=b2

K
(
T̄ (n)(db′|b1, i1:n), T̄ (n)(db′|b2, i1:n)

)
ρB(b1, b2)

≤ C4α
n + C5.

If we choose n = n0 := dlogα
1−C5

2C4
e, so that C4α

n0 + C5 <
1
2 (1 + C5) := γ < 1, then we obtain

the desired result lI
n0

ρB (T̄ (n0)) < γ.

It remains to prove (15). Since the setM = {1, . . . ,M} is finite, we pick m∗ ∈ argmin
m∈M

g(m), m̂ ∈

argmax
m∈M

g(m). We have

1

2

(
max
m

g(m)−min
m

g(m)
)

(16)

=
1

2

∑
r1:n∈Rn

f(H(n)(b1, i1:n, r1:n)) (P(r1:n|M1 = m̂, i1:n)− P(r1:n|M1 = m∗, i1:n))

≤ 1

2

∑
r1:n∈Rn

|P(r1:n|M1 = m̂, i1:n)− P(r1:n|M1 = m∗, i1:n)| ,
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where the inequality follows from Hölder’s inequality with ||f ||∞ ≤ 1. We can compute

P(r1:n|M1 = m1, i1:n)

=
∑

m2:n∈Mn−1

P(r1:n|M1 = m1, i1:n,M2:n = m2:n) · P(M2:n = m2:n|M1 = m1, i1:n)

=
∑

m2:n∈Mn−1

P(r1:n|i1:n,m1:n) · P(m2:n|M1 = m1, i1:n)

=
∑

m2:n∈Mn−1

(
n∏
t=1

P(rt|mt, it)

)
·

(
n−1∏
t=1

P(mt+1|mt, it)

)
,

where the last equality holds due to the conditional independence. We can then infer that for any
{r1:n}, {i1:n},

P(r1:n|M1 = m∗, i1:n)

=
∑

m2:n∈Mn−1

(
n∏
t=2

P(rt|mt, it)

)
·

(
n−1∏
t=1

P(mt+1|mt, it)

)
· P (m∗,m2)

≥
∑

m2:n∈Mn−1

(
n∏
t=1

P(rt|mt, it)

)
·

(
n−1∏
t=2

P(mt+1|mt, it)

)
· P (m̂,m1) · ε

1− ε

= P(r1:n|M1 = m̂, i1:n) · ε

1− ε
.

It follows that

|P(r1:n|M1 = m̂, i1:n)− P(r1:n|M1 = m∗, i1:n)|

≤ max

{(
1− ε

1− ε

)
P(r1:n|M1 = m̂, i1:n),P(r1:n|M1 = m∗, i1:n)

}
≤
(

1− ε

1− ε

)
P(r1:n|M1 = m̂, i1:n) + P(r1:n|M1 = m∗, i1:n).

Then we can obtain from (16) that
1

2

(
max
m

g(m)−min
m

g(m)
)

≤ 1

2

∑
r1:n∈Rn

[(
1− ε

1− ε

)
P(r1:n|M0 = m̂, i1:n) + P(r1:n|M0 = m∗, i1:n)

]
= α/2 + 1/2 := C5 < 1,

where α = 1− ε
1−ε ∈ (0, 1). The proof is complete.

D Proof of Proposition 3

The proof of Proposition 3 largely follows the proof of Proposition 3 in [18], with minor changes to
take into account the action sequence, so we omit details.

E Proof of Theorem 1

In this section we provide a complete proof of Theorem 1. We follow our prior simplication that
random reward follows the Bernoulli distribution. Here we want to clarify two notations in advance.
Eπ means the expectation is taken respect to true mean reward matrix µ and transition probabilities
P , and Eπk denotes that the underlying parameters are estimators µk and Pk.

Recalling the definition of regret in (1), it can be rewritten as:

RT =

T∑
t=1

(ρ∗ −Rt) =

T∑
t=1

(ρ∗ − Eπ[Rt|Ft−1]) +

T∑
t=1

(Eπ[Rt|Ft−1]−Rt). (17)
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We first bound the second term of (17), i.e. the total bias between the conditional expectation of
reward and the realization. Define a stochastic process {Xn, n = 0, · · · , T} as:

X0 = 0, Xt =

t∑
l=1

(Eπ[Rl|Fl−1]−Rl),

then the second term in (17) is XT . It is easy to see that Xt is a martingale. Moreover, due to the
Bernoulli distribution of Rt,

|Xt+1 −Xt| = |Eπ[Rt+1|Ft]−Rt+1| ≤ 1.

Applying the Azuma-Hoeffding inequality [9], we have

P

(
T∑
t=1

(Eπ[Rt|Ft−1]−Rt) ≥
√

2T ln
1

δ

)
≤ δ. (18)

Next we bound the first term of (17). Recall that the definition of belief state under the optimistic
and true parameters: bkt (m) = Pµk,Pk(Mt = m|Ft−1) and bt(m) = P(Mt = m|Ft−1), and the
definition of reward functions with respect to the true belief state c̄(bt, i) =

∑M
m=1 µm,ibt(m). We

can also define the reward functions with respect to the optimistic belief state bkt as:

c̄k(bkt , i) =

M∑
m=1

(µk)m,ib
k
t (m).

Because It is also adapted to Ft−1, we have

Eπ[µ(Mt, It)|Ft−1] = c̄(bt, It) = 〈(µ)It , bt〉,
Eπk [µk(Mt, It)|Ft−1] = c̄k(bkt , It) = 〈(µk)It , b

k
t 〉, (19)

where µ(Mt, It), µk(Mt, It) are the Mt-th row It-th column element of matrix µ, µk respectively,
and (µk)It and (µ)It are the It-th column vector of the reward matrix µk and µ, respectively.

Then we can rewrite the first term of (17):
T∑
t=1

(ρ∗ − Eπ[Rt|Ft−1]) =

T∑
t=1

(ρ∗ − Eπ[µ(Mt, It)|Ft−1]) =

T∑
t=1

(ρ∗ − c̄(bt, It)), (20)

where the first equation is due to the tower property and the fact that Rt and Ft−1 are conditionally
independent given Mt and It.

Let K be the number of total episodes. For each episode k = 1, 2, · · · ,K, let Hk, Ek be the
exploration and exploitation phases, respectively. Then we can split equation (20) to the summation
of the bias in these two phases as:

K∑
k=1

∑
t∈Hk

(ρ∗ − c̄(bt, It)) +

K∑
k=1

∑
t∈Ek

(ρ∗ − c̄(bt, It)). (21)

Moreover, we remark here that the length of the last exploitation phase |EK | =

min{τ2
√
K,max{T − (Kτ1 +

∑K−1
k=1 τ2

√
k), 0}}, as it may end at period T .

Step 1: Bounding the regret in exploration phases

The first term of (21) can be simply upper bounded by:

K∑
k=1

∑
t∈Hk

(ρ∗ − c̄(bt, It)) ≤
K∑
k=1

∑
t∈Hk

ρ∗ = Kτ1ρ
∗. (22)

Step 2: Bounding the regret in exploitation phases

We bound it by separating into “success” and “failure” events below. Recall that in episode k, we
define the set of plausible POMDPs Gk(δk), which is defined in terms of confidence regions Ck(δk)
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around the estimated mean reward matrix µk and the transition probabilities Pk. Then choose an
optimistic POMDP G̃k ∈ Gk(δk) that has the optimal average reward among the plausible POMDPs
and denote its corresponding reward matrix, value function, and the optimal average reward by µk, vk
and ρk, respectively. Thus, we say a “success” event if and only if the set of plausible POMDPs
Gk(δk) contains the true POMDP G. In the following proof, we omit the dependence on δk from
Gk(δk) for simplicity. From Algorithm 2, the confidence level of µk in episode k is 1− δk, we can
obtain:

P(G /∈ Gk, for some k) ≤
K∑
k=1

δk =

K∑
k=1

δ

k3
≤ 3

2
δ.

Thus, with probability at least 1− 3
2δ, “success” events happen. It means ρ∗ ≤ ρk for any k because

ρk is the optimal average reward of the optimistic POMDP G̃k from the set Gk. Then we can bound
the regret of “success” events in exploitation phases as follows.

K∑
k=1

∑
t∈Ek

(ρ∗ − c̄(bt, It)) ≤
K∑
k=1

∑
t∈Ek

(ρk − c̄(bt, It))

=

K∑
k=1

∑
t∈Ek

(ρk − c̄k(bkt , It)) + (c̄k(bkt , It)− c̄(bt, It)). (23)

To bound the first term of formula (23), we use the Bellman optimality equation for the optimistic
belief MDP G̃k on the continuous belief state space B:

ρk + vk(bkt ) = c̄k(bkt , It) +

∫
bkt+1∈B

vk(bkt+1)T̄k(dbkt+1|bkt , It) = c̄k(bkt , It) + 〈T̄k(·|bkt , It), vk(·)〉,

where T̄k(·|bkt , It) = Pµk,Pk(bt+1 ∈ ·|bkt , It) means transition probability of the belief state condi-
tional on pulled arm under estimated reward matrix µk and transition matrix of underlying Markov
chain Pk at time t.

Moreover, we note that if value function vk satisfies the Bellman equation (2), then so is vk + c1.
Thus, without loss of generality, we assume that vk needs to satisfy ||vk||∞ ≤ span(vk)/2. Then
from Proposition 2, suppose the uniform bound of span(vk) is D, then we have:

||vk||∞ ≤
1

2
span(vk) ≤ D

2
. (24)

Thus the first term of (23) can be bounded by

K∑
k=1

∑
t∈Ek

(ρk − c̄k(bkt , It))

=

K∑
k=1

∑
t∈Ek

(−vk(bkt ) + 〈T̄k(·|bkt , It), vk(·)〉)

=

K∑
k=1

∑
t∈Ek

(−vk(bkt ) + 〈T̄ (·|bkt , It), vk(·)〉) + 〈T̄k(·|bkt , It)− T̄ (·|bkt , It), vk(·)〉, (25)

where recall that T̄k(·|bkt , It) and T̄ (·|bkt , It) in the second equality are the belief state transition
probabilities under estimated and true parameters, respectively. And the last inequality is applying
the Hölder’s inequality.
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For the first term of (25), we have
K∑
k=1

∑
t∈Ek

(−vk(bkt ) + 〈T̄ (·|bkt , It), vk(·)〉)

=

K∑
k=1

∑
t∈Ek

(−vk(bkt ) + vk(bkt+1)) + (−vk(bkt+1) + 〈T̄ (·|bkt , It), vk(·)〉)

=

K∑
k=1

vk(bk
tk+τ1+τ2

√
k
)− vk(bktk+τ1+1) +

K∑
k=1

∑
t∈Ek

Eπ[vk(bkt+1)|Ft]− vk(bkt+1).

where the first term in the last equality is due to the telescoping from tk + τ1 + 1 to tk + τ1 + τ2
√
k,

the start and end of the exploitation phase in episode k. The second term in the last equality is
because:

〈T̄ (·|bkt , It), vk(·)〉 =

∫
bkt+1∈B

vk(bkt+1)T̄ (dbkt+1|bkt , It) = Eπ[vk(bkt+1)|bkt ] = Eπ[vk(bkt+1)|Ft].

Applying Proposition 2, we have

vk(bk
tk+τ1+τ2

√
k
)− vk(bktk+τ1+1) ≤ D.

We also need the following result, the proof of which is deferred to the end of this section.
Proposition 4. Let K be the number of total episodes up to time T . For each episode k = 1, · · · ,K,
let Ek be the index set of the kth exploitation phase and vk be the value function of the optimistic
POMDP at the kth exploitation phase. Then with probability at most δ,

K∑
k=1

∑
t∈Ek

Eπ[vk(bt+1)|Ft]− vk(bt+1) ≥ D
√

2T ln(
1

δ
),

where the expectation Eπ is taken respect to the true parameters µ and P under policy π, and the
filtration Ft is defined as Ft := σ(π1, R

π
1 , ..., πt−1, R

π
t−1).

Applying Proposition 4, with probability at least 1− δ, we have:
K∑
k=1

∑
t∈Ek

Eπ[vk(bkt+1)|Ft]− vk(bkt+1) ≤ D
√

2T ln(
1

δ
).

Thus, the first term of (25) can be upper bounded by:

KD +D

√
2T ln(

1

δ
). (26)

For the second term of (25), we note that T̄ (bkt+1|bkt , It) is zero except for two points where bkt+1 are
exactly the Bayesian updating after receiving an observation of Bernoulli reward rt taking value 0 or
1. Thus, we have the following transition kernel:

〈T̄k(·|bkt , It)− T̄ (·|bkt , It), vk(·)〉

≤
∣∣∣∣∫
B
vk(b′)T̄k(db′|bkt , It)−

∫
B
vk(b′)T̄ (db′|bkt , It)

∣∣∣∣
=

∣∣∣∣∣∑
rt∈R

vk
(
Hk

(
bkt , It, rt

))
Pk
(
rt|bkt , It

)
−
∑
rt∈R

vk
(
H
(
bkt , It, rt

))
P
(
rt|bkt , It

)∣∣∣∣∣
≤

∣∣∣∣∣∑
rt∈R

vk
(
Hk

(
bkt , It, rt

))
·
[
Pk
(
rt|bkt , It

)
− P

(
rt|bkt , It

)]∣∣∣∣∣
+

∣∣∣∣∣∑
rt∈R

[
vk
(
Hk

(
bkt , It, rt

))
− vk

(
H
(
bkt , It, rt

))]
· P
(
rt|bkt , It

)∣∣∣∣∣ , (27)
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where we use Hk and H to denote the belief updating function under the optimistic model (µk, Pk)
and the true model (µ, P ), and we use Pk and P to denote the probability with respect to the optimistic
model and true model respectively.

We bound the first term of (27) by∣∣∣∣∣∑
rt∈R

vk
(
Hk

(
bkt , It, rt

))
·
[
Pk
(
rt|bkt , It

)
− P

(
rt|bkt , It

)]∣∣∣∣∣
≤
∣∣vk (Hk

(
bkt , It, rt = 1

))
·
[
Pk
(
rt = 1|bkt , It

)
− P

(
rt = 1|bkt , It

)]∣∣
+
∣∣vk (Hk

(
bkt , It, rt = 0

))
·
[
Pk
(
rt = 0|bkt , It

)
− P

(
rt = 0|bkt , It

)]∣∣
=
∣∣vk (Hk

(
bkt , It, 1

))
·
[
〈(µk)It , b

k
t 〉 − 〈(µ)It , b

k
t 〉
]∣∣

+
∣∣vk (Hk

(
bkt , It, 0

))
·
[
1− 〈(µk)It , b

k
t 〉 −

(
1− 〈(µ)It , b

k
t 〉
)]∣∣

≤ 2||vk||∞ ·
∣∣〈(µk)It , b

k
t 〉 − 〈(µ)It , b

k
t 〉
∣∣

≤ D
∣∣〈(µk)It , b

k
t 〉 − 〈(µ)It , b

k
t 〉
∣∣

≤ D||(µk)It − (µ)It ||1 · ||bkt ||∞
≤ D||(µk)It − (µ)It ||1, (28)

where the first equality comes from Pk
(
rt = 1|bkt , It

)
=

∑
m∈M

Pk(rt = 1|m, It)bkt (m) =

〈(µ)It , b
k
t 〉 and Pk

(
rt = 0|bkt , It

)
=

∑
m∈M

Pk(rt = 0|m, It)bkt (m) = 1 − 〈(µ)It , b
k
t 〉, and the

third inequality is from (24), we have ||vk||∞ ≤ D
2 .

We can bound the second term of (27) as follows:∣∣∣∣∣∑
rt∈R

[
vk
(
Hk

(
bkt , It, rt

))
− vk

(
H
(
bkt , It, rt

))]
· P
(
rt|bkt , It

)∣∣∣∣∣
≤
∑
rt∈R

∣∣vk (Hk

(
bkt , It, rt

))
− vk

(
H
(
bkt , It, rt

))∣∣ · P (rt|bkt , It)
≤
∑
rt∈R

D

2

∣∣Hk

(
bkt , It, rt

)
−H

(
bkt , It, rt

)∣∣ · P (rt|bkt , It)
≤
∑
rt∈R

D

2
(L1||µ− µk||1 + L2||P − Pk||F ) · (1− α) · P

(
rt|bkt , It

)
=
D

2
(L1||µ− µk||1 + L2||P − Pk||F ) · (1− α), (29)

where α = 1− ε
1−ε . Here, the second inequality is implied from the proof of Proposition 2. The last

inequality follows from a refined bound in (4) of Proposition 3. Specifically, the current upper bound
in Proposition 3 is uniform in time, and it is crude for small t since the initial belief is the same with
b1 = b̂1. One can improve the bound by multiplying it with a factor of 1− αt−1. This follows from
Proposition 3 of [18] and its proof. Therefore, we can obtain the last inequality of (29), since here we
consider the one-step update of the beliefs under two different sets of model parameters.

Therefore, from (28) and (29), we can obtain that the second term of equation (25):

K∑
k=1

∑
t∈Ek

〈T̄k(·|bkt , It)− T̄ (·|bkt , It), vk(·)〉

≤
K∑
k=1

∑
t∈Ek

D

[
||(µ)It − (µk)It ||1 +

L1(1− α)

2
||µ− µk||1 +

L2(1− α)

2
||P − Pk||F

]
.(30)
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Summing up (26) and (30), the first term of formula (23) can be bounded by

K∑
k=1

∑
t∈Ek

(ρk − c̄k(bkt , It)) ≤ KD +D

√
2T ln(

1

δ
)

+

K∑
k=1

∑
t∈Ek

D

[
||(µ)It − (µk)It ||1 +

L1(1− α)

2
||µ− µk||1 +

L2(1− α)

2
||P − Pk||F

]
. (31)

Next we proceed to bound the second term of (23). By (19), it can be rewritten as

K∑
k=1

∑
t∈Ek

c̄k(bkt , It)− c̄(bt, It)

=

K∑
k=1

∑
t∈Ek

〈(µk)It , b
k
t 〉 − 〈(µ)It , bt〉

=

K∑
k=1

∑
t∈Ek

〈(µk)It , b
k
t 〉 − 〈(µ)It , b

k
t 〉+ 〈(µ)It , b

k
t 〉 − 〈(µ)It , bt〉,

then from the Hölder’s inequality, we can further bounded the right hand side of above formula to

K∑
k=1

∑
t∈Ek

||(µk)It − (µ)It ||1||bkt ||∞ + ||(µ)It ||∞||bkt − bt||1

≤
K∑
k=1

∑
t∈Ek

||(µk)It − (µ)It ||1 + ||bkt − bt||1.

By Proposition 3, we have ||bkt − bt||1 ≤ L1||µ − µk||1 + L2||P − Pk||F . Combining the above
expression with (31), we can see that with probability 1−δ, the regret incurred from “success” events,
i.e., (23), can be bounded

K∑
k=1

∑
t∈Ek

(ρ∗ − c̄(bt, It))

≤ KD +D

√
2T ln(

1

δ
) +

K∑
k=1

∑
t∈Ek

(D + 1)||(µ)It − (µk)It ||1

+

K∑
k=1

∑
t∈Ek

[(
1 +

D(1− α)

2

)
L1||µ− µk||1 +

(
1 +

D(1− α)

2

)
L2||P − Pk||F

]
.

Let T0 be the period that the number of samples collected in the exploration phases exceeds N0, that
is,

T0 := inf
t≥1
{

t∑
n=1

1(n∈Hk, for some k) ≥ N0}.

If T ≥ T0 after episode k0, then from Proposition 1, under the confidence level δk = δ/k3, we have

||(µk)m − (µ)m||2 ≤ C1

√
log( 6(S2+S)k3

δ )

τ1k
, m ∈M,

||Pk − P ||2 ≤ C2

√
log( 6(S2+S)k3

δ )

τ1k
.
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Together with the fact that the vector norm and matrix norm satisfy

||(µk)i − (µ)i||1 ≤
M∑
m=1

||(µk)m − (µ)m||1 ≤
M∑
m=1

√
M ||(µk)m − (µ)m||2, i ∈ I,

||µk − µ||1 = max
i
||(µk)i − (µ)i||1 ≤

M∑
m=1

||(µk)m − (µ)m||1 ≤
M∑
m=1

√
M ||(µk)m − (µ)m||2,

||P − Pk||F ≤
√
M ||P − Pk||2,

we obtain with probability at least 1− 5
2δ, the regret in exploitation phase can be bounded by

K∑
k=1

∑
t∈Ek

ρ∗ − c̄(bt, It)

≤ KD +D

√
2T ln(

1

δ
) +

K∑
k=k0

τ2
√
k

(
D + 1 +

(
1 +

D(1− α)

2

)
L1

)
M
√
MC1

√
log( 6(S2+S)k3

δ )

τ1k

+

K∑
k=k0

τ2
√
k

(
1 +

D(1− α)

2

)
L2

√
MC2

√
log( 6(S2+S))k3

δ )

τ1k
+ T0ρ

∗

≤ KD +D

√
2T ln(

1

δ
) + T0ρ

∗

+Kτ2

[(
D + 1 +

(
1 +

D(1− α)

2

)
L1

)
M3/2C1 +

(
1 +

D(1− α)

2

)
L2M

1/2C2

]√
log( 6(S2+S)K3

δ )

τ1
.

(32)

Step 3: Summing up the regret

Combining (22) and (32), we can get that with probability at least 1− 5
2δ, the first term of regret (17)

is bounded by
T∑
t=1

ρ∗ − c̄(bt, It)

≤ (Kτ1 + T0)ρ∗ +KD +D

√
2T ln(

1

δ
)

+Kτ2

[(
D + 1 +

(
1 +

D(1− α)

2

)
L1

)
M3/2C1 +

(
1 +

D(1− α)

2

)
L2M

1/2C2

]√
log( 6(S2+S)K3

δ )

τ1
.

(33)

Finally, combining (18) and (33), we can see that with probability at least 1− 7
2δ, the regret presented

in (17) can be bounded by

RT ≤ (Kτ1 + T0)ρ∗ +KD +D

√
2T ln(

1

δ
) +

√
2T ln

1

δ

+Kτ2

[(
D + 1 +

(
1 +

D(1− α)

2

)
L1

)
M3/2C1 +

(
1 +

D(1− α)

2

)
L2M

1/2C2

]√
log( 6(S2+S)K3

δ )

τ1
).

Note that
K−1∑
k=1

τ1 + τ2
√
k ≤ T ≤

K∑
k=1

τ1 + τ2
√
k,
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so the number of episodes K is bounded by ( T
τ1+τ2

)2/3 ≤ K ≤ 3( Tτ2 )2/3 .
Thus, we have shown that with probability at least 1− 7

2δ,

RT ≤ CT 2/3

√
log

(
9(S + 1)

δ
T

)
+ T0ρ

∗,

where S = 2I , and

C = 3
√

2

[(
D + 1 +

(
1 +

D(1− α)

2

)
L1

)
M3/2C1 +

(
1 +

D(1− α)

2

)
L2M

1/2C2

]
τ

1/3
2 τ

−1/2
1

+ 3τ
−2/3
2 (τ1ρ

∗ +D) + (D + 1)

√
2 ln(

1

δ
).

Here, M is the number of Markov chain states, where L1 = 4M(1−ε)2
ε2 min{µmin,1−µmax} , L2 = 4M(1−ε)2

ε3 +
√
M , with ε = min1≤i,j≤M Pi,j , α = 1 − ε

1−ε , and µmax, µmin are the maximum and minimum
element of the matrix µ respectively. The proof of Theorem 1 is therefore complete.

E.1 Proof of Proposition 4

Proof. For each episode k = 1, 2, · · · ,K, let Ek be the index set of the kth exploration phase, and
E = ∪Kk=1Ek be the set of all exploitation periods among the horizon T and vk be the value function
of the optimistic POMDP at the kth exploitation phase. For an arbitrary time t, let n =

∑t
i=1 1i∈E ,

which means the number of exploitation periods up to time t. Define a stochastic process {Zn, n ≥ 0}:
Z0 = 0,

Zn =

n∑
j=1

Eπ[vkj (b
kj
tj+1)|Ftj ]− vkj (b

kj
tj+1),

where kj = {k : j ∈ Ek} and tj = min{t :
∑t
i=1 1i∈E = j} mean the corresponding episode and

period of jth exploitation, respectively.

We first show that {Zn, n ≥ 0} is a martingale. Note that Eπ[|Zn|] ≤
∑n
j=1 span(vkj ) ≤ nD <

TD <∞. It remains to show Eπ[Zn|Fn−1] = Zn−1 holds, i.e., Eπ[Zn − Zn−1|Fn−1] = 0. Note
that

Eπ[Zn − Zn−1|Fn−1] = Eπ[Eπ[vkn(bkntn+1)|Ftn ]− vkn(bkntn+1)|Fn−1] = 0,

where the last equality is due to n− 1 ≤ n ≤ tn then applying the tower property.

Therefore, {Zn, n ≥ 0} is a martingale for any given policy π. Moreover, by Proposition 2, we have

|Zn − Zn−1| = |Eπ[vkn(bkntn+1)|Ftn ]− vkn(bkntn+1)| ≤ span(vkn) ≤ D.

Thus, {Zn, n ≥ 0} is a martingale with bounded difference.

Let N̄ =
∑T
i=1 1i∈Ek and apply the Azuma-Hoeffding inequality [9], we have

P(ZN̄ − Z0 ≥ ε) ≤ exp

(
−ε2

2
∑N̄
t=1D

2

)
.

Note that N̄ ≤ T and ZN̄ =
∑K
k=1

∑
t∈Ek E

π[vk(bt+1)|Ft] − vk(bt+1). Thus, setting ε =

D
√

2T ln( 1
δ ), we can obtain

P

(
K∑
k=1

∑
t∈Ek

Eπ[vk(bt+1)|Ft]− vk(bt+1) ≥ D
√

2T ln(
1

δ
)

)
≤ δ.

Hence we have completed the proof.
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