
Appendix

In this appendix, we report the proofs and the experimental results missing from the main body of the paper.

A MISSING PROOFS

Proof of Theorem 1. Let x⃗ be the vector containing the position of the agents and let y⃗ be the position of the facilities. We
denote with kj the capacity of the facility located at yj for every j ∈ [m]. In what follows, we assume that the set of agents
has an inner ordering that decides how to break ties.

Let us define D the set containing all the distances agents to facility, that is D = {|xi − yj |}i∈[n],j∈[m].

Let c⃗ ∈ Rm be the null vector, that is cj = 0 for every j ∈ [m]. We now construct a Nash Equilibrium through the following
iterative routine.

1. Let d be the minimum of the elements in D. Up to a tie, there exist a couple (i1, j1) ∈ [n]×[m] such that d = |xi1−yj1 |.
We set cj1 = cj1 + 1, si1 = j1, and remove all the elements of the form |xi1 − yj | from D. Then, if cj1 = kj1 , we
remove from D all the elements of the form |xi − yj1 |.

2. We repeat the routine of point (1) until D becomes empty.

3. If si = 0 for some i ∈ [n], we set them to be equal to 1.

Since D is discrete, the routine terminates in finite number of iterations and the output is a vector containing a set of agents’
pure strategies.

We now show that the output of the routine s⃗ is a Nash Equilibrium by proving that no agent i can increase its payoff by
deviating from playing si. Toward a contradiction, assume that an agent i can increase its payoff by playing s′i rather than si.
By definition of si, we have that if |xi − ys′i | < |xi − ysi |, then there are at least ks′i agents that are closer to ys′i or that
have a higher priority order than agent i and play strategy s′i. Thus the agent cannot gain a benefit from deviating from si,
which proves that s⃗ is a pure Nash Equilibrium.

Proof of Theorem 4. To complete the proof, we need to consider the case in which i1 < ⌊k1+1
2 ⌋. First, we consider the case

in which i2 < n− ⌊k2+1
2 ⌋. By the same argument used to prove the case in which i1 ≥ ⌊k1+1

2 ⌋, we have that the worst case
instance in this case is

xi =


xi = 0 if i = 1, . . . , i1,

xi = λ if i = i1 + 1, . . . , i2 − 1,

xi = 1 otherwise.

for some λ ∈ [0, 1], since the SW of the mechanism is minimized when the i1-th and i2-th agents are at the extremes of the
interval. For any value of λ, the SW of the mechanism is then

SW (x⃗) = i1 + (n− i2) + (1− λ)(k1 − i1) + λ(k2 − (n− i2)).
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Since SW (x⃗) is linear in λ, we have that the minimum is achieved at either λ = 0 or λ = 1. Thus the minimal SW
achievable is

min{k1 + (n− i2), k2 + i1}.
Since in both cases we have that the optimal SW is k1 + k2, we conclude the thesis for this specific case.

Lastly, we consider the case in which n− i2 ≥ ⌊k2+1
2 ⌋. In this case, the worst case instance places the first i1 agents on the

extreme left side, while places y2 in between two clusters of agents. Therefore we consider the following instance

xi =


xi = 0 if i = 1, . . . , i1,

xi = λ if i = i1 + 1, . . . , i2 − 1,

xi2 = λ+1
2

xi = 1 otherwise.

The SW induced by the mechanism is then

SW (x⃗) = i1 + 1 + (1− λ)(k1 − i1) +
1 + λ

2
(k2 − 1).

Again, since the SW is linear in λ, we have that the minimium is attained at either λ = 0 or λ = 1. Then the minimum SW
achievable by the mechanism is

min
{
k1 +

(k2 + 1)

2
, k2 + i1

}
.

To conclude notice that in both cases, the SW attained by the optimal solution is k1 + k2.

Proof of Theorem 5. When ∆ ≥ ⌈k1+k2

2 ⌉, the indexes i1 = ⌈k1

2 ⌉ and i2 = n− ⌊k2

2 ⌋ are well defined. Owing to Theorem 3
and by definition of ∆, we have that PMv⃗ is ES. Finally, from Theorem 4, we infer that ar(PMv⃗) =

k1+k2
k1+1

2 +k2

, which is

the smallest approximation ratio achievable by an ES percentile mechanism.

To conclude the proof, we need to show that the points (ii) and (iii) hold. We do that by carefully tuning i1 and i2. For the
sake of simplicity, we consider i1 and i2 to be rationals, to retrieve the real integer indexes, it suffices to take the floor or the
ceil functions of the quantities we retrieve.

Let us consider the case (ii), that is k1 − k2 ≤ ∆ ≤ ⌊k1+k2

2 ⌋+ 1. Owing to Theorem 4, we retrieve the best values i1 and i2
by maximizing the quantity

min{k1 + (n− i2), i1 + k2}.
Thus, we look for i1 and i2 such that

k1 + (n− i2) = i1 + k2,

subject to the constraint
n− i2 + i1 = ∆,

since, owing to Theorem 2, k1 + k2 agents must lay between xi1 and xi2 . By a simple computation, we have that

n− i2 =
k2 − k1 +∆

2
,

thus i1 = ∆−(k2−k1)
2 = k1 − k2 +

∆−(k2−k1)
2 and i2 = n− k2−k1+∆

2 , which concludes the proof of case (ii).

Lastly, we consider case (iii). In this case, we have that ∆ < k1 − k2, thus we have

k2 + i1 − k1 − (n− i2) = i2 − n+ i1 + k2 − k1 ≤ ∆+ k2 − k1 < 0,

since i2−n+ i1 < n− i2+ i1 ≤ ∆. Thus the minimum SW attainable by the mechanism is i1+k2, therefore, to maximize
the minimum achievable SW, we need to set i1 = ∆ and i2 = n, which concludes the proof.

Proof of Theorem 6. The proof follows by the same argument used to prove Theorem 3. Indeed, by condition (4) for every
j ∈ [m] we have that at least kj + kj+1 agents are located between yj and yj+1, thus the Social Welfare generated by the
facilities at yj and yj+1 does not depend on the specific Nash equilibrium. To conclude the proof, it suffices to apply this
argument to each couple of facilities (yj , yj+1).
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Proof of Theorem 7. To conclude the proof, we need to consider the case in which either i1 or n− im are lower than ⌊k+1
2 ⌋.

Since the other case is symmetric, we restrict our analysis to the case in which i1 ≤ n− i2. Again, since i1, n− im ≤ ⌊k+1
2 ⌋,

we have that the worst case instance places the first i1 agents at 0 and the last n− im + 1 at 1. Since every facility has the
same capacity, we have that the worst case instance has the following form

xi =



0 if i = 1, . . . , i1,

δ1 if i = i1 + 1, . . . , i2 − 1,

δ1 +
1−δ1−δ2
2(m−2) if i = i2,

δ1 + 2 1−δ1−δ2
2(m−2) if i = i2 + 1, . . . , i3 − 1,

δ1 + 3 1−δ1−δ2
2(m−2) if i = i3,

δ1 + 4 1−δ1−δ2
2(m−2) if i = i3 + 1, . . . , i4 − 1,

. . .

1− δ2 if i = im−1 + 1, . . . , im − 1,

1 otherwise

where δ1, δ2 ≥ 0 and such that δ1 + δ2 ≤ 1. The SW of the mechanism on this instance is

SW (x⃗) = i1 + (n− i2) +m− 2 + (k − i1)(1− δ1) +

m−2∑
i=2

(
(k − 1)

(m− 3 + δ1 + δ2
m− 2

))
+ (k − (n− im))(1− δ2).

Again, this quantity is linear in δ1 and δ2, thus it is minimized when δ1, δ2 ∈ {0, 1} By plugging in the possible combinations,
we infer that the minimum is achieved when δ1 = 1 and δ2 = 0 since i1 ≤ n− im.

Proof of Theorem 8. Owing to Theorem 7, the approximation ratio is lower when min{i1, n − im} is maximized, thus
when i1 = n− i2. Thus the best mechanism places the first and last facility at xℓ and xn−ℓ, where ℓ is a suitable integer.
Since i1 + n− i2 = n− 2k(m− 1) + 1, we complete the first half of the proof.

Notice that, if i1 or i2 is less than ⌊k+1
2 ⌋, then we have that

min{i1, i2} ≤ ⌊k + 1

2
⌋.

Therefore, (
m− 1

2

)
k +

1

2
− (m− 1)k −min{i1, i2} ≥ k

2
+

1

2
− ⌊k + 1

2
⌋ ≥ 0,

thus the approximation ratio of the mechanism is smaller when i1, i2 ≥ ⌊k+1
2 ⌋. Moreover, in this case, the approximation

ratio does not depend on the specific v⃗, thus any ES percentile mechanism whose v⃗ is such that i1, i2 ≥ ⌊k+1
2 ⌋ achieves

the minimum approximation ratio. Notice that, by definition, the vector v⃗ where vj = α+(2k−1)(j−1)
n for j ∈ [m] where

α = ⌊ (n−2k(m−1)+1)
2 ⌋ is such that i1, i2 ≥ ⌊k+1

2 ⌋. Moreover, owing to Theorem 2, it is also ES, hence it achieves the
minimal approximation ratio.

Lastly, notice that
mk

(m− 1
2 )k + 1

2

≤ mk

(m− 1
2 )k

=
(m− 1

2 )k + k
2

(m− 1
2 )k

= 1 +
1

2m− 1
,

which concludes the proof.

Proof of Theorem 9. It follows directly from Theorem 4. Indeed, it suffices to prove that even if we have m facilities to
locate, the optimal SW we can obtain by locating m facilities with capacity l is the same as locating two facilities with
capacity ⌈m

2 ⌉k and ⌊m
2 ⌋k. Since the worst case instance of any PMv⃗ with v⃗ ∈ [0, 1]2 places i1 agents 0 and the others at 1,

the optimal SW remains mk even though we locate m facilities separately.

Proof of Theorem 10. By definition of v⃗ = (0.5, 0.5, . . . , 0.5) and PMv⃗, we have that for every input x⃗ ∈ [0, 1]n the
facility is placed at ⌊n+1

2 ⌋. The number of agents on the left of y1 and the number of agents on the right of y1 is the same,
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hence the SW of the mechanism is minimizes when xi = 0 when i < ⌊n+1
2 ⌋, x⌊n+1

2 ⌋ =
1
2 , and xi = 1 otherwise. The SW

of the mechanism is mk+1
2 .

If n ≤ (m+ 1)k, the optimal SW on the instance is (m− 1)k + n−(m−1)k
2 + 1

2 . Indeed, we can locate m− 1 facilities at
either 0 or 1 that only accommodate the agents at 0 and 1. The total combined utility of the agents accommodated by these
m− 1 facilities is (m− 1)k. Since the agents are divided evenly among 0 and 1, the maximum utility attainable by the last
facility is at most n−(m−1)k

2 + 1
2 . Therefore the total utility of the optimal SW is (m− 1)k + n−(m−1)k

2 + 1
2 .

If n > (m+1)k, the optimal SW on this instance is mk, and it is attained when ⌊m
2 ⌋ facilities are placed at 0 and the others

at 1. To conclude the thesis it suffices to take the ratio of the optimal SW and the SW of the mechanism.

B ADDITIONAL EXPERIMENTAL RESULTS

In this section, we report the experimental results missing from the main body of the paper.

In Table 4, we report all our results for the case in which the facilities have balanced capacity, that is k1 = k2.

In Table 4, we report all our results for the case in which the facilities have unbalanced capacity, that is k1 > k2.

In Table 6, we report all our experiments non identical for different values of Λ.

We observe no major changes across all the different cases we considered.
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Figure 4: The Bayesian approximation ratio of PMbest and PMw⃗ in the balanced case, i.e. k1 = k2 for n = 10, 20, . . . , 50.
Every column contains the results for different vector k⃗. The first and second row contains the results for the Beta distribution.
In the first row, we consider an asymmetric Beta distribution, that is B(1, 9); in the second row a symmetric Beta, that is
B(5, 5). The third row contains the results for the triangular distribution T . The last row contains the results for the Uniform
distribution U .
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Figure 5: The Bayesian approximation ratio of PMbest and PMw⃗ when the agents are distributed according to T and the
facilities are unbalanced, i.e. k1 = α1n ̸= k2 = α2n for n = 10, 20, . . . , 50. Every column contains the results for different
vector k⃗. The first row contains the results for a symmetric Beta distribution, that is B(5, 5). The second row contains the
results for the triangular distribution T . The last row contains the results for the Uniform distribution U .
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Figure 6: The Bayesian approximation ratio of PMbest for a population non i.d.. The capacities of the facilities are balanced,
i.e. k1 = k2 = αn with α = 0.1, 0.2, 0.3, and for n = 10, 20, . . . , 50. In the first raw, the Beta distribution is symmetric, in
particular B(5, 5), in the second raw the Beta distribution is asymmetric, in particular B(1, 9). Every column contains the
results for different Λ.
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