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Abstract

A key source of complexity in next-generation AI models is the size of model1

outputs, making it time-consuming to parse and provide reliable feedback on. To2

ensure such models are aligned, we will need to bolster our understanding of3

scalable oversight and how to scale up human feedback. To this end, we study4

the challenges of scalable oversight in the context of goal-conditioned hierarchi-5

cal reinforcement learning. Hierarchical structure is a promising entrypoint into6

studying how to scale up human feedback, which in this work we assume can only7

be provided for model outputs below a threshold size. In the cardinal feedback8

setting, we develop an apt sub-MDP reward and algorithm that allows us to acquire9

and scale up low-level feedback for learning with sublinear regret. In the ordinal10

feedback setting, we show the necessity of both high- and low-level feedback,11

and develop a hierarchical experimental design algorithm that efficiently acquires12

both types of feedback for learning. Altogether, our work aims to consolidate the13

foundations of scalable oversight, formalizing and studying the various challenges14

thereof.15

1 Introduction16

Next-generation AI models are poised to produce sophisticated outputs such as long-form texts and17

videos, and execute complex tasks as agents. To build these AIs responsibly, we need to better18

our understanding of scalable oversight: the ability to provide scalable human feedback to these19

complex models [2, 8, 15, 5]. An immediate, key challenge to overcome is the size of model20

outputs, making it time-consuming for humans to parse and provide reliable feedback on, even with21

AI-assistance [24, 27, 23]. To this end, in this work, we consider human labelers with bounded22

processing ability such that accurate feedback can only be provided for outputs below some threshold23

size. We are interested in answering the question: how can we scale this limited feedback to supervise24

a model with outputs larger than this limit?25

Verily, this task is difficult without further assumptions. If the model output can only be assessed26

in its entirety, it is impossible for humans to provide reliable feedback. Thus, we investigate a27

natural setup that gives us hope to overcome the limitation in feedback — when model outputs have28

hierarchical structure. Hierarchical structure exists in many high-dimensional outputs of interest,29

including long-form texts (books made up of chapters), videos (movies made up of scenes) and code30

(main functions made up of helper functions). Indeed, it reflects the way we humans produce many31

of our most complex creations.32

To formalize the setting, we study scalable oversight in a goal-conditioned hierarchical reinforcement33

learning (HRL) setup. Goal-oriented RL is a popular approach that has seen sizable success in34

leveraging state space structure to overcome sparse rewards over long horizons [16, 17, 10]. Our35

aim in this paper differs in using this as an entry-point into understanding how to scale up bounded36
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human feedback, and formalizing the conceptual/technical challenges thereof. It turns out that one37

known advantage of HRL, besides more efficient exploration and efficient credit assignment, is the38

ability to enable scalable oversight.39

1.1 Preliminaries40

We consider a finite-horizon, Markov Decision Process (MDP) M = ⟨S,A, P, r, s1, H⟩, with41

finite state space S , finite action space A, transition probability P : S × A → ∆(S), reward42

r(s, a) : S ×A→ [0, 1] and finite horizon H = HhHl. The learner interacts withM starting at s143

and the episode ends after H time-steps.44

Accompanying Example: Consider the task of learning to generate a long-form, argumentation45

essay. Providing feedback to an end-to-end policy is difficult as labelers would have to read through46

entire essays to rate the outputs, after which it may be difficult still to assign a single rating to the47

entire essay. A tractable alternative is to learn a hierarchical model, with a higher-level policy that48

generates the essay arguments (goals), and lower-level policies that flesh out these points (realize49

these goals). It would then be easier for the labeler to rate the shorter-length essay content, and also50

individual fleshed out arguments, in order to generate a rating on the whole. This approach also51

mirrors existing rubrics for scoring essays [1].52

Bounded Feedback: To formalize the motivation above, we assume that for global policy π : S → A,53

it is infeasible to obtain reliable feedback for its trajectory τ ∼ π, P as |τ | = HhHl. Instead, we54

assume that the labeler can provide reliable feedback for trajectories of size Hh or Hl. This thus55

motivates hierarchical learning, which makes possible the acquisition of reliable feedback.56

1.1.1 Goal-conditioned HRL57

We are interested in learning a hierarchical policy consisting of a high-level policy πh : S → ∆(Ah)58

(takes actions in high-level action space Ah), and a set of low-level/sub-policies πl
s,a : Sl

s,a → ∆(A).59

Sl
s,a ⊆ S and consists of all states reachable from s after Hl steps. The high-level policy designates60

goals. The low-level policies aims to realize such goals, while achieving high intermediate returns.61

Goal Function: we assume access to a function g mapping high-level action ah at state s to a goal-62

state g(s, ah) ∈ Sl
s,a. For example, s is the current content of the essay, ah is the action (in natural63

language) “add an argument using X” and g(s, ah) is the content of the essay with the “argument64

using X” included.65

Interaction Protocol: At each time-step t, the high level policy chooses a high level action at based
on current state st, thus defining the sub-goal state g(sth, a

t). This induces a sub-MDP M(st, at)
with finite-horizon Hl, in which sub-policy πl

s,a is run for Hl time steps to try to achieve the goal. Let

Pr(s
πl
si,ai

Hl
) denote the distribution over the (final) Hlth state that πl

si,ai
reaches. The overall return

of the hierarchical policy (πh, {πl
s,a}) is the sum of intermediate returns r(πl

s′i,a
′
i
):

V πh,πl
s,a(s1) = E

a′
i∼πh(s′i),s

′
i+1∼Pr(s

πl
si,ai

Hl
)
[

Hh∑
i=1

r(πl
s′i,a

′
i
)|s′1 = s1].

Goal-conditioned sub-MDP: In more detail, sub-MDP M(s, a) is defined by high-level action66

a ∈ Ah and state s ∈ S. M(s, a) has state space Sl
s,a ⊆ S, action space A (action space of the67

originalM), transition probabilities P restricted to Sl
s,a, starting state s and finite horizon H l. The68

sub-MDP reward rl will be defined later and as we will see, an apt choice is crucial for learning with69

sublinear regret.70

High-level MDP: Given a set of low-level policies, πh may be thought of as operating over a high-71

level MDP with state space S, action space Ah, starting state s1 and finite horizon Hh. Importantly,72

the high-level transition P ′ of this MDP is a function of the current set of low-level policies, which73

may not necessarily reach the sub-goal state (especially at the start): Pr′(s′|s, a) = Pr(s
πs,a

Hl
= s′).74

Similarly, the high-level reward rh(s, a) = Esj ,aj∼πs,a,P [
∑Hl

j=1 r(sj , aj)|s1 = s] is the intermediate75

return of sub-policy πs,a inM(s, a). A key complication in hierarchical learning is that the transitions76

and rewards in the high-level MDP are non-stationary, as sub-policies πs,a are updated over time.77

2



Instantiation in the Example: returning to our example, for a cogent essay, the arguments need to be78

logically related and built on top of each other. This results in a sequential decision making problem79

corresponding to the one solved by the high level policy πh. Given an argument g(s, a) to flesh out,80

the low level policy πl
s,a generates up to Hl words, whose content aims to realize this argument.81

Additionally, low-level policies can incur intermediate rewards (return) for eloquent diction and clear82

structure when fleshing out the argument, all of which add to the essay’s persuasiveness and score.83

1.1.2 Learning Task84

Our aim is to learn a hierarchical policy, whose return is close to that of the optimal, goal-reaching85

hierarchical policy as we define below.86

Assumption 1 (Goal-Reachability). In every sub-MDP M(s, a), there exists a policy that achieves87

the goal g(s, a) almost surely. That is,there exists at least one policy π ∈ Πs,a in the policy class88

Πs,a such that Pr(sπHl
= g(s, a)) = 1.89

In other words, we assume that the goal function g is well-defined in that it designates goals that90

are feasible to reach from the starting state s (e.g. the argument can be successfully fleshed out in91

Hl words or less given the essay content thus far). With this assumption, let C be some constant92

large enough s.t. if π ∈ argmaxπ∈Πs,a
r(π) + C · Pr(sπHl

= g(s, a)), then π is goal-reaching,93

Pr(sπHl
= g(s, a)) = 1.94

Definition 1. Define optimal low-level policies as π∗
s,a ∈ argmaxπ∈Πs,a

r(π) + C · Pr(sπHl
=95

g(s, a)). Define optimal high-level policy as π∗ = argmaxπ∈Πh V π,π∗
s,a(s1).96

In words, π∗
s,a has the highest intermediate return of all goal-reaching policies. π∗ is the optimal97

high-level policy fixing each sub-MDP policy to be π∗
s,a.98

Learning Goal: We wish to learn a set of near-optimal high- and low-level polices (π, {πs,a}) such99

that: V π∗,π∗
s,a(s1)− V π,πs,a ≤ ϵ.100

1.1.3 Parametric Rewards101

Beyond the tabular setting, we also consider parametric reward functions, specifically the commonly102

studied linear setting.103

Assumption 2 (Linear Reward Parametrization). Suppose we have access to some feature map104

ϕ : S ×A→ Rd,M has linear reward parametrization w.r.t. ϕ if there exists an unknown, reward105

vector θ∗ ∈ Rd such that r(s, a) = ⟨ϕ(s, a), θ∗⟩ for all s, a ∈ S ×A.106

Given trajectory τ = (s1, a1, ..., sH , aH), we may then define trajectory feature ϕ(τ) =107 ∑
si,ai∈τ ϕ(si, ai), and policy feature expectation under transitions P , ϕP (π) = Eτ∼π,P [ϕ(τ)].108

1.2 Takeaways109

• Under cardinal feedback, we develop a novel no-regret learning Algorithm 1 that learns110

from low-level feedback only. Our main structural result shows that goal-conditioned HRL111

reduces to multi-task, sub-MDP regret minimization. Hence, the regret from the low-level112

builds up additively (and not say multiplicatively), as specualted about in [15].113

Our main insights are that apt sub-MDP reward design, and particularly suitable penalty for114

non-goal reachability, is needed for bounding regret and controlling the exit state of learned115

low-level policies (s.t. learned policies do not land at bad states with sizable probability).116

Doing so allows one to compose low-level policies together and stabilize learning in the high-117

level MDP. Additionally, no-regret algorithms are useful sub-routines for sub-MDP learning.118

The regret guarantee directly implies UCBs that are useful learning in the high-level MDP.119

• Under ordinal feedback, we develop a novel hierarchical experiment-design algorithm. We120

study when low-level feedback is sufficient for experiment design, showing that while it is121

not sufficient, it is beneficial in terms of sample complexity when it is sufficient. And when122

it is insufficient, we show how one can explore in the high level MDP, and the associated123

rates under two types of feedback that impose differing cognitive loads on the labeler.124
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2 Related Works125

HRL under cardinal rewards: There has been sizable interest in understanding of the sample126

complexity of HRL algorithms, which to our knowledge has thus focused on learning from cardinal127

rewards. On this subject, the two closest papers to that of ours are [22] and [25]. [22] studies128

goal-conditioned HRL with the key result being a sample complexity lower bound associated with a129

given hierarchical decomposition. On the upper-bound side, an algorithm (SHQL) is presented, albeit130

without theoretical guarantees. By contrast, our work presents a learning algorithm with provable131

guarantees, and further shows that learning in goal-conditioned HRL reduces to multi-task, sub-MDP132

regret minimization.133

[25] studies HRL under the options framework, providing a model-based, Bayesian algorithm with134

access to a prior distribution over MDPs that is updated over time. It does not adaptively learn sub-135

policies based on observed returns, computing instead an option for every exit-profile and equivalence136

class at each time during model-based planning. By contrast, our work does not assume knowledge137

of the prior nor ability to update posteriors, and does adaptively explore sub-MDPs via the UCB138

principle. Additionally, [25] demonstrate that when the size of the set of exit (“bottleneck”) states139

is small, learning is efficient. Our work shed further light on this insight by showing that under a140

suitable sub-MDP reward, we can induce a small set of exit states with high probability. Thus, even141

though the total number of possible exit-states may be high, this condition is sufficient for learning142

with sublinear-regret.143

RL under ordinal rewards: There has also been considerable interest in bandits/RL from prefer-144

ences [26, 28, 18, 14, 30, 29]. Following the demonstrated success of RLHF [9, 31, 19, 4], there145

has been great interest in studying offline RL from preference feedback, and particularly experiment146

design for enhanced sample efficiency [30, 29]. Due to the success of RLHF in alignment, we also147

consider studying scalable oversight in this setup. Please see the Appendix A for further discussions148

on scalable oversight and goal-conditioned RL.149

3 Learning from Cardinal Feedback150

We begin by considering the setting when feedback is in the form of cardinal rewards. As noted151

before, in HRL, the high-level policy performance is dependent on the low-level policies performance.152

Thus, a naive approach is to learn near-optimal sub-policies in every sub-MDP M(s, a), and then153

learn a high-level policy on top. However, a more sample efficient approach is to strategically explore154

sub-MDPs, and discover sub-policies with high intermediate returns in tandem with a high level155

policy that visits these “good” sub-MDPs. Please see the Appendix B for all the proofs. Note that in156

what follows, for brevity, theoretical statements will contain the phrase “with high probability” and157

the appendix will contain proofs that formalize this guarantee.158

3.1 Sub-MDP reward design for H-UCB-VI159

We are interested in adaptively learning the necessary sub-policies (the useful goals to achieve)160

and the associated high level policy that invokes these sub-policies. It is natural then to adopt an161

upper confidence bound approach and construct an exploration bonus that tracks the best/unexplored162

sub-MDPs. To this end, we develop an adaptation of the classic UCB-VI algorithm [3]. We highlight163

two key ingredients needed to construct the H-UCB-VI Algorithm 1.164

Tradeoffs in sub-MDP reward design: Learned sub-policies in HRL have to tradeoff between two165

objectives. One is high intermediate returns r(πs,a). The other is that exit-state; sub-policies should166

not land at “bad” states, as even if the intermediate return is high, V (s
πs,a

Hl
) ≈ 0 means the return167

from hereon out (and hence the overall return) will be low. Thus, in sub-policy learning, we also need168

to consider the goodness of the exit-state. But how can we incentivize sub-policies to land at “good”169

states without being able to calculate V ? Luckily, in the goal-conditioned setting, there is a natural170

answer for a “good” exit-state: g(s, a).171

To operationalize this, we design a sub-MDP reward that trades-off between intermediate sub-MDP172

return and goal-reachability. In sub-MDP M(s, a), at time-step h, sub-MDP reward rl,h(s′, a′) =173

r(s′, a′) + κ1(h = Hl ∧ s′ = g(s, a)). Crucially, here we set the weighting κ = max(2HhHl, C),174

which corresponds to an upper bound on the regret should we not reach the goal-state.175
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Algorithm 1 Hierarchical-UCB-VI (H-UCB-VI)

1: Initialize: D = ∅, QHh+1(s, a) = HhHl ∀s, a, VHh+1 = 0, κ = max(C, 2HhHl), cluster
index function c(s, a) over sub-MDP clusters C(S,Ah)

2: for episode k = 1, ...,K do
3: for timestep i = Hh, ..., 1 do ▷ value iteration with bonus
4: for (s, a) ∈ S ×Ah do
5: if (s, a) ∈ D then
6: Update UCB: UB(rπ

∗
(s, a)) = r̄Nk,h(s,a)(s, a) + bs,ar (Nk,h(s, a)) ▷

Nk,h(s, a) is the number of visits to M(s, a) at episode k, time-step h
7: Set:

Qi(s, a) = min(HhHl, UB(rπ
∗
(s, a)) + Vi+1(g(s, a))) (1)

8: for s ∈ S do
9: Vi(s) = maxa∈Ah Qi(s, a)

10: for time step h = 1, ...,Hh do
11: Take greedy high-level action akh = argmaxa∈Ah Qh(s

k
h, a)

12: Traverse sub-MDP M(skh, a
k
h) with current sub-policy πNk,h

skh,a
k
h

and transition to skh+1,

obtain high-level reward r(skh, a
k
h) = r(πNh,k

skh,a
k
h

), the intermediate return of πNh,k

skh,a
k
h

in M(skh, a
k
h)

▷ labeler provides the return of length-Hl roll-out of πNh,k

skh,a
k
h

13: Feed r(πNh,k

skh,a
k
h

) + κ1(skh+1 = g(skh, a
k
h)) into no-regret RL algorithm Ac(s,a), where

c(s, a) is the cluster M(s, a) belongs to ▷ shared learning if repeated structure in sub-MDP
14: Add to dataset D = D ∪ {(h, skh, akh, r(skh, akh)}

UCB construction: Next, we wish to obtain an UCB for r(π∗
s,a). Our main observation is that by176

using a no-regret subroutine for learning in M(s, a), the regret guarantee directly translates to a UCB.177

Due to our choice of sub-MDP reward rl, the UCB includes a penalty on non-goal reachability.178

Lemma 1 (UCB implied by sub-MDP regret). Let UB(Rn(s, a)) be an upper bound on sub-MDP
M(s, a)’s cumulative regret after n rounds. Define β = (κ+Hl)2 log(

|C(S,A)|HhK
δ ) and bonus,

bs,ar (n) =
UB(Rn(s, a)) + β

√
n

n
− κ

n

n∑
i=1

1(s
πi
s,a

Hl
̸= g(sh, ah)).

Then, r̄n(s, a) + bs,ar (n) is an UCB for r(π∗
s,a) with high probability.179

High-level MDP transition stabilization: An additional benefit of incentivizing goal-reachability is180

that we know the idealized transition probability in the high-level MDP. As mentioned before, another181

key difficulty with HRL is that the empirically estimated transitions in the high-level MDP drifts over182

time. In our algorithm, the key stabilization approach is avoid estimation and set the transition in183

the upper bound Qi to be the idealized transition (g(s, a) w.p. 1). This allows us to prove our regret184

guarantee as described below.185

3.2 Regret Analysis of H-UCB-VI186

We begin with a definition from [25] useful for comparing derived bounds.187

Definition 2 (Equivalent sub-MDPs [25]). Two subMDPs M(s, a) and M(s′, a′) are equivalent if188

there is a bijection F between state space, and through F , the subMDPs have the same transition189

probabilities and rewards.190

Let there be C(S,Ah) equivalent clusters. For instance, if there is no shared structure whatsoever,191

|C(S,Ah)| = |S||Ah|. Now, we are ready to describe our main structural result.192

Theorem 1 (HRL regret minimization reduces to multi-task, sub-MDP regret minimization). Let193

UB(RNK,Hh (s,a)) be an upper bound on sub-MDP M(s, a)’s cumulative regret over NK,Hh(s, a)194
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visits:195

K∑
k=1

V k
1 (s1)− V πk

1 (s1) ≤ Õ

 ∑
s,a∈C(S,Ah)

UB(RNK,Hh (s,a)) +HhH l
√
NK,Hh(s, a)

 (2)

196

Proof Sketch. We describe the key regret decomposition. After some manipulation, the regret may197

decompose into the following form,
∑K

k=1 V
k
1 (s1)− V πk

1 (s1) ≤
∑K

k=1

∑Hh

h=1 ρ
k
h + γkh + σk

h + ζkh ,198

which may be parsed as follows.199

ρkh = UB(rπ
∗
(s, a)) − r(πNk,h

skh,a
k
h

) captures the regret due to sub-optimal intermediate return, the200

return of π∗
S,a versus the return of πskh,ak

h
.201

γkh = (Ph−Pπk,h)V π∗

h+1(s
k
h, a

k
h), σ

k
h = (Ph−Pπk,h)(V k

h+1−V π∗

h+1)(s
k
h, a

k
h) captures the regret due202

to sub-optimal policies missing goal-reachability. Here Ph is the idealized transition (goal-reaching),203

while Pπk,h is the transition induced by the current sub-policy.204

ζkh = Pπk,h(V k
h+1 − V

πk

h+1)(s
k
h, a

k
h)− (V k

h+1 − V
πk

h+1)(s
k
h+1) is a martingale difference that concen-205

trates via Azuma Hoeffding, and is dominated by the previous three sums.206

Focusing on
∑Hh

h=1 ρ
k
h + γkh + σk

h + ζkh , we observe that γkh, σ
k
h ≤ 2HhHlP

πk,h(skh+1 ̸= g(skh, a
k
h)).207

The key remaining step is to recognize that ρkh + γkh + σk
h resembles the instantaneous regret in208

M(skh, a
k
h), and the result follows after some further bounding and rearrangement.209

210

As in [25], it is natural to ask if the hierarchical Algorithm 1 also improves upon algorithms that do211

not leverage hierarchical structure. We make this comparison w.r.t vanilla UCB-VI under the same212

isomophism assumption.213

Corollary 1. Setting As,a to be the standard UCB-VI algorithm with UB(RNK,Hh (s,a)) =214

O(H
3/2
l

√
|Sl

s,a||A|NHh,K(s, a)), we have the following bound:215

∑
s,a∈C(S,A)

UB(RNK,Hh (s,a)) +HhH l
√
NK,Hh(s, a)

≤ Õ(H
3/2
l

√
max
s,a
|Sl

s,a||A|
√
|C(S,Ah)|(HhK) +HhHl

√
|C(S,Ah)|HhK)

Comparison with vanilla UCB-VI: Standard application of UCB-VI yields the following216

rate: Õ((HhHl)
3/2
√
|Sh||Sl||A|K). H-UCB-VI compares favorably to vanilla UCB-VI, if217

maxs,a |Sl
s,a||C(S,Ah)| << |Sh||Sl|. Or in words, there is a lot of repeated/identifical sub-MDPs218

and sub-MDPs have small state space size.219

Furthermore, our bound is flexible in that one can choose more specialized learning algorithms220

Ac(s,a) to leverage prior knowledge. For instance, if it is known that sub-MDPs are linear, one may221

choose to invoke multi-task RL algorithms that offer more refined rates for UB(RNK,Hh (s,a)) [11].222

Goal Selection: An astute reader will note that the return of the learned hierarchical policy is close223

to V ∗
1 (s1), the return of the optimal hierarchical policy under goal function g. In other words, our224

learned policy is only as good as the goal function g we choose. One way to relax the assumption225

that we have a good goal function g is to assume we have access to multiple goal functions to choose226

from: g1, .., gn.227

Then, an useful corollary of the sublinear H-UCB-VI regret bound, 1
K [
∑K

k=1 V
gi,∗
1 (s1) −228

V gi,πk

1 (s1)] ≤ Õ(
√
K), is that it directly implies an UCB on V gi,∗

1 (s1) (optimal return under229

goal gi). Hence, we may apply any UCB-based bandit algorithm on top of this to compete with the230

return of the best goal out of all the candidates {gj}j∈[n].231
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4 Learning from Preference Feedback232

In the previous section, we develop an algorithm to efficiently learn a hierarchical policy, purely from233

low-level, cardinal feedback. Now, we consider learning from ordinal (preferences) feedback. Our234

first observation is that the low-level feedback is no longer sufficient for learning a good policy.235

Proposition 1 (Non-identifiability of ranking among sub-MDP returns). For any deterministic high-236

level policy learning algorithm with Nl samples of low-level feedback, there exists a MDP instance237

that induces regret constant in Nl.238

The intuition for this is simply that low-level, ordinal feedback can only identify rankings of low-level239

policies specific to a goal (sub-MDP), but not necessarily low level policies across differing goals.240

Thus, no matter how large the low-level sample-size Nl, the regret is non-vanishing in Nl and hence241

high-level feedback is needed to learn. Please see Appendix C for all proofs of results in this section.242

4.1 Labeler Feedback and Consequences for Reward Modeling243

The canonical approach to learning from preferences is reward modeling. Here, we consider the244

commonly studied linear reward setup [21, 20, 30, 29]. With known feature map ϕ and unknown245

reward parameter θ∗, preference feedback ot follows the Bradley-Terry-Luce (BTL) model [6].246

Assumption 3. For trajectories τ1, τ2: Pr(τ1 ≻ τ2) = σ((θ∗)T (ϕ(τ1)− ϕ(τ2))).247

When performing hierarchical learning, we encounter a conceptual challenge when learning from248

high-level feedback, which as we have shown before is necessary for learning.249

Conceptual Challenge: what can we assume the high-level labeler’s knowledge? Consider a high250

level trajectory τj = {(sji , a
j
i )}

Hh
i=1. ϕ(τj) =

∑
i∈[Hh]

ϕ(sji , a
j
i ); the key difficulty is that sub-MDP251

feature expectation ϕ(sji , a
j
i ) is dependent on the sub-policy deployed in M(sji , a

j
i ). Thus, the high252

level labeler will have to have in mind some sub-policy πs,a, when doing the comparison.253

Comparisons based on current sub-policy execution: It is natural to first assume that the labeler254

envisions ϕ(sji , a
j
i ) = ϕ(πt

sji ,a
j
i

) at time t. In words, it is equivalent to asking: “How well does the255

high level policy do given current execution of sub-goals?”256

Current-feedback of this form has the caveat that the labeler will have know about the performance of257

the current set of sub-policies πt
s,a (potentially through AI-assisted means). This knowledge would258

have to be updated vary over time as πt
s,a’s update, which introduces a sizable cognitive load.259

Comparisons based on idealized sub-policy execution: To reduce the cognitive load on the labeler,260

it is natural to fix the sub-policies used in the comparisons. A natural choice then is for the labeler to261

envision ϕ(sji , a
j
i ) = ϕ(π∗

sji ,a
j
i

). In words, it is equivalent to asking: “How well does the high level262

policy do given perfect execution of the sub-goals?” Instantiated in some examples, this would be:263

“how good is the essay if each argument is fleshed out perfectly” or “how good is the code if each264

helper function is implemented perfectly”.265

Idealized-feedback of this form has the caveat that the high-level feedback will be a mis-match of266

how the current sub-policies actually execute. Although it has the advantage that the labeler is no267

longer required to (somehow) keep track of low-level sub-policiees, thus reducing the cognitive load.268

In what follows, we consider both types of feedback, showing that learning from idealized-feedback269

is possible. As we note, a drawback of idealized-feedback is that it is biased with respect to the270

realized features (since these are generated under current policies πt
s,a), while current-feedback is271

unbiased. We present an upper bound on the bias below.272

Lemma 2 (Bias of idealized-feedback). Suppose there are Nh, Nl high, low-level trajectories, bias b273

is such that: ∥b∥2 =
∑Nh

t=1 |⟨θ∗, ϕπ
Nl (πi

1)−ϕπ
Nl (πi

2)⟩− ⟨θ∗, ϕπ
∗
(πi

1)−ϕπ
∗
(πi

2)⟩|2 = O(Nh/Nl).274

275

Proposition 2 (Reward model learning). Let θMLE = argminθ ℓD(θ) and let Cb denote an upper
bound on bias Cb ≥ ∥b∥, and γ,B constants. We have that with high probability:

∥θ∗ − θMLE∥Σ̂h

Nh+λI ≤ C

√
Cb

√
Nh

γ2
+
C2

b + d+ log(1/δ)

γ2
+ λB2
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4.2 Hierarchical Preference Learning276

We now construct a hierarchical, preference-learning algorithm that invokes REGIME, a contemporary277

preference-learning algorithm with provable guarantees, as sub-routine for sub-MDP learning [29].278

Sub-MDP reward learning: To start, we again need to incentivize goal-reaching in the sub-MDP279

reward. As such, given original feature ϕorig, we introduce an additional feature accounting for280

goal-reachability. For trajectory τ , define ϕi(sτi , a
τ
i ) = [ϕorig(s

τ
i , a

τ
i ),1(i = Hl ∧ sτi = g(s, a))]281

and for policy π, feature expectation ϕi(sπi , a
π
i ) = [ϕorig(s

π
i , a

π
i ),1(i = Hl) Pr(s

π
Hl

= g(s, a))].282

The corresponding reward vector will also change to become θ∗ = [θ∗orig, κ] for unknown θ∗orig, κ.283

Assumption 4. Through instructions to the labeler, κ may be raised beyond a threshold of our284

choosing.285

That is, we assume we can provide instructions to the labeler, emphasizing goal-reachability such286

that κ is higher than some given threshold. As before, we take the threshold to be max(C, 2HhHl).287

And so while κ is unknown, we know that κ ≥ max(C, 2HhHl).288

With this set up, we can then bound the regret due to sub-optimal sub-policies, and sub-optimal289

simulator P ϵ′ , both of which are needed in the final regret analysis.290

Lemma 3 (Regret due to sub-optimal sub-policies). For any high-level policy π, with high probability:

⟨ϕπ
∗,P (π)− ϕπ

Nl ,P (π), θ∗⟩ ≤ Hh(
C1√
Nl

+ C2ϵ
′)

where this bound makes use of the REGIME guarantee on sub-MDP M(s, a) that |⟨ϕP (π∗
s,a), θ

∗⟩ −291

ϕP
ϵ′

(πNl
s,a), θ

∗| ≤ C1√
Nl

+ C2ϵ
′ [29].292

Lemma 4 (Regret due to sub-optimal simulator P ϵ′ ). Let ΦπNl ,P ϵ′

(π) denote the feature expectation
under high level policy π, sub-MDP policies πNl and transitions P ϵ′ . With high probability, for any
high level policy π:

|⟨ϕπ
Nl ,P (π)− ϕπ

Nl ,P ϵ′

(π), θ∗⟩| ≤ O((Hhd
2 +H3

hH
2
l )ϵ

′ +
H2

hHl

κ
)

4.3 H-REGIME Analysis293

Now, we present the H-REGIME Algorithm 2 with two remarks.294

Hierarchical Exploration: A key aspect of experiment design in offline RL is ensuring sufficient295

coverage with exploration. The difficulty with coverage in the hierarchical setting is that at first glance,296

we may need to search for pairs of trajectories over (π1, {π1
s,a}), (π1, {π2

s,a}) ∈ (Πh,×s,aΠ
l
s,a),297

instead of over π1, π2 ∈ Πh. However, we show that in the goal-HRL case, we can fix the sub-policies298

to be πNl
s,a (for Nl large enough), and this is sufficient to compete with the optimal, hierarchical policy.299

Additionally, unlike the tabular setting, sub-MDPs now share a common reward parameter θ∗, thus300

allowing us to jointly (instead of separately as in tabular case) explore across sub-MDPs.301

Sufficiency of low-level feedback: Through the algorithm, we can observe that low- and high-level302

exploration generates feature expectations set: {ϕP ϵ′

(π1) − ϕP
ϵ′

(π2) | π1, π2 ∈
⋃

s,a Π
l
s,a} and303

{ϕP ϵ′

(π1) − ϕP
ϵ′

(π2) | π1, π2 ∈ Πh, πs,a = πNl
s,a∀s, a}. Therefore, when coverage of high level304

policy is subsumed by low-level features already (the latter is a subset of the former), it suffices to305

explore only using low-level feedback. As shown before in Proposition 2, it is not always sufficient.306

However, as we will see below, when it is sufficient, using low-level feedback leads to better rates.307

Theorem 2. With high probability, under Nh > 0:308

V π∗,π∗
− V π̂,πNl

≤ ⟨ϕπ
∗,P (π∗)− ϕπ

Nl ,P (π∗), θ∗⟩+ 1√
Nh

(2d log(1 +
Nh

d
))∥θ∗ − θ̂∥Σ̂h

Nh

+

|⟨ϕπ
Nl ,P (π∗)− ϕπ

Nl ,P ϵ′

(π∗), θ∗⟩|+ |⟨ϕπ
Nl ,P ϵ′

(π̂)− ϕπ
Nl ,P (π̂), θ∗⟩|

309
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Algorithm 2 Hierarchical-REGIME (H-REGIME)

1: Initialize: high-level policy class Πh, low level-policy classes Πl
s,a, simulator P ϵ′ with ϵ′-

precision
2: for episode n = 1, ..., Nl do
3: (πn

1 , π
n
2 )← argmaxπ1,π2∈

⋃
s,a Πl

s,a
∥ϕP ϵ′

(π1)− ϕP
ϵ′

(π2)∥(Σ̂l
n)

−1 ▷ explore using policy
feature expectation across sub-MDPs

4: Σ̂l
n+1 = Σ̂l

n + (ϕP
ϵ′

(πn
1 )− ϕP

ϵ′

(πn
2 ))(ϕ

P ϵ′

(πn
1 )− ϕP

ϵ′

(πn
2 ))

T

5: Collect trajectories {τ i1, τ i2}
Nl
i=1 from environment and comparisons {oi}Nl

i=1 ▷ request
comparison feedback for pairs of length-Hl trajectories

6: Compute MLE θ̂l from {τ i1, τ i2}
Nl
i=1 and {oi}Nl

i=1 ▷ shared reward learning across sub-MDPs

7: Compute πNl
s,a = argmaxπ∈Πl

s,a
⟨ϕP ϵ′

(π), θ̂l⟩
8: for episode n = 1, ..., Nh do
9: (πn

1 , π
n
2 )← argmaxπ1,π2∈Πh ∥ϕπ

Nl ,P ϵ′

(π1)− ϕπ
Nl ,P ϵ′

(π2)∥(Σ̂h
n)

−1 ▷ high-level policy
feature expectation generated using πNl

s,a

10: Σ̂h
n+1 = Σ̂h

n + (ϕπ
Nl ,P ϵ′

(π1)− ϕπ
Nl ,P ϵ′

(π2))(ϕ
πNl ,P ϵ′

(π1)− ϕπ
Nl ,P ϵ′

(π2))
T

11: Obtain (τn1 , τ
n
2 ) from running (πn

1 , π
n
2 ) and comparison on

12: Collect trajectories {τ i1, τ i2}
Nh
i=1 from environment and comparisons {oi}Nh

i=1 ▷ request
comparison feedback for pairs of length-Hl trajectories

13: Compute MLE θ̂h from {τ i1, τ i2}
Nh
i=1 and {oi}Nh

i=1

14: return high-level policy π̂ = argmaxπ∈Πh⟨ϕπ
Nl ,P ϵ′

(π), θ̂h⟩, low-level policies
{πNl

s,a}s,a∈C(S,Ah)

To parse this, the regret decomposes into four terms. The first term is the regret due to sub-optimality310

in low-level policies πNl . The remaining three terms are derived from sub-optimality due to high-level311

policy π̂, decomposing into the second term on regret due to bias in learned reward θ̂, the third and312

fourth term on regret due to sub-optimality of simulator P ϵ′ .313

Corollary 2. Using Theorem 2, we obtain the following rates in terms of data tradeoffs:314

Idealized-feedback and required high-/low-level feedback: the overall rate comes out to O(N
−1/4
l +315

N
−1/2
h ). While high level trajectories provide additional coverage, it also incurs bias linear in Nh of316

the bias of the low-level trajectories, thus slowing down the rate (Lemma 2).317

Current-feedback and required high-/low-level feedback: the overall rate comes out to O(N
−1/2
l +318

N
−1/2
h ). The current-feedback is unbiased and results in more efficient reward learning with319

∥θ∗ − θ̂∥Σ̂h
Nh

= O(1) [29].320

Only low-level feedback is required due to sufficiency in coverage: the overall rate comes out to321

O(N
−1/2
l ). In a nutshell, this is because we can explore with just Nl low-level samples which is322

unbiased, resulting in ∥θ∗− θ̂∥Σ̂l
Nl

= O(1). Hence, both exploration and reward learning is efficient.323

5 Discussion324

Our work considers scalable oversight in the context of goal-conditioned HRL, in which we show325

that one can efficiently use hierarchical structure to learn from bounded human feedback.326

Limitations & Future Work: In goal-conditioned HRL, our regret guarantees are with respect to327

the return of the optimal, hierarchical policy, whose performance is dependent on the usefulness328

of goal function g. Further research is needed to understand on how to learn good goal functions,329

using limited supervised or unsupervised learning. Additionally, under current-feedback, the labeler330

providing high-level feedback is somehow made aware of sub-policy performance. An exciting331

research direction is how one may provide such knowledge through AI-assistance.332
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A More Related Works418

Scalable Oversight: Scalable oversight is a nascent but important topic in the area of AI alignment [2,419

8, 15, 5], wherein the goal is to boost the labeler’s ability to provide feedback to complex models.420

Proposed approaches include (recursive) self-critique, summarization, debate, plain model Interaction421

and market-making, all of which aim to have the model (or auxiliary models) generate interpretable422

and/or lower-dimensional forms of outputs for the human to parse [15, 13, 24, 27, 23, 5, 12]. Our423

work studies how one may leverage hierarchical structure as one approach to scaling up feedback.424

Goal-conditioned RL: Further afield, there has been a lot of work demonstrating the promise/success425

of goal-conditioned RL with examples from the likes of [16, 17, 7, 10]. The sub-MDP reward is426

often set to incentivize only goal state reachability, as oftentimes the MDP of interest has sparse427

rewards, making intermediate returns zero. In our setting, rewards need not be sparse, thus bringing428

into consideration the tradeoff between intermediate return and goal-reachability. This work initiates429

the study of scalable oversight in goal-oriented HRL, and owing to the success of goal-oriented HRL430

in practice, it is our hope that it can be stepping stone towards developing practical scalable oversight431

techniques.432
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Notation
M(s, a) sub-MDP at state s with high level action a
πi
s,a policy used by sub-MDP M(s, a)’s no-regret algorithm during the i-th visit
π∗
s,a optimal policy in sub-MDP M(s, a)
r(πi

s,a) expected reward of policy πi
s,a in sub-MDP M(s, a)

rl,h sub-MDP reward definition.
r̂(πi

s,a) observed reward of policy π in sub-MDP M(s, a)
r̄n(s, a) average observed policy reward r̄n(s, a) = 1

n

∑n
i=1 r̂(π

i
s,a)

Rn(s, a) sub-MDP M(s, a) cumulative regret across n steps,Rn(s, a) =
∑n

i=1 r(π
∗
s,a)− r(πi

s,a)
Nk,h(s, a) number of times M(s, a) has been visited up until episode k, horizon h
Pπ(· | s, a) distribution over states of policy π after going through subMDP M(s, a)
ψn a factor such that ψn = Õ(

√
n), where the Õ omits up to log dependence on K

Table 1: Table of notation used in this section.

B Proofs for Section 3433

B.1 Sub-MDP Bonus Construction434

Sub-MDP Reward Definition: Define the reward in sub-MDP M(s, a) at time step h to be:435

rl,h(s
′, a′) = r(s′, a′) + κ1(h = Hl ∧ s′ = g(s, a)).436

Firstly, since by definition π∗
s,a ∈ argmaxπ∈Πs,a

r(π) + C · Pr(sπHl
= g(s, a)), we have that437

π∗
s,a ∈ argmaxπ∈Πs,a

r(π) + κ · Pr(sπHl
= g(s, a)).438

Indeed,439

r(π∗
s,a) + κPr(s

π∗
s,a

Hl
= g(s, a))

= [r(π∗
s,a) + C · Pr(sπ

∗
s,a

Hl
= g(s, a))] + (κ− C) Pr(sπ

∗
s,a

Hl
= g(s, a))

≥ [r(π) + C · Pr(sπHl
= g(s, a))] + (κ− C) Pr(sπHl

= g(s, a))

(Pr(s
π∗
s,a

Hl
= g(s, a)) = 1 ≥ Pr(sπHl

= g(s, a)) ∀π)

Secondly, using the definition of rl, we have that:440

rl(π
∗
s,a)− rl(πi

s,a) = r(π∗
s,a) + κP (s

π∗
s,a

Hl
= g(s, a))− r(πi

s,a)− κP (s
πi
s,a

Hl
= g(s, a))

By the reachability assumption, P (s
π∗
s,a

Hl
= g(s, a)) = 1, this implies that441

rl(π
∗
s,a)− rl(πi

s,a) = r(π∗
s,a)− r(πi

s,a) + κP (s
πi
s,a

Hl
̸= g(s, a))

Therefore, summing this across n visits to M(s, a), we have:442

Rn(s, a)

=

n∑
i=1

rl(π
∗
s,a)− rl(πi

s,a)

=

n∑
i=1

r(π∗
s,a)− r(πi

s,a) + κ

n∑
i=1

P (s
πi
s,a

Hl
̸= g(s, a))

This statement is useful because we can compute an UCB on
∑n

i=1 r(π
∗
s,a) and, implicitly, a LCB on443 ∑n

i=1 r(π
i
s,a) (provided we do not boundRn(s, a)).444
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Lemma 5 (Bonus with “penalty” for non-reachability). Let UB(Rn(s, a)) be any upper bound on445

the sub-MDP regret, then if we define:446

bs,ar (n) =
UB(Rn(s, a)) + (κ+Hl)2 log(

|C(S,Ah)|HhK
δ )

√
n

n
− κ

n

n∑
i=1

1(s
πi
s,a

Hl
̸= g(s, a))

Then, r̄n(s, a) + bs,ar (n) is an UCB for r(π∗
s,a) with probability ≥ 1− δ

3|C(S,Ah)|HhK
.447

Let the event that the above holds be Ens,a.448

Proof.
n∑

i=1

r(π∗
s,a)

= Rn(s, a)− κ
n∑

i=1

P (s
πi
s,a

Hl
̸= g(s, a)) +

n∑
i=1

r(πi
s,a)

≤ Rn(s, a)− κ(
n∑

i=1

1(s
πi
s,a

Hl
̸= g(s, a))− ψn) +

n∑
i=1

r(πi
s,a) (⋄)

= Rn(s, a)− κ
n∑

i=1

1(s
πi
s,a

Hl
̸= g(s, a)) + κψn +

n∑
i=1

r̂(πi
s,a) + (

n∑
i=1

r(πi
s,a)−

n∑
i=1

r̂(πi
s,a))

≤ UB(Rn(s, a)) + (κ+Hl)ψn − κ
n∑

i=1

1(s
πi
s,a

Hl
̸= g(s, a)) +

n∑
i=1

r̂(πi
s,a) (κ′ = κ+Hl)

(⋄) : Here we use two applications of Azuma-Hoeffding:449

• With probability higher than 1− δ:450

|
n∑

i=1

P (s
πi
s,a

Hl
̸= g(s, a))−

n∑
i=1

1(s
πi
s,a

Hl
̸= g(s, a))| ≤ ψn = 2

√
n

We have that E[P (sπ
i
s,a

Hl
̸= g(s, a))− 1(sπ

i
s,a

Hl
̸= g(s, a))|Fi−1] = 0.451

This is true because P (s
πi
s,a

Hl
̸= g(s, a)) and 1(s

πi
s,a

Hl
̸= g(s, a) are a function of only the452

transition probability of the MDP at the ith step conditioned on Fi−1. Thus, P (s
πi
s,a

Hl
̸=453

g(s, a))− 1(sπ
i
s,a

Hl
̸= g(s, a)) is a martingale difference. And we can use Azuma-Hoeffding.454

• With probability higher than 1− δ:455

|
n∑

i=1

r(πi
s,a)−

n∑
i=1

r̂(πi
s,a)| ≤ Hlψn ≤ Hl2

√
n

This again follows from Azuma-Hoeffding on martingale difference r(πi
s,a)− r̂(πi

s,a), as456

E[r(πi
s,a)− r̂(πi

s,a)|Fi−1] = 0. And |r(πi
s,a)− r̂(πi

s,a)| ≤ Hl.457

Thus,458

r(π∗
s,a) ≤

1

n

n∑
i=1

r̂(πi
s,a) + bs,ar (n)⇒ r(π∗

s,a)− r̄n(s, a) ≤ bs,ar (n)

459
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Remark 1. One choice for UB(Rn(s, a)) = H
3/2
l

√
|Sl

s,a||A|n if we let As,a be the standard460

UCB-VI algorithm [3].461

B.2 Optimism Lemma462

Lemma 6 (Optimism). Let V k
h be the V value as in Algorithm 1 at episode k. Let π∗ be the optimal

hierarchical policy. For a fixed k and h, if ∀s, a, n, Ens,a holds:

V k
h (s) ≥ V π∗

h (s) ∀s
463

Proof. Fix some episode k. We will prove this lemma via induction on h = Hh + 1, ..., 1.464

Base case: At h = Hh + 1, V k
h (s) ≥ 0 = V π∗

h (s) for all s.465

Induction Step: Suppose this is true for up until h = Hh + 1, ..., h′ + 1. Now at time step h′ and466

any s, a.467

Firstly, if Qk
h′(s, a) = HhHl (e.g. if s, a ̸∈ Dk), then Qk

h′(s, a) ≥ Q∗
h′(s, a). Otherwise,468

Qk
h′(s, a) < HhHl and we have that:469

Qk
h′(s, a)−Q∗

h′(s, a) = [r̄Nk,h(s,a)(s, a) + bs,ar (Nk,h(s, a)) + V k
h′+1(g(s, a))]− (r(π∗

s,a) + Ph′V π∗

h′+1(s, a))

(Qk
h′ definition as in Equation 1)

≥ V k
h′+1(g(s, a))− Ph′V π∗

h′+1(s, a)

(r̄Nk,h(s,a)(s, a) + bs,ar (Nk,h(s, a)) is an UCB of r(π∗
s,a))

= V k
h′+1(g(s, a))− V π∗

h′+1(g(s, a))
(π∗

s,a reaches goal state w.p 1, so Ph′(g(s, a)|s, a) = 1)

≥ 0 (induction hypothesis)

Thus, V k
h′(s) = maxaQ

k
h′(s, a) ≥ maxaQ

∗
h′(s, a) = V π∗

h′ (s).470

471

Corollary 3.
K∑

k=1

V π∗

1 (s1)− V πk

1 (s1) ≤
K∑

k=1

V k
1 (s1)− V πk

1 (s1)

B.3 Supporting results needed for regret analysis472

Proposition 3.
K∑

k=1

V k
1 (s1)− V πk

1 (s1) ≤
K∑

k=1

Hh∑
h=1

ζkh + γkh + σk
h + ρkh (3)

Proof. For any k and h, we consider bounding V k
h (skh)− V

πk

h (skh), which is equal to:473

V k
h (skh)− V

πk

h (skh) = (Qk
h −Q

πk

h )(skh, a
k
h)

≤ (r̄Nk,h(skh,a
k
h)
(skh, a

k
h) + b

skh,a
k
h

r (Nk,h(skh, a
k
h)))− r(π

Nk,h(skh,a
k
h)

skh,a
k
h

)

+ V k
h+1(g(s

k
h, a

k
h))− Pπk,hV πk

h+1(s
k
h, a

k
h) (due to the min)

= ρkh + [V k
h+1(g(s

k
h, a

k
h))− Pπk,hV πk

h+1(s
k
h, a

k
h)]

where we set ρkh = r̄Nk,h(skh,a
k
h)
(skh, a

k
h) + b

skh,a
k
h

r (Nk,h(skh, a
k
h)))− r(π

Nk,h(skh,a
k
h)

skh,a
k
h

).474
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Continuing with the original proof and focusing on the second term:475

V k
h+1(g(s

k
h, a

k
h))− Pπk,hV πk

h+1(s
k
h, a

k
h)

= V k
h+1(g(s

k
h, a

k
h))− Pπk,hV k

h+1(s
k
h, a

k
h) + Pπk,h(V k

h+1 − V
πk

h+1)(s
k
h, a

k
h)

= (Ph − Pπk,h)V k
h+1(s

k
h, a

k
h) + Pπk,h(V k

h+1 − V
πk

h+1)(s
k
h, a

k
h)

(Ph is the transition under optimal sub MDP policy so it takes skh, a
k
h to g(skh, a

k
h) deterministically)

= (Ph − Pπk,h)V π∗

h+1(s
k
h, a

k
h) + (Ph − Pπk,h)(V k

h+1 − V π∗

h+1)(s
k
h, a

k
h) + Pπk,h(V k

h+1 − V
πk

h+1)(s
k
h, a

k
h)

= γkh + σk
h + Pπk,h(V k

h+1 − V
πk

h+1)(s
k
h, a

k
h)

where476

• γkh = (Ph − Pπk,h)V π∗

h+1(s
k
h, a

k
h)477

• σk
h = (Ph − Pπk,h)(V k

h+1 − V π∗

h+1)(s
k
h, a

k
h)478

In summary,479

V k
h (skh)− V

πk

h (skh)

≤ ρkh + γkh + σk
h + Pπk,h(V k

h+1 − V
πk

h+1)(s
k
h, a

k
h)

= (V k
h+1 − V

πk

h+1)(s
k
h+1) + ζkh + γkh + σk

h + ρkh,

where we introduce the notation ζkh = Pπk,h(V k
h+1 − V

πk

h+1)(s
k
h, a

k
h)− (V k

h+1 − V
πk

h+1)(s
k
h+1).480

Unrolling the recursion starting at h = 1:481

V k
1 (skh)− V

πk
1 (skh)

≤ 1(ζkh + γkh + σk
h + ρkh) + ...+ (1)Hh(ζkHh

+ γkHh
+ σk

Hh
+ ρkHh

)

= 1 · (
Hh∑
h=1

ζkh + γkh + σk
h + ρkh)

Summing across k ∈ [K], it suffices to bound:482

K∑
k=1

V k
1 (s1)− V πk

1 (s1) ≤
K∑

k=1

Hh∑
h=1

ζkh + γkh + σk
h + ρkh (4)

483

Remark 2. There are two sources of sub-optimality in the bound.484

One is the sub-optimality while executing the sub-MDP policies. This is covered by the per-step high485

level reward bonus (which is also the UCB on the return of the sub-MDP’s return) in ρkh.486

The other is the sub-optimality of not landing on g(skh, a
k
h), there is covered by γkh, σ

k
h, which affects487

future reward. The martingale difference ζkh is zero in expectation, so it is not some measure of488

suboptimality.489

We first bound the ζ’s, whose sum is dominated by
∑K

k=1

∑Hh

h=1 ρ
k
h + γkh + σk

h.490
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Lemma 7. With probability ≥ 1− δ/3:491

K∑
k=1

Hh∑
h=1

ζkh ≤ Õ(HhH l
√
HhK)

Let the event that the above inequality hold be Eζ .492

Proof. The concentration of ζkh follows from Azuma Hoeffding, as the following is a martingale493

difference.494

ζkh = Pπk,h(V k
h+1 − V

πk

h+1)(s
k
h, a

k
h)− (V k

h+1 − V
πk

h+1)(s
k
h+1)

with E[ζkh |Fk,h] = 0, since the expectation is only wrt randomness in skh+1. Moreover, this martingale495

difference is bounded by 4HhH l496

497

Next, we simplify the sum of remaining terms.498

Lemma 8. We have that:499

K∑
k=1

Hh∑
h=1

γkh ≤ HhH l
K∑

k=1

Hh∑
h=1

Pπk,h(skh+1 ̸= g(skh, a
k
h))

and500

K∑
k=1

Hh∑
h=1

σk
h ≤ HhH l

K∑
k=1

Hh∑
h=1

Pπk,h(skh+1 ̸= g(skh, a
k
h))

Proof.

K∑
k=1

Hh∑
h=1

γkh

=

K∑
k=1

Hh∑
h=1

(Ph − Pπk,h)V π∗

h+1(s
k
h, a

k
h)

=

K∑
k=1

Hh∑
h=1

Pπk,h(skh+1 ̸= g(skh, a
k
h))(V

π∗

h+1(g(s
k
h, a

k
h))− V π∗

h+1(s
k
h+1))

≤ HhH l
K∑

k=1

Hh∑
h=1

Pπk,h(skh+1 ̸= g(skh, a
k
h))

Similarly,501

17



K∑
k=1

Hh∑
h=1

σk
h

=

K∑
k=1

Hh∑
h=1

(Ph − Pπk,h)(V k
h+1 − V π∗

h+1)(s
k
h, a

k
h)

=

K∑
k=1

Hh∑
h=1

Pπk,h(skh+1 ̸= g(skh, a
k
h))[(V

k
h+1 − V π∗

h+1)(g(s
k
h, a

k
h))− (V k

h+1 − V π∗

h+1)(s
k
h+1)]

≤ HhH l
K∑

k=1

Hh∑
h=1

Pπk,h(skh+1 ̸= g(skh, a
k
h))

502

Lemma 9. With probability ≥ 1− δ/3:503

K∑
k=1

Hh∑
h=1

ρkh ≤
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

r(π∗
s,a)−r(πi

s,a)+
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

UB(Ri(s, a))−Ri(s, a) + (κ′′ + κ)ψi

i

Let Eρ be the event that this holds.504

Proof. We first expand the ρkh sum:505

K∑
k=1

Hh∑
h=1

ρkh

=

K∑
k=1

Hh∑
h=1

r̄Nk,h(skh,a
k
h)
(skh, a

k
h) + b

skh,a
k
h

r (Nk,h(skh, a
k
h)))− r(π

Nk,h(skh,a
k
h)

skh,a
k
h

)

=
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

r̄i(s, a) + bs,ar (i)− r(πi
s,a)

=
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

1

i

i∑
j=1

r̂(πj
s,a) +

UB(Ri(s, a)) + κ′ψi − κ
∑i

j=1 1(s
πj
s,a

Hl
̸= g(s, a))

i
− r(πi

s,a)

(using definition of bonus)

≤
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

1

i

i∑
j=1

r(πj
s,a) +

Hlψi

i
+
UB(Ri(s, a)) + κ′ψi − κ

∑i
j=1 1(s

πj
s,a

Hl
̸= g(s, a))

i
− r(πi

s,a)

(Azume-Hoeffding for concentration of r̂ around r)

Using the two-sided concentration bound we had before (the other way):
∑i

j=1 1(s
πj
s,a

Hl
̸= g(s, a)) +506

ψi ≥
∑i

j=1 P (s
πj
s,a

Hl
̸= g(s, a)) w.h.p:507

i∑
j=1

r(π∗
s,a)− r(πj

s,a) ≥ Ri(s, a)− κ(
i∑

j=1

1(s
πj
s,a

Hl
̸= g(s, a)) + ψi)

⇒
i∑

j=1

r(π∗
s,a)−Ri(s, a) + κψi ≥

i∑
j=1

r(πj
s,a)− κ

i∑
j=1

1(s
πj
s,a

Hl
̸= g(s, a))

18



We continue our derivation:508

∑
s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

1

i
(

i∑
j=1

r(πj
s,a) + UB(Ri(s, a)) + κ′′ψi − κ

i∑
j=1

1(s
πj

Hl
̸= g(s, a)))− r(πi

s,a)

(κ′′ = κ′ +Hl)

≤
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

1

i
[

i∑
j=1

r(π∗
s,a)−Ri(s, a) + κψi]− r(πi

s,a) +
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

UB(Ri(s, a)) + κ′′ψi

i

(using the identity above)

≤
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

r(π∗
s,a)− r(πi

s,a) +
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

UB(Ri(s, a))−Ri(s, a) + (κ′′ + κ)ψi

i

509
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B.3.1 Overall Regret Bound510

Theorem 3. Under events
⋂

s,a,n Ens,a ∩ Eζ ∩ Eρ, we have that:511

K∑
k=1

Hh∑
h=1

ρkh+γ
k
h+σ

k
h ≤

∑
s,a∈C(S,Ah)

(log(NK,Hh(s, a))+1)UB(RNK,Hh (s,a))+O(HhH l
√
NK,Hh(s, a))

Proof.

K∑
k=1

Hh∑
h=1

ρkh + γkh + σk
h

≤
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

r(π∗
s,a)− r(πi

s,a)+

∑
s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

UB(Ri(s, a))−Ri(s, a) + κψi

i
+ 2HhH l

K∑
k=1

Hh∑
h=1

Pπk,h(skh+1 ̸= g(skh, a
k
h))

=
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

UB(Ri(s, a))−Ri(s, a) + κψi

i

+
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

r(π∗
s,a)− r(πi

s,a) + 2HhH l
∑

s,a∈C(S,Ah)

[

NK,Hh (s,a)∑
i=1

P (s
πi
s,a

Hl
̸= g(skh, a

k
h))]

(group third sum by s, a)

≤
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

UB(Ri(s, a))−Ri(s, a) + κψi

i

+
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

r(π∗
s,a)− r(πi

s,a) + κ

NK,Hh (s,a)∑
i=1

P (s
πi
s,a

Hl
̸= g(skh, a

k
h)) (κ ≥ 2HhHl)

=
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

UB(Ri(s, a))−Ri(s, a) + κψi

i
+

∑
s,a∈C(S,Ah)

RNK,Hh (s,a)

(using the definition for sub-MDP regret)

≤
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

UB(Ri(s, a))

i
+RNK,Hh (s,a) +

∑
s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

κψi

i

≤
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

UB(Ri(s, a))

i
+ UB(RNK,Hh (s,a)) +

∑
s,a∈C(S,Ah)

O(κ
√
NK,Hh(s, a))

(since Azuma-Hoeffding is s.t ψi = O(
√
i))

≤
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

UB(RNK,Hh (s,a))

i
+ UB(RNK,Hh (s,a)) +

∑
s,a∈C(S,Ah)

O(HhH l
√
NK,Hh(s, a))

(using monotonicity of upper bound UB(Ri(s, a)) in i, assumption that C = O(HhHl))

=
∑

s,a∈C(S,Ah)

(log(NK,Hh(s, a)) + 1)UB(RNK,Hh (s,a)) +O(HhH l
√
NK,Hh(s, a))

512
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Corollary 4 (Regret under |C(S,Ah)| clusters of isomorphic sub-MDPs [25]). Let us set UCB-VI to513

be the sub-MDP learning algorithm, then we have the following regret bound:514

∑
s,a∈C(S,Ah)

(log(NK,Hh(s, a)) + 1)RNK,Hh (s,a) +O(HhH l
√
NK,Hh(s, a))

≤ (logHhK + 1)
∑

s,a∈C(S,Ah)

RNK,Hh (s,a) +O(HhH l
√
|C(S,Ah)| ·HhK)

(
∑

s,a∈C(S,Ah)N
K,Hh(s, a) = HhK)

≤ (logHhK + 1)
∑

s,a∈C(S,Ah)

H
3/2
l

√
|Sl

s,a||A|NK,Hh(s, a) +O(HhH l
√
|C(S,Ah)| ·HhK)

(plug in UCB-VI guarantees)

≤ Õ(H
3/2
l

√
max
s,a
|Sl

s,a||A|
√
|C(S,Ah)|(HhK) +HhHl

√
|C(S,Ah)|HhK)

(
∑

s,a∈C(S,Ah)N
K,Hh(s, a) = HhK)

using UCB-VI’s guarantee that upper bound UB(RNK,Hh (s,a)) = H
3/2
l

√
|Sl

s,a||A|NK,Hh(s, a).515

Remark 3 (High Probability Bound). For completeness, we show that the regret bound holds with516

probability greater than 1− δ. The regret bound holds under
⋂

s,a,n Ens,a ∩ Eζ ∩ Eρ, by union bound:517

Pr(
⋂
s,a,n

Ens,a ∩ Eζ ∩ Eρ)

≥ 1−
∑
s,a,n

Pr(¬Ens,a)− Pr(¬Eζ)− Pr(¬Eρ))

≥ 1− (|C(S,Ah)|HhK)
δ

3|C(S,Ah)|HhK
− δ/3− δ/3

= 1− δ
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C Proofs for Section 4518

C.1 Low-level Feedback is insufficient for learning519

To prove the results below, our approach is to construct two MDP instances with identifical low level520

feedback such that any deterministic learning algorithm picks the arbitrarily worse high level policy.521

Proposition 4 (Non-identifiability of ranking among sub-MDP returns). For any deterministic high-522

level policy learning algorithm with Nl samples of low-level feedback, there exists a MDP instance523

that induces regret constant in Nl.524

Proof. Consider two-horizon MDP with starting state s1 with Hh = 1, Hl = 2. There are two525

possible high-level actions a1 and a2 at s1.526

For any policy π1 in sub-MDP M(s1, a1), let it have feature expectation ϕ(π1) = [ϕ′(π1), 1, 0], and527

for any π2 in sub-MDP M(s1, a2), ϕ(π2) = [ϕ′(π2), 0, 1].528

Now, we consider two MDP instances with θ∗ = [0, 0, C ′] and θ∗ = [0, C ′, 0] for some positive529

constant C ′.530

Under both instances, we observe identical low-level feedback for trajectories τ, τ ′ in sub-MDPs531

M(s1, aj), j ∈ [2]: the feedback is Bernoulli with parameter σ(⟨ϕ′(τ)− ϕ′(τ), θ′⟩).532

Consider any deterministic learning algorithm. WLOG it outputs high level policy πh(s1) = a1 with533

some set of Nl samples of low-level feedback.534

Then, it follows that its regret under θ∗ = [ϵ1, 0, C ′] is C ′, since the reward (and return sinceHh = 1)535

of π∗
s1,a1

is 0, while the reward of the optimal policy which visits M(s1, a2) is C ′.536

537

C.2 Hierarchical Experiment Design via REGIME [29]538

C.2.1 MLE Definition:539

We first define the MLE expression; note that the MLE is in terms of trajectories only. Define:540

f({yi}ni=1, {xi}ni=1) = −
n∑

i=1

log(1{yi = 1}σ(θTxi) + 1{yi = 0}(1− σ(θTxi))

ℓD(θ) = f({yi}Nh
i=1, {xi}

n
i=1) +

∑
s,a

f({ys,ai }
Nl
i=1, {x

s,a
i }

Nl
i=1) (5)

• High-level trajectories: has realized features,541

xi = ϕπ
Nl ,P (τ i1)− ϕπ

Nl ,P (τ i2) =

Hh∑
j=1

ϕP (πNl(s
τ i
1

j , a
τ i
1

j ))−
Hh∑
j=1

ϕP (πNl(s
τ i
2

j , a
τ i
2

j ))

where ϕπ
Nl ,P (τ ij) is the feature of the high-level trajectory under sub-policy πNl and542

transition P (since trajectories are collected from roll-outs in the actual MDP as in [29]).543

On the other hand, under idealized-feedback, the labeler assumes that each goal-conditioned544

sub-MDP has been executed perfectly (i.e. by π∗
s,a) and so the features correspond to:545

x∗i = ϕπ
∗,P (τ i1)− ϕπ

∗,P (τ i2) =

Hh∑
j=1

ϕP (π∗(s
τ i
1

j , a
τ i
1

j ))−
Hh∑
j=1

ϕP (π∗(s
τ i
2

j , a
τ i
2

j ))

• Comparison y of high level trajectories follows Bernoulli distribution yi = σ(θ∗ · x∗i ).546
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• Low-level trajectories: has realized features,547

xs,ai = ϕ(τ i1)− ϕ(τ i2) =
Hh∑
j=1

ϕ(s
τ i
1

j , a
τ i
1

j )−
Hh∑
j=1

ϕ(s
τ i
2

j , a
τ i
2

j )

Note that unlike the high level features, low-level features data are always unbiased. Thus,548

using high level and low-level comparisons has the same bias from the high level.549

• Comparison y of low level trajectories follows Bernoulli distribution yi = σ(θ∗ · xs,ai ).550
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C.2.2 Requisite Lemmas551

Lemma 10 (Lemma 5 of [29]). Let oracle P ϵ′ be such that with probability 1− δ/5, the following552

holds. Let dπh(s, a) and d̂πh(s, a) be the visitation measure of policy π under P and P ϵ′ , we have for553

all h ∈ [H] and π ∈ Π:554 ∑
s,a

|dπh(s, a)− d̂πh(s, a)| =
∑
s

|dπh(s)− d̂πh(s)| ≤ hϵ′

This applies across all sub-MDPs M(s, a). Let the event that this expression hold be Es,a.555

Lemma 11 (Low-level MLE Bound, Lemma 2 of [29]). With probability at least 1− δ/5:556

∥θ∗ − θt∥Σ̃l
n
≤ Õ(1)

Let the event that this holds for learning from sub-MDP trajectories be E l1.557

Lemma 12 (Lemma 3 of [29]). If low-leve trajectories τ1,2i ∼ πi, P ϵ′ , then with probability at least558

1− δ/5:559

∥θ∗ − θt∥Σ̂l
n
≤
√
2∥θ∗ − θt∥Σ̃l

n
+O(B

√
d log 4n/δW )

Let the event that this holds for learning from sub-MDP trajectories be E l2.560

C.2.3 Bias when using idealized-feedback, high level trajectory data in MLE561

Proposition 5 (sub-MDP REGIME guarantee of [29]). For sub-MDP M(s, a), under Es,a∩E l1∩E l2:562

⟨ϕP (π∗), θ∗⟩ − ⟨ϕP (πNl), θ∗⟩ ≤ C1(δ)√
Nl

+O(ϵ′)

where C1(δ) = O(
√
log(1/δ)).563

Note that for estimation and bias, we have to have both an upper bound and a lower bound (see PbRL564

example). This requires two-sided bound, where lower bound comes from ϕ∗ having higher reward565

than ϕ and upper bound comes from no-regret. Due to optimality of π∗, we have the lower bound as566

well:567

0 ≤ ⟨ϕP (π∗), θ∗⟩ − ⟨ϕP (πNl), θ∗⟩ ≤ C1√
Nl

+O(ϵ′)

Additionally, we have that:568

Lemma 13 (Lemma 6 of [29]). For any sh, ah, ∥vi∥ ≤ 2B, θ ∈ Rd and ∥ϕ∥ ≤ R under Es,a ∩E l1 ∩569

E l2:570

|⟨ϕP
ϵ′

(πNl(sh, ah))− ϕP (πNl(sh, ah)), v⟩| ≤ BRd2ϵ′

With this,571

|⟨ϕP (π∗), θ∗⟩ − ϕP
ϵ′

(πNl), θ∗| ≤ (
C1√
Nl

+O(ϵ′)) +BRd2ϵ′ =
C1√
Nl

+ C2ϵ
′

Now, we can analyze the bias of including high level trajectory data in the MLE computation:572

Lemma 14. Suppose there are Nh, Nl high, low-level trajectories, bias b is such that, under573 ⋂
s,a Es,a ∩ E l1 ∩ E l2:574

∥b∥2 =

T∑
t=1

|⟨θ∗, xi⟩ − ⟨θ∗, x∗i ⟩|2 ≤ 2HhT (2Hh(
C1√
Nl

+ C2ϵ
′)2)
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Proof.

T∑
t=1

|⟨θ∗, x∗i ⟩ − ⟨θ∗, xi⟩|2

≤ 2

T∑
t=1

|⟨
∑

s,a∈τt
1

ϕP (π∗(s, a))−
∑

s,a∈τt
1

ϕP
ϵ′

(πNl(s, a)), θ∗⟩|2 + |⟨
∑

s,a∈τt
2

ϕP (π∗(s, a))−
∑

s,a∈τt
2

ϕP
ϵ′

(πNl(s, a)), θ∗⟩|2

≤ 2Hh

T∑
t=1

∑
s,a∈τt

1

|⟨ϕP (π∗(s, a))− ϕP
ϵ′

(πNl(s, a)), θ∗⟩|2 +
∑

s,a∈τt
2

|⟨ϕP (π∗(s, a))− ϕP
ϵ′

(πNl(s, a)), θ∗⟩|2

≤ 2HhT (2Hh(
C1√
Nl

+ C2ϵ
′)2)

Thus,575

∥b∥ =

√√√√ T∑
t=1

|⟨θ∗, xi⟩ − ⟨θ∗, x∗i ⟩|2 ≤ 2Hh(
C1√
Nl

+ C2ϵ
′)
√
T

576
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C.2.4 MLE Analysis577

Under current-feedback, following Lemma 2 of [29], ∥∆∥Σh
n+λI ≤ Õ(1). Now, we consider the bias578

in learned reward under idealized-feedback.579

Proposition 6. Let θMLE = argminθ ℓD(θ) and let Cb ≥ ∥b∥. Then with probability at least580

1− δ/5:581

∥∆∥Σn+λI ≤ O

(√
Cb

γ2
√
n
+
C2

b + d+ log(1/δ)

γ2n
+ λB2

)

where Σn = 1
n

∑n
i=1 xix

T
i + λI .582

Proof. Define ∆ = θMLE − θ∗. As in [30], we have the same convexity result due to583

⟨θ, xi⟩ ∈ [−2LB, 2LB]. Suppose we let maxx ∥x∥ ≤ L and maxθ∈Θ ∥θ∥ ≤ B, then with584

γ = 1
2+exp(−2LB)+exp(2LB) , we have that:585

ℓ(θ∗ +∆)− ℓ(θ∗)− ⟨∇ℓ(θ∗),∆⟩ ≥ γ∥∆∥2Σ

And so,586

ℓ(θMLE) ≤ ℓ(θ∗)⇒ ℓ(θ∗ +∆)− ℓ(θ∗)− ⟨∇ℓ(θ∗),∆⟩ ≤ −⟨∇ℓ(θ∗),∆⟩

Thus,587

γ∥∆∥2Σ ≤ ∥∇ℓ(θ∗)∥(Σ+λI)−1∥∆∥(Σ+λI)

The key part is bounding ∥∇ℓ(θ∗)∥(Σ+λI)−1 . We have that:588

∇ℓ(θ∗) = − 1

n

n∑
i=1

[1{yi = 1}σ(⟨θ∗, xi⟩)− 1{yi = 0}(1− σ(⟨θ∗, xi⟩)]xi

= − 1

n
XT (V + b)

where vi = σ(⟨θ∗, x∗i ⟩) w.p 1− σ(⟨θ∗, x∗i ⟩) and −(1− σ(⟨θ∗, x∗i ⟩)) w.p σ(⟨θ∗, x∗i ⟩). And so, entry-589

wise V is such that E[Vi] = 0 and |Vi| ≤ 1. Note that Vi are independent due to the independence of590

the random variables Yi.591

Extra term bias is defined as:592

bi = 1{yi = 1}(σ(⟨θ∗, xi⟩)− σ(⟨θ∗, x∗i ⟩))− 1{yi = 0}(1− σ(⟨θ∗, xi⟩ − (1− σ(⟨θ∗, x∗i ⟩))
= σ(⟨θ∗, xi⟩)− σ(⟨θ∗, x∗i ⟩)

By definition, Cb is such that: ∥b∥ ≤ Cb. As before, define M = 1
n2X(Σ + λI)−1XT . We use the593

fact that ∥M∥op ≤ 1/n. Then, we have that:594
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∥∇ℓ(θ∗)∥2(Σ+λI)−1 = (V + b)TM(V + b)

= V TMV + 2V TMb+ bTMb

≤ C d+ log(1/δ)

n
+ 2∥V ∥∥Mb∥+ bTMb

(by Matrix Bernstein, V TMV ≤ C d+log(10/δ)
n w.p. ≥ 1− δ/10)

≤ C d+ log(1/δ)

n
+ 2∥V ∥ 1

n
∥b∥+ C2

b

n
(using that ∥M∥op ≤ 1/n)

≤ C d+ log(1/δ)

n
+ 2(C2

√
n
1

n
)Cb +

C2
b

n
(by Hoeffding ∥V ∥ ≤ O(log(10/δ)

√
n) w.p. ≥ 1− δ/10.)

≤ O(
Cb√
n
+
C2

b + d+ log(1/δ)

n
)

γ∥∆∥2Σ+λI ≤ ∥∇ℓ(θ∗)∥(Σ+λI)−1∥∆∥(Σ+λI) + λ(γ∥∆∥2)
≤ ∥∇ℓ(θ∗)∥(Σ+λI)−1∥∆∥(Σ+λI) + 4λγB2

This implies that with probability ≥ 1− δ:595

∥∆∥Σ+λI ≤ C

√
Cb

γ2
√
n
+
C2

b + d+ log(1/δ)

γ2n
+ λB2

596

Corollary 5. Let θMLE = argminθ ℓD(θ), then under
⋂

s,a Es,a, with probability ≥ 1− δ/5:597

∥θ∗ − θMLE∥Σ̃h

Nh+λI ≤ C

√
1

γ2
√
Nl

+
1

γ2Nl
+
d+ log(1/δ)

γ2Nh
+ λB2

where ΣNh
= 1

Nh

∑Nh

i=1 xix
T
i .598

Let the event that this holds for learning from sub-MDP trajectories be Eh1 .599

Proof. Firstly,600

∥b∥ ≤ 2Hh(
C1√
Nl

+ C2ϵ
′)
√
Nh = O(

√
Nh√
Nl

+
√
Nhϵ

′)

With this, we have that:601

∥∆∥Σ̃Nh
+λI

= O

(√
Cb

γ2
√
Nh

+
C2

b + d+ log(1/δ)

γ2Nh
+ λB2)

)

= O

√√Nh/Nl +
√
Nhϵ′

γ2
√
Nh

+
Nh/Nl +Nhϵ′2 + d+ log(1/δ)

γ2Nh
+ λB2



602
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Hence by choosing λ = λ/Nh:

∥∆∥Σ̃Nh
+λI ≤ O

(
N

1/2
h

N
1/4
l

+ (Nhϵ
′)1/2

)
+ C ′

C.2.5 Relating ∥θ∗ − θn∥Σ̂n
to ∥θ∗ − θn∥Σ̃n

603

Define:604

1. Σn = λI +
∑n

i=1(ϕ
πNl ,P (πi

1)− ϕπ
Nl ,P (πi

2))(ϕ
πNl ,P (πi

1)− ϕπ
Nl ,P (πi

2))
T605

2. Σ̃n = λI +
∑n

i=1(ϕ(τ
i
1)− ϕ(τ i2))(ϕ(τ i1)− ϕ(τ i2))T , where τ1,2i ∼ πi

1, π
Nl , P .606

3. Σ̂n = λI +
∑n

i=1(ϕ
πNl ,P ϵ′

(πi
1)− ϕπ

Nl ,P ϵ′

(πi
2))(ϕ

πNl ,P ϵ′

(πi
1)− ϕπ

Nl ,P ϵ′

(πi
2))

T607

We wish to relate ∥θ∗ − θn∥Σ̂n
to ∥θ∗ − θn∥Σ̃n

.608

Lemma 15 (Lemma 3 of [29]). If τ1,2i ∼ πi
1, π

Nl , P ϵ′ , then with probability at least 1− δ/5:609

∥θ∗ − θt∥Σ̂h
n
≤
√
2∥θ∗ − θt∥Σ̃h

n
+ Õ(B

√
d log 4n/δW )

Let the event that this holds for learning from sub-MDP trajectories be Eh2 .610

Lemma 16. We have that under
⋂

s,a Es,a ∩ E l1 ∩ E l2 ∩ Eh1 ∩ Eh2 :611

∥θ∗ − θn∥Σ̂n
≤ 2∥θ∗ − θn∥Σ̃n

+O(B
√
d log n/δW ) +

√
8nC(ϵ′, δ)

Proof. Under event Eh2 , as trajectories are sampled from P , we have that:612

∥θ∗ − θn∥Σn
≤
√
2∥θ∗ − θn∥Σ̃n

+O(B
√
d log n/δW )

It remains to upper bound ∥θ∗ − θn∥Σ̂n
by ∥θ∗ − θn∥Σn613

We have that under
⋂

s,a Es,a ∩ E l1 ∩ E l2:614

|⟨ϕπ
Nl ,P (π)− ϕπ

Nl ,P ϵ′

(π), v⟩| ≤ C(ϵ′, δ)

⇒ |⟨ϕπ
Nl ,P ϵ′

(πi
1)− ϕπ

Nl ,P ϵ′

(πi
2), v⟩| ≤ |⟨ϕπ

Nl ,P (πi
1)− ϕπ

Nl ,P (πi
2), v⟩|+ 2C(ϵ′, δ)

⇒ |⟨ϕπ
Nl ,P ϵ′

(πi
1)− ϕπ

Nl ,P ϵ′

(πi
2), v⟩|2 ≤ 2|⟨ϕπ

Nl ,P (πi
1)− ϕπ

Nl ,P (πi
2), v⟩|2 + 2(2C(ϵ′, δ))2

Thus,615

∥v∥2
Σ̂n

= vT (λI +

n∑
i=1

(ϕπ
Nl ,P ϵ′

(πi
1)− ϕπ

Nl ,P ϵ′

(πi
2))(ϕ

πNl ,P ϵ′

(πi
1)− ϕπ

Nl ,P ϵ′

(πi
2))

T )v

= λ∥v∥2 +
n∑

i=1

|⟨ϕπ
Nl ,P ϵ′

(πi
1)− ϕπ

Nl ,P ϵ′

(πi
2), v⟩|2

≤ λ∥v∥2 +
n∑

i=1

2|⟨ϕπ
Nl ,P (πi

1)− ϕπ
Nl ,P (πi

2), v⟩|2 + 8C(ϵ′, δ)2

≤ 2∥v∥2Σn
+ 8nC(ϵ′, δ)2

Plugging in v = θ∗ − θn, we have that:616
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∥θ∗ − θn∥Σ̂n

≤
√
2∥θ∗ − θn∥Σn +

√
8nC(ϵ′, δ)

≤ 2∥θ∗ − θn∥Σ̃n
+O(B

√
d log n/δW ) +

√
8nC(ϵ′, δ)

617
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C.2.6 High-level policy regret bound618

Lemma 17. For any π, under event
⋂

s,a Es,a ∩ E l1 ∩ E l2:619

⟨ϕπ
∗,P (π)− ϕπ

Nl ,P (π), θ∗⟩ ≤ Hh(
C1√
Nl

+ C2ϵ
′)

Proof.

⟨ϕπ
∗,P (π)− ϕπ

Nl ,P (π), θ∗⟩

=

Hh∑
h=1

Esh,ah∼π,πNl ,PEsh+1∼πNl (sh,ah),P
[r(π∗(sh, ah)) + V π,π∗

h+1 (g(sh, ah))− (r(πNl(sh, ah)) + V π,πNl

h+1 (sh+1))]

=

Hh∑
h=1

Esh,ah∼π,πNl ,P [r(π
∗(sh, ah))− r(πNl(sh, ah)) + P (sπ

Nl

h+1 ̸= g(sh, ah))(V
π,π∗

h+1 (g(sh, ah))− V π,πNl

h+1 (sh+1))]

≤
Hh∑
h=1

Esh,ah∼π,πNl ,P [r(π
∗(sh, ah))− r(πNl(sh, ah)) + P (sπ

Nl

h+1 ̸= g(sh, ah))κHhHl]

=

Hh∑
h=1

Esh,ah∼π,πNl ,P [r(π
∗(sh, ah)) + P (sπ

∗

h+1 = g(sh, ah))κHhHl − r(πNl(sh, ah))− P (sπ
Nl

h+1 = g(sh, ah))κHhHl]

=

Hh∑
h=1

Esh,ah∼π,πNl ,P [⟨ϕ(π∗(sh, ah)), θ
∗⟩ − ⟨ϕ(πNl(sh, ah)), θ

∗⟩]

≤ Hh(
C1√
Nl

+ C2ϵ
′)

Because for any sh, ah, ⟨ϕ(π∗(sh, ah)), θ
∗⟩ − ⟨ϕ(πNl(sh, ah)), θ

∗⟩ ≤ C1√
Nl

+ C2ϵ
′.620

621
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Lemma 18 (Lower bound on Reachability Probability). We have that under event
⋂

s,a Es,a∩E l1∩E l2:622

P (sπ
Nl

Hl
̸= g(s, a)) ≤ 1

κHh
+

C1

κHhHl

√
Nl

+
C2ϵ

′

κHhHl

and623

P ϵ′(sπ
Nl

Hl
̸= g(s, a)) ≤ 1

κHh
+

C1

κHhHl

√
Nl

+
C2ϵ

′

κHhHl
+Hlϵ

′

Proof. Due to the regret guarantee, we have that:624

C1√
Nl

+ C2ϵ
′

≥ ⟨ϕP (π∗)− ϕP (πNl), θ∗⟩

= r(π∗) + κHhHl · 1− r(πNl)− κHhHl · P (sπ
Nl

Hl
= g(s, a))

≥ 0−Hl + κHhHl · P (sπ
Nl

Hl
̸= g(s, a))

Thus, we have that:625

P (sπ
Nl

Hl
̸= g(s, a)) ≤ 1

κHh
+

C1

κHhHl

√
Nl

+
C2ϵ

′

κHhHl

Additionally, we have that from Lemma 5.1:626

|dπ
Nl

Hl
(g(s, a))− d̂π

Nl

Hl
(g(s, a))| = |P (sπ

Nl

Hl
̸= g(s, a))− P ϵ′(sπ

Nl

Hl
̸= g(s, a))| ≤ Hlϵ

′

Thus,627

P ϵ′(sπ
Nl

Hl
̸= g(s, a)) ≤ 1

κHh
+

C1

κHhHl

√
Nl

+
C2ϵ

′

κHhHl
+Hlϵ

′

628

Define goal non-reachability probability to be: δ = 1
κHh

+ C1

κHhHl

√
Nl

+ C2ϵ
′

κHhHl
+Hlϵ

′.629

Lemma 19. Let ΦπNl ,P ϵ′

(π) denote the feature expectation under high level policy π, sub-MDP630

policies πNl and MDP transitions P ϵ′ . Under event
⋂

s,a Es,a ∩ E l1 ∩ E l2, we have that, for any high631

level policy π:632

|⟨ϕπ
Nl ,P (π)− ϕπ

Nl ,P ϵ′

(π), θ∗⟩| ≤ 2HhBRd
2ϵ′ + 8H3

hHlδ

Proof. Let Ereach denote the event that roll-out τ ∼ π, πNl , P is such that all high level goals are633

reached, and similarly event E ′reach for roll-out τ ′ ∼ π, πNl , P ϵ′ .634

By union bound, Pr(¬Ereach) = Pr(∃si, ai, sπ
Nl (si,ai)

Hl
̸= g(si, ai)) ≤

∑Hh

i=1 Pr(s
πNl (si,ai)
Hl

̸=635

g(si, ai)))) ≤ Hhδ, and similarly Pr(¬E ′reach) ≤ Hhδ.636

31



|⟨ϕπ
Nl ,P (π)− ϕπ

Nl ,P ϵ′

(π), θ∗⟩|
≤ |Eτ∼π,πNl ,P [⟨ϕ(τ), θ∗⟩|Ereach] Pr(Ereach)− Eτ∼π,πNl ,P ϵ′ [⟨ϕ(τ), θ∗⟩|E ′reach] Pr(E ′reach)|
+ |Eτ∼π,πNl ,P [⟨ϕ(τ), θ∗⟩|¬Ereach] Pr(¬Ereach)− Eτ∼π,πNl ,P ϵ′ [⟨ϕ(τ), θ∗⟩|¬E ′reach] Pr(¬E ′reach)|
≤ |Eτ∼π,πNl ,P [⟨ϕ(τ), θ∗⟩|Ereach] Pr(Ereach)− Eτ∼π,πNl ,P ϵ′ [⟨ϕ(τ), θ∗⟩|E ′reach] Pr(E ′reach)|+ 2(Hhδ)(HhHl)

(since |Eτ∼π,πNl ,P [⟨ϕ(τ), θ∗⟩|¬Ereach] Pr(¬Ereach)| ≤ (Hhδ)(HhHl) and likewise the other term)

= |Pr(Ereach)
Hh∑
h=1

∑
sh,ah

d(sh, ah)E[⟨ϕP (πNl(sh, ah)), θ
∗⟩|Ereach]

− Pr(E ′reach)
Hh∑
h=1

∑
sh,ah

d(sh, ah)E[⟨ϕP
ϵ′

(πNl(sh, ah)), θ
∗⟩|E ′reach]|+ 2H2

hHlδ

(under goal reachability, high-level state visitation measure d(sh, ah) is the same)

≤
Hh∑
h=1

∑
sh,ah

d(sh, ah)|Pr(Ereach)E[⟨ϕP (πNl(sh, ah)), θ
∗⟩|Ereach]

− Pr(E ′reach)E[⟨ϕP
ϵ′

(πNl(sh, ah)), θ
∗⟩|E ′reach]|+ 2H2

hHlδ

=

Hh∑
h=1

∑
sh,ah

d(sh, ah)|Pr(Ereach)E[⟨ϕP (πNl(sh, ah)), θ
∗⟩|Esh,ahreach]

− Pr(E ′reach)E[⟨ϕP
ϵ′

(πNl(sh, ah)), θ
∗⟩|E ′sh,ahreach

]|+ 2H2
hHlδ

(Esh,ahreach is the event that g(sh, ah) is reached under πNl , P )

≤
Hh∑
h=1

∑
sh,ah

d(sh, ah) Pr(Ereach)|E[⟨ϕP (πNl(sh, ah)), θ
∗⟩|Esh,ahreach]− E[⟨ϕP

ϵ′

(πNl(sh, ah)), θ
∗⟩|E ′sh,ahreach

]|

+ |(Pr(Ereach)− Pr(E ′reach))E[⟨ϕP
ϵ′

(πNl(sh, ah)), θ
∗⟩|E ′sh,ahreach

]|+ 2H2
hHlδ

≤
Hh∑
h=1

∑
sh,ah

d(sh, ah)
(
|E[⟨ϕP (πNl(sh, ah)), θ

∗⟩|Esh,ahreach]− E[⟨ϕP
ϵ′

(πNl(sh, ah)), θ
∗⟩|E ′sh,ahreach

]|+ (Hhδ)(HhHl)
)

+ 2H2
hHlδ (since Pr(E ′reach),Pr(Ereach) ∈ [1−Hhδ, 1])

To finish, we will relate the expression to |⟨ϕP ϵ′

(πNl(sh, ah))− ϕ(πNl(sh, ah)), θ
∗⟩|.637
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≤
Hh∑
h=1

∑
sh,ah

d(sh, ah)|E[⟨ϕP (πNl(sh, ah)), θ
∗⟩|Esh,ahreach]− E[⟨ϕP

ϵ′

(πNl(sh, ah)), θ
∗⟩|E ′sh,ahreach

]|+ 3H3
hHlδ

=

Hh∑
h=1

∑
sh,ah

d(sh, ah)|
1

Pr(Esh,ahreach)
Pr(Esh,ahreach)E[⟨ϕP (πNl(sh, ah)), θ

∗⟩|Esh,ahreach]

− 1

Pr(E ′sh,ahreach
)
Pr(E ′sh,ahreach

)E[⟨ϕP
ϵ′

(πNl(sh, ah)), θ
∗⟩|E ′sh,ahreach

]|+ 3H3
hHlδ

≤
Hh∑
h=1

∑
sh,ah

d(sh, ah)
1

Pr(Esh,ahreach)
|Pr(Esh,ahreach)E[⟨ϕP (πNl(sh, ah)), θ

∗⟩|Esh,ahreach]

− Pr(E ′sh,ahreach
)E[⟨ϕP

ϵ′

(πNl(sh, ah)), θ
∗⟩|E ′sh,ahreach

]|+Hh

(
(

1

1− δ
− 1)HhHl

)
+ 3H3

hHlδ

(⋄)

≤
Hh∑
h=1

∑
sh,ah

d(sh, ah)
1

1− δ
|Pr(¬Esh,ahreach)E[⟨ϕP (πNl(sh, ah)), θ

∗⟩|¬Esh,ahreach]

− Pr(¬E ′sh,ahreach
)E[⟨ϕP

ϵ′

(πNl(sh, ah)), θ
∗⟩|¬E ′sh,ahreach

]|+

|E[⟨ϕP
ϵ′

(πNl(sh, ah))− ϕP (πNl(sh, ah)), θ
∗⟩]|+ 4H3

hHlδ (using that 1
1−δ − 1 ≤ 1)

≤
Hh∑
h=1

∑
sh,ah

d(sh, ah)
1

1− δ
(
2(δ)(HhHl) +BRd2ϵ′

)
+ 4H3

hHlδ (⋄⋄)

≤
Hh∑
h=1

∑
sh,ah

d(sh, ah)2
(
2HhHlδ +BRd2ϵ′

)
+ 4H3

hHlδ ( 1
1−δ ≤ 2)

≤ 2HhBRd
2ϵ′ + 8H3

hHlδ = C(ϵ′, δ)

(⋄) : |
Pr(E′

sh,ahreach)

Pr(Esh,ahreach)
− 1| ≤ max(1 − (1 − δ) 1

1−δ − 1) since Pr(E ′sh,ahreach
),Pr(Esh,ahreach) ∈638

[1− δ, 1].639

(⋄⋄) : |⟨ϕP ϵ′

(πNl(sh, ah)) − ϕP (πNl(sh, ah)), v⟩| ≤ BRd2ϵ′ and640

Pr(¬Esh,ahreach),Pr(¬E ′sh,ahreach
) ∈ [0, δ]641

642
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Lemma 20 (use of the Elliptical Lemma).

⟨ϕπ
Nl ,P ϵ′

(π∗)− ϕπ
Nl ,P ϵ′

(π̂), θ∗ − θ̂⟩ ≤ 1√
Nh

(2d log(1 +
Nh

d
))∥θ∗ − θ̂∥Σ̂Nh

Proof.

⟨ϕπ
Nl ,P ϵ′

(π∗)− ϕπ
Nl ,P ϵ′

(π̂), θ∗ − θ̂⟩

≤ ∥ϕπ
Nl ,P ϵ′

(π∗)− ϕπ
Nl ,P ϵ′

(π̂)∥Σ̂−1
Nh

∥θ∗ − θ̂∥Σ̂Nh

≤ 1

Nh

Nh∑
i=1

∥ϕπ
Nl ,P ϵ′

(π∗)− ϕπ
Nl ,P ϵ′

(π̂)∥Σ̂−1
i
∥θ∗ − θ̂∥Σ̂Nh

(Σ̂−1
Nh
⪯ Σ̂−1

i )

≤ 1

Nh

Nh∑
i=1

∥ϕπ
Nl ,P ϵ′

(πi
1)− ϕπ

Nl ,P ϵ′

(πi
2)∥Σ̂−1

i
∥θ∗ − θ̂∥Σ̂Nh

(definition of πi
1,2)

≤ 1√
Nh

√√√√Nh∑
i=1

∥ϕπNl ,P ϵ′ (πi
1)− ϕπ

Nl ,P ϵ′ (πi
2)∥2Σ̂−1

i

∥θ∗ − θ̂∥Σ̂Nh

≤ 1√
Nh

(2d log(1 +
Nh

d
))∥θ∗ − θ̂∥Σ̂Nh

(Elliptical Lemma)

643

Theorem 4 (Main regret bound). We have that under event
⋂

s,a Es,a ∩ E l1 ∩ E l2 ∩ Eh1 ∩ Eh2 and644

Nh > 0:645

V π∗,π∗
− V π̂,πNl ≤ Õ

(
N

−1/2
l +N

−1/2
h ∥θ∗ − θ̂∥Σ̂Nh

)
Proof.

V π∗,π∗
− V π̂,πNl

= ⟨ϕπ
∗,P (π∗)− ϕπ

Nl ,P (π̂), θ∗⟩

= ⟨ϕπ
∗,P (π∗)− ϕπ

Nl ,P (π∗), θ∗⟩+ ⟨ϕπ
Nl ,P (π∗)− ϕπ

Nl ,P (π̂), θ∗⟩
(first term = sub-MDP sub-optimality; second term = high-level policy sub-optimality)

≤ Hh(
C1√
Nl

+ C2ϵ
′) + ⟨ϕπ

Nl ,P (π∗)− ϕπ
Nl ,P (π̂), θ∗⟩

≤ Hh(
C1√
Nl

+ C2ϵ
′) + ⟨ϕπ

Nl ,P ϵ′

(π∗)− ϕπ
Nl ,P ϵ′

(π̂), θ∗⟩

+ |⟨ϕπ
Nl ,P (π∗)− ϕπ

Nl ,P ϵ′

(π∗), θ∗⟩|+ |⟨ϕπ
Nl ,P ϵ′

(π̂)− ϕπ
Nl ,P (π̂), θ∗⟩|

≤ Hh(
C1√
Nl

+ C2ϵ
′) + 2C(ϵ′, δ) + ⟨ϕπ

Nl ,P ϵ′

(π∗)− ϕπ
Nl ,P ϵ′

(π̂), θ∗ − θ̂⟩+ ⟨ϕπ
Nl ,P ϵ′

(π∗)− ϕπ
Nl ,P ϵ′

(π̂), θ̂⟩

(expand out the second term)

≤ Hh(
C1√
Nl

+ C2ϵ
′) + 2C(ϵ′, δ) + ⟨ϕπ

Nl ,P ϵ′

(π∗)− ϕπ
Nl ,P ϵ′

(π̂), θ∗ − θ̂⟩

(definition of π̂: ⟨ϕπNl ,P ϵ′

(π∗)− ϕπNl ,P ϵ′

(π̂), θ̂⟩ ≤ 0)

≤ Hh(
C1√
Nl

+ C2ϵ
′) + 2C(ϵ′, δ) +

1√
Nh

(2d log(1 +
Nh

d
))∥θ∗ − θ̂∥Σ̂Nh

(use of Elliptical lemma)

646
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Data Tradeoff: Using the above bound, we can derive the following rates:647

• Under idealized-feedback and requiring both high- and low-level feedback, the overall rate648

comes out to O(N
−1/4
l +N

−1/2
h ).649

This is because Σ̂Nh
= O

(
N

1/2
h

N
1/4
l

+ 1

)
. Thus, the dominating factor is the bias of the650

reward learning.651

• Under current-feedback and requiring both high- and low-level feedback, the overall rate652

comes out to O(N
−1/2
l +N

−1/2
h ).653

This is because ∥θ∗ − θ̂∥Σ̂Nh
= O(1).654

• Under only low-level feedback (due to sufficiency in coverage), the overall rate comes out655

to O(N
−1/2
l ).656

We have that:657

⟨ϕπ
Nl ,P ϵ′

(π∗)− ϕπ
Nl ,P ϵ′

(π̂), θ∗ − θ̂⟩

≤ ∥ϕπ
Nl ,P ϵ′

(π∗)− ϕπ
Nl ,P ϵ′

(π̂)∥Σ̂−1
Nl

∥θ∗ − θ̂∥Σ̂Nl
(Σ̂−1

Nh
⪯ Σ̂−1

i )

≤ 1

Nh

Nh∑
i=1

∥ϕP
ϵ′

(πi
1)− ϕP

ϵ′

(πi
2)∥Σ̂−1

i
∥θ∗ − θ̂∥Σ̂Nl

(⋄)

≤ 1√
Nl

(2d log(1 +
Nl

d
))∥θ∗ − θ̂∥Σ̂Nl

(⋄) : since low-level policy feature expectation is a superset of high-level policy expecta-658

tion, it follows that by choice of low-level policies πi
1, π

i
2: ∥ϕP ϵ′

(πi
1)− ϕP

ϵ′

(πi
2)∥Σ̂−1

i
≥659

∥ϕπNl ,P ϵ′

(π∗)− ϕπNl ,P ϵ′

(π̂)∥Σ̂−1
Nl

660

Moreover, since low-level feedback is always unbiased, ∥θ∗ − θ̂∥Σ̂Nl
= O(1). Thus, the661

overall rate comes out to O(N
−1/2
l ).662

Remark 4 (High Probability Guarantee). For completeness, we show that the theorem statement663

holds with probability at least 1− δ:664

Pr(
⋂
s,a

Es,a ∩ E l1 ∩ E l2 ∩ Eh1 ∩ Eh2 )

≥ 1− Pr(¬
⋂
s,a

Es,a)− Pr(¬E l1)− Pr(¬E l2)− Pr(¬Eh1 )− Pr(¬Eh2 )

≥ 1− δ/5− δ/5− δ/5− δ/5− δ/5
= 1− δ

C.2.7 Additional Guarantees665

In addition, we derive requisite conditions on the constants for idealized-feedback (the most interesting666

case).667

Necessary Auxiliary Parameters Bound: We have that,668
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Hh(
C1√
Nl

+ C2ϵ
′) + 2C(ϵ′, δ) +

1√
Nh

(2d log(1 +
Nh

d
))∥θ∗ − θ̂∥Σ̂Nh

≤ Hh(
C1√
Nl

+ C2ϵ
′) + 2C(ϵ′, δ) +N

−1/2
h 2d

(
2∥θ∗ − θNh∥Σ̃Nh

+O(B
√
d logNh/δW ) +

√
8NhC(ϵ

′, δ)
)

≤ Hh(
C1√
Nl

+ C2ϵ
′) + (8d+ 2)C(ϵ′, δ) +N

−1/2
h 2d

((
N

1/2
h

N
1/4
l

+ (Nhϵ
′)1/2

)
+ C ′ +O(B

√
d logNh/δW )

)
≤ (HhC1)N

−1/2
l + 2dN

−1/4
l + C2Hhϵ

′ + dϵ′1/2 + 9dC(ϵ′, δ) + 2dC ′′N
−1/2
h

= (HhC1)N
−1/2
l + 2dN

−1/4
l + C2Hhϵ

′ + dϵ′1/2 + 9d
(
2HhBRd

2ϵ′ + 8H3
hHlδ

)
+ 2dC ′′N

−1/2
h

≤ (2d+HhC1)N
−1/4
l + (C2Hh + 18d3HhBR)ϵ

′ + 72dH3
hHlδ + 2dC ′′N

−1/2
h

Setting the upper bound to be below ϵ, or each term to be below ϵ/4, we obtain the following bounds:669

• Nl ≥ O( (d+HhC1)
4

ϵ4 ).670

• Nh ≥ O(d
2

ϵ2 ).671

• κ ≥ O(
dH2

hHl

ϵ ):672

72dH3
hHlδ ≤ ϵ/4⇒ δ ≤ O( ϵ

dH3
hHl

).673

Recall δ = 1
κHh

+ C1

κHhHl

√
Nl

+ C2ϵ
′

κHhHl
+Hlϵ

′.674

This implies that κ ≥ O(
dH2

hHl

ϵ ) and ϵ ≤ O( ϵ
dH3

hH
2
l
).675

• ϵ′ ≤ O(min( ϵ
dH3

hH
2
l
, ϵ
d3HhBR ):676

Finally, we also require that (C2Hh + 18d3HhBR)ϵ
′ ≤ ϵ/4 ⇒ ϵ′ ≤ O( ϵ

d3HhBR ). Thus,677

we need that ϵ′ ≤ O(min( ϵ
dH3

hH
2
l
, ϵ
d3HhBR ).678
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D NeurIPS paper checklist679

Please read the checklist guidelines carefully for information on how to answer these questions. For680

each question in the checklist:681

• You should answer [Yes] , [No] , or [NA] .682

• [NA] means either that the question is Not Applicable for that particular paper or the683

relevant information is Not Available.684

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).685

1. Claims686

Question: Do the main claims made in the abstract and introduction accurately reflect the687

paper’s contributions and scope?688

Answer: [Yes]689

Justification: Our paper contains everything that is covered in the abstract.690

Guidelines:691

• The answer NA means that the abstract and introduction do not include the claims692

made in the paper.693

• The abstract and/or introduction should clearly state the claims made, including the694

contributions made in the paper and important assumptions and limitations. A No or695

NA answer to this question will not be perceived well by the reviewers.696

• The claims made should match theoretical and experimental results, and reflect how697

much the results can be expected to generalize to other settings.698

• It is fine to include aspirational goals as motivation as long as it is clear that these goals699

are not attained by the paper.700

2. Limitations701

Question: Does the paper discuss the limitations of the work performed by the authors?702

Answer: [Yes]703

Justification: This is covered in the “Discussions” section.704

Guidelines:705

• The answer NA means that the paper has no limitation while the answer No means that706

the paper has limitations, but those are not discussed in the paper.707

• The authors are encouraged to create a separate "Limitations" section in their paper.708

• The paper should point out any strong assumptions and how robust the results are to709

violations of these assumptions (e.g., independence assumptions, noiseless settings,710

model well-specification, asymptotic approximations only holding locally). The authors711

should reflect on how these assumptions might be violated in practice and what the712

implications would be.713

• The authors should reflect on the scope of the claims made, e.g., if the approach was714

only tested on a few datasets or with a few runs. In general, empirical results often715

depend on implicit assumptions, which should be articulated.716

• The authors should reflect on the factors that influence the performance of the approach.717

For example, a facial recognition algorithm may perform poorly when image resolution718

is low or images are taken in low lighting. Or a speech-to-text system might not be719

used reliably to provide closed captions for online lectures because it fails to handle720

technical jargon.721

• The authors should discuss the computational efficiency of the proposed algorithms722

and how they scale with dataset size.723

• If applicable, the authors should discuss possible limitations of their approach to724

address problems of privacy and fairness.725

• While the authors might fear that complete honesty about limitations might be used by726

reviewers as grounds for rejection, a worse outcome might be that reviewers discover727

limitations that aren’t acknowledged in the paper. The authors should use their best728
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judgment and recognize that individual actions in favor of transparency play an impor-729

tant role in developing norms that preserve the integrity of the community. Reviewers730

will be specifically instructed to not penalize honesty concerning limitations.731

3. Theory Assumptions and Proofs732

Question: For each theoretical result, does the paper provide the full set of assumptions and733

a complete (and correct) proof?734

Answer: [Yes]735

Justification: All the proofs for results are included in the appendix.736

Guidelines:737

• The answer NA means that the paper does not include theoretical results.738

• All the theorems, formulas, and proofs in the paper should be numbered and cross-739

referenced.740

• All assumptions should be clearly stated or referenced in the statement of any theorems.741

• The proofs can either appear in the main paper or the supplemental material, but if742

they appear in the supplemental material, the authors are encouraged to provide a short743

proof sketch to provide intuition.744

• Inversely, any informal proof provided in the core of the paper should be complemented745

by formal proofs provided in appendix or supplemental material.746

• Theorems and Lemmas that the proof relies upon should be properly referenced.747

4. Experimental Result Reproducibility748

Question: Does the paper fully disclose all the information needed to reproduce the main ex-749

perimental results of the paper to the extent that it affects the main claims and/or conclusions750

of the paper (regardless of whether the code and data are provided or not)?751

Answer: [NA]752

Justification: This is a theory paper that has no experiments section.753

Guidelines:754

• The answer NA means that the paper does not include experiments.755

• If the paper includes experiments, a No answer to this question will not be perceived756

well by the reviewers: Making the paper reproducible is important, regardless of757

whether the code and data are provided or not.758

• If the contribution is a dataset and/or model, the authors should describe the steps taken759

to make their results reproducible or verifiable.760

• Depending on the contribution, reproducibility can be accomplished in various ways.761

For example, if the contribution is a novel architecture, describing the architecture fully762

might suffice, or if the contribution is a specific model and empirical evaluation, it may763

be necessary to either make it possible for others to replicate the model with the same764

dataset, or provide access to the model. In general. releasing code and data is often765

one good way to accomplish this, but reproducibility can also be provided via detailed766

instructions for how to replicate the results, access to a hosted model (e.g., in the case767

of a large language model), releasing of a model checkpoint, or other means that are768

appropriate to the research performed.769

• While NeurIPS does not require releasing code, the conference does require all submis-770

sions to provide some reasonable avenue for reproducibility, which may depend on the771

nature of the contribution. For example772

(a) If the contribution is primarily a new algorithm, the paper should make it clear how773

to reproduce that algorithm.774

(b) If the contribution is primarily a new model architecture, the paper should describe775

the architecture clearly and fully.776

(c) If the contribution is a new model (e.g., a large language model), then there should777

either be a way to access this model for reproducing the results or a way to reproduce778

the model (e.g., with an open-source dataset or instructions for how to construct779

the dataset).780
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(d) We recognize that reproducibility may be tricky in some cases, in which case781

authors are welcome to describe the particular way they provide for reproducibility.782

In the case of closed-source models, it may be that access to the model is limited in783

some way (e.g., to registered users), but it should be possible for other researchers784

to have some path to reproducing or verifying the results.785

5. Open access to data and code786

Question: Does the paper provide open access to the data and code, with sufficient instruc-787

tions to faithfully reproduce the main experimental results, as described in supplemental788

material?789

Answer: [NA]790

Justification: This is a theory paper that does not involve code.791

Guidelines:792

• The answer NA means that paper does not include experiments requiring code.793

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/794

public/guides/CodeSubmissionPolicy) for more details.795

• While we encourage the release of code and data, we understand that this might not be796

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not797

including code, unless this is central to the contribution (e.g., for a new open-source798

benchmark).799

• The instructions should contain the exact command and environment needed to run to800

reproduce the results. See the NeurIPS code and data submission guidelines (https:801

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.802

• The authors should provide instructions on data access and preparation, including how803

to access the raw data, preprocessed data, intermediate data, and generated data, etc.804

• The authors should provide scripts to reproduce all experimental results for the new805

proposed method and baselines. If only a subset of experiments are reproducible, they806

should state which ones are omitted from the script and why.807

• At submission time, to preserve anonymity, the authors should release anonymized808

versions (if applicable).809

• Providing as much information as possible in supplemental material (appended to the810

paper) is recommended, but including URLs to data and code is permitted.811

6. Experimental Setting/Details812

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-813

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the814

results?815

Answer: [NA]816

Justification: This is a theory paper that has no experiments section.817

Guidelines:818

• The answer NA means that the paper does not include experiments.819

• The experimental setting should be presented in the core of the paper to a level of detail820

that is necessary to appreciate the results and make sense of them.821

• The full details can be provided either with the code, in appendix, or as supplemental822

material.823

7. Experiment Statistical Significance824

Question: Does the paper report error bars suitably and correctly defined or other appropriate825

information about the statistical significance of the experiments?826

Answer: [NA]827

Justification: This is a theory paper that has no experiments section.828

Guidelines:829

• The answer NA means that the paper does not include experiments.830
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-831

dence intervals, or statistical significance tests, at least for the experiments that support832

the main claims of the paper.833

• The factors of variability that the error bars are capturing should be clearly stated (for834

example, train/test split, initialization, random drawing of some parameter, or overall835

run with given experimental conditions).836

• The method for calculating the error bars should be explained (closed form formula,837

call to a library function, bootstrap, etc.)838

• The assumptions made should be given (e.g., Normally distributed errors).839

• It should be clear whether the error bar is the standard deviation or the standard error840

of the mean.841

• It is OK to report 1-sigma error bars, but one should state it. The authors should842

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis843

of Normality of errors is not verified.844

• For asymmetric distributions, the authors should be careful not to show in tables or845

figures symmetric error bars that would yield results that are out of range (e.g. negative846

error rates).847

• If error bars are reported in tables or plots, The authors should explain in the text how848

they were calculated and reference the corresponding figures or tables in the text.849

8. Experiments Compute Resources850

Question: For each experiment, does the paper provide sufficient information on the com-851

puter resources (type of compute workers, memory, time of execution) needed to reproduce852

the experiments?853

Answer: [NA]854

Justification: This is a theory paper that has no experiments section.855

Guidelines:856

• The answer NA means that the paper does not include experiments.857

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,858

or cloud provider, including relevant memory and storage.859

• The paper should provide the amount of compute required for each of the individual860

experimental runs as well as estimate the total compute.861

• The paper should disclose whether the full research project required more compute862

than the experiments reported in the paper (e.g., preliminary or failed experiments that863

didn’t make it into the paper).864

9. Code Of Ethics865

Question: Does the research conducted in the paper conform, in every respect, with the866

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?867

Answer: [Yes]868

Justification: The research conducted in the paper does conform with the NeurIPS Code of869

Ethics.870

Guidelines:871

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.872

• If the authors answer No, they should explain the special circumstances that require a873

deviation from the Code of Ethics.874

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-875

eration due to laws or regulations in their jurisdiction).876

10. Broader Impacts877

Question: Does the paper discuss both potential positive societal impacts and negative878

societal impacts of the work performed?879

Answer: [NA]880

Justification: To our knowledge, this theory paper has no positive/negative social impact.881
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Guidelines:882

• The answer NA means that there is no societal impact of the work performed.883

• If the authors answer NA or No, they should explain why their work has no societal884

impact or why the paper does not address societal impact.885

• Examples of negative societal impacts include potential malicious or unintended uses886

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations887

(e.g., deployment of technologies that could make decisions that unfairly impact specific888

groups), privacy considerations, and security considerations.889

• The conference expects that many papers will be foundational research and not tied890

to particular applications, let alone deployments. However, if there is a direct path to891

any negative applications, the authors should point it out. For example, it is legitimate892

to point out that an improvement in the quality of generative models could be used to893

generate deepfakes for disinformation. On the other hand, it is not needed to point out894

that a generic algorithm for optimizing neural networks could enable people to train895

models that generate Deepfakes faster.896

• The authors should consider possible harms that could arise when the technology is897

being used as intended and functioning correctly, harms that could arise when the898

technology is being used as intended but gives incorrect results, and harms following899

from (intentional or unintentional) misuse of the technology.900

• If there are negative societal impacts, the authors could also discuss possible mitigation901

strategies (e.g., gated release of models, providing defenses in addition to attacks,902

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from903

feedback over time, improving the efficiency and accessibility of ML).904

11. Safeguards905

Question: Does the paper describe safeguards that have been put in place for responsible906

release of data or models that have a high risk for misuse (e.g., pretrained language models,907

image generators, or scraped datasets)?908

Answer: [NA]909

Justification: The paper poses no such risks.910

Guidelines:911

• The answer NA means that the paper poses no such risks.912

• Released models that have a high risk for misuse or dual-use should be released with913

necessary safeguards to allow for controlled use of the model, for example by requiring914

that users adhere to usage guidelines or restrictions to access the model or implementing915

safety filters.916

• Datasets that have been scraped from the Internet could pose safety risks. The authors917

should describe how they avoided releasing unsafe images.918

• We recognize that providing effective safeguards is challenging, and many papers do919

not require this, but we encourage authors to take this into account and make a best920

faith effort.921

12. Licenses for existing assets922

Question: Are the creators or original owners of assets (e.g., code, data, models), used in923

the paper, properly credited and are the license and terms of use explicitly mentioned and924

properly respected?925

Answer: [NA]926

Justification: The paper does not use existing assets.927

Guidelines:928

• The answer NA means that the paper does not use existing assets.929

• The authors should cite the original paper that produced the code package or dataset.930

• The authors should state which version of the asset is used and, if possible, include a931

URL.932

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.933
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• For scraped data from a particular source (e.g., website), the copyright and terms of934

service of that source should be provided.935

• If assets are released, the license, copyright information, and terms of use in the936

package should be provided. For popular datasets, paperswithcode.com/datasets937

has curated licenses for some datasets. Their licensing guide can help determine the938

license of a dataset.939

• For existing datasets that are re-packaged, both the original license and the license of940

the derived asset (if it has changed) should be provided.941

• If this information is not available online, the authors are encouraged to reach out to942

the asset’s creators.943

13. New Assets944

Question: Are new assets introduced in the paper well documented and is the documentation945

provided alongside the assets?946

Answer: [NA]947

Justification: The paper does not release new assets.948

Guidelines:949

• The answer NA means that the paper does not release new assets.950

• Researchers should communicate the details of the dataset/code/model as part of their951

submissions via structured templates. This includes details about training, license,952

limitations, etc.953

• The paper should discuss whether and how consent was obtained from people whose954

asset is used.955

• At submission time, remember to anonymize your assets (if applicable). You can either956

create an anonymized URL or include an anonymized zip file.957

14. Crowdsourcing and Research with Human Subjects958

Question: For crowdsourcing experiments and research with human subjects, does the paper959

include the full text of instructions given to participants and screenshots, if applicable, as960

well as details about compensation (if any)?961

Answer: [NA]962

Justification: The paper does not involve crowdsourcing nor research with human subjects.963

Guidelines:964

• The answer NA means that the paper does not involve crowdsourcing nor research with965

human subjects.966

• Including this information in the supplemental material is fine, but if the main contribu-967

tion of the paper involves human subjects, then as much detail as possible should be968

included in the main paper.969

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,970

or other labor should be paid at least the minimum wage in the country of the data971

collector.972

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human973

Subjects974

Question: Does the paper describe potential risks incurred by study participants, whether975

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)976

approvals (or an equivalent approval/review based on the requirements of your country or977

institution) were obtained?978

Answer: [NA]979

Justification: The paper does not involve crowdsourcing nor research with human subjects.980

Guidelines:981

• The answer NA means that the paper does not involve crowdsourcing nor research with982

human subjects.983
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• Depending on the country in which research is conducted, IRB approval (or equivalent)984

may be required for any human subjects research. If you obtained IRB approval, you985

should clearly state this in the paper.986

• We recognize that the procedures for this may vary significantly between institutions987

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the988

guidelines for their institution.989

• For initial submissions, do not include any information that would break anonymity (if990

applicable), such as the institution conducting the review.991
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