
Supplementary Material: Model Refinement of
Overshoot-avoiding Mouse-pointing Operations

In this Supplementary Material, the constants a– f with or
without prime marks (e.g., b′) mean regression coefficients.
Table 1 lists the model fitting results described as follows. As
a reminder, Fitts’ law in the Shannon formulation is:

MT = a+b log2 (A/W +1) (1)

where MT is the time to point to the target, A is the distance to
the target, and W is its size. a and b are empirically determined
constants. The logarithmic term is called the index of difficulty
(ID):

ID = log2 (A/W +1) (2)

To model the effects of the Tdelay and Gap on the MT , we
modify models that capture the transmission Lag. Hoffmann
derived the following model based on Fitts’ law [4]:

MT = a+b(c+Lag)ID (3)

where c, 0 for the case of no lag (the coefficient for ID cannot
be zero). This equation can be converted into

MT = a+bc
(

1+
Lag

c

)
ID

= a+b′(1+ c′Lag)ID (let b′ = bc, c′ = 1/c)
(4)

MacKenzie and Ware proposed the following model [6]:

MT = a+(b+ cLag)ID (5)

where b , 0 for the same reason as in Equation 3, and c is a
weight for the Lag× ID interaction. This can be converted
into

MT = a+b
(

1+
c
b

Lag
)

ID

= a+b(1+ c′Lag)ID (let c′ = c/b)
(6)

which is the same as Equation 4. These models indicate that,
if the Lag is large, each step of the feedback loop between a
visual stimulus and a motor output requires a longer time [4].
As a result, the pointing speed decreases and the total time
increases. The validity of these models has been confirmed by
other researcher groups [3, 8, 9].
In general, the MT increased as the Tdelay decreased in Ex-
periment 1, so a short Tdelay has the effect of slowing down
the user’s mouse operation speed throughout a corrective-
movement phase, as shown in Figure 6 (speed profiles) in the
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main manuscript. Assuming that this slowing-down effect due
to the Tdelay is similar to the fact that the Lag on every frame
decreases the movement speed and increases the MT , we can
simply invert the Lag term in our model to capture the Tdelay
factor:

MT = a+b
(

1+ c
1

Tdelay

)
ID (7)

To avoid mathematical error when Tdelay = 0 sec, we add a
constant d (> 0):

MT = a+b
(

1+ c
1

d +Tdelay

)
ID (8)

When Tdelay = ∞ sec (i.e., when there is no concern about over-
shooting, as in conventional Fitts tasks), Equation 8 matches
the baseline formulation of MT = a+bID. When Tdelay = 0
sec, which is the worst case for the MT , the ID value is multi-
plied by (1+ c/d) as compared with the baseline formulation.
This means that, while the IP for the baseline formula is 1/b,
the IP for Equation 8 is increased by “×(1+ c/d)” in the
worst case.
According to Figure 5 (Fitts’ law regressions) in the main
manuscript, the experimental IP values for the baseline and the
worst case were 7.19 and 5.63 bits/sec, respectively, so we as-
sume that the value of (1+c/d) is approximately 7.19/5.63=
1.277. This is close to the actual model fitting: the result for
Equation 8 in Table 1 in the main manuscript shows that
(1+ c/d) = (1+ 13.53/53.58) = 1.253, giving a difference
from the assumed value of (1.277−1.253)/1.253 = 0.01915,
which is less than 2%. Thus, the term (1+ c/d) adequately
represents the performance degradation induced by the Tdelay
as compared with the baseline condition.
For the results of Experiment 2, similarly to the case of Tdelay,
we assume that a smaller Gap lowers the movement speed,
and we replace the term Tdelay in Equation 8 with Gap:

MT = a+b
(

1+ e
1

f +Gap

)
ID (9)

which also matches the baseline formulation when Gap = ∞

pixels.
From the results of Experiment 3, because we found no main
effect of Tdelay on MT , we reuse Equation 9. For the sake of
completeness, however, we also check a model that includes
both factors, Tdelay and Gap:

MT = a+b
(

1+ c
1

d +Tdelay
+ e

1
f +Gap

)
ID (10)

Note that Tdelay and Gap are independently added here because
there was no significant interaction between them.
One problem here is that our refined models (Equations 8,
9, and 10) include additional free parameters for regression
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Table 1. Model fitting results with adjusted R2 and AIC values for the candidate models. MT and Tdelay are in msec, and Gap is in pixels. The constants
a, b, c, d, e, and f are estimated regression coefficients with 95% CIs [lower, upper].

Exp. Eq. a b c d e f Adj. R2 AIC

1
1

176.8 151.3
0.8817 379.6

[110.7, 242.9] [132.0, 170.6]

8
175.6 141.3 13.53 53.58

0.9819 316.0
[148.9, 202.4] [133.0, 149.6] [4.148, 22.92] [20.04, 87.12]

2
1

185.3 153.2
0.9400 353.6

[139.2, 231.4] [139.7, 166.7]

9
185.3 141.7 7.471 47.52

0.9859 305.3
[162.3, 208.4] [134.3, 149.1] [1.528, 13.41] [12.04, 83.00]

3

1
172.4 151.7

0.9300 1186
[146.5, 198.4] [144.1, 159.3]

9
210.6 118.6 17.98 57.46

0.9358 1180
[176.2, 245.1] [42.96, 194.2] [-118.2, 154.2] [-286.8, 401.7]

10
210.7 101.3 77.96 395.3 26.38 69.32

0.9457 1160
[178.8, 242.7] [11.38, 191.2] [-272.9, 428.8] [-685.8, 1476] [-181.6, 234.4] [-324.5, 463.1]

fitting, beyond the baseline model (Equation 1). For fair
comparison among models with different numbers of con-
stants, the Akaike information criterion (AIC) [1, 2] has been
used in HCI [7, 11]. The AIC determines the comparatively
best model on the basis of the following information: a
model (a) with a lower AIC value is a better one, (b) with
AIC ≤ (AICmin +2) should be compared with better models,
and (c) with AIC ≥ (AICmin +10) is safely rejected.
For Experiments 1 and 2, taking the effects of Tdelay and Gap
into account improved the fitness: the adjusted R2 increased
from 0.8817 to 0.9819 for Experiment 1, and from 0.9400 to
0.9859 for Experiment 2. Also, their AIC differences were
significant (> 10), so we can confirm that Tdelay and Gap
inversely affected MT , as explained by Equations 8 and 9.
For Experiment 3, however, we could not see a fitness im-
provement by the proposed model (Equation 9): the fitness
improvement in adjusted R2 was less than 1% and that in AIC
was 6. Because these statistical indicators were not improved,
regarding the utility, it seems better to use a model with a
smaller number of coefficients, and thus we can conclude
that the baseline model (Equation 1) already had sufficient
prediction accuracy.
Equation 10 shows that accounting for the effect of Tdelay
improved the prediction accuracy. Although the improvement
in adjusted R2 was less than 1% from Equation 9, that in AIC
was 20 by using six degrees of freedom. Hence, if we observe
a significant main effect of Tdelay owing to (e.g.) user group
difference or pointing device difference, using Equation 10
may be a better choice.
Note that, we refined models just to work mathematically well
(i.e., fitting well to the empirical data), and thus our models
do not help with understanding either the phenomena or the
user strategy. For example, Figure 6 (speed profiles) in the
main manuscript shows a binary strategy but the models do
not reflect this behavior; constants (a to f ) are just weights
of regression. Thus, we do not claim that the model refine-
ment described in this Supplementary Material is our main
contribution.

Yet, another contribution type in performance modeling is the
prediction accuracy improvement internally to the experiment
data. Even if a model for pointing tasks includes ten or more
free parameters for all (co)variances (e.g., [5, 10]), it has been
regarded to have a contribution because it fits to the measured
data; values of the regression weights do not help to understand
some phenomena. Hence, there are various areas of focus in
performance modeling studies, and our model provides one
of them (prediction accuracy improvement). We are aware
that models to help understand other phenomena are required
as well. If such models can be derived, they will provide an
additional contribution in the future.

REFERENCES
[1] Hirotugu Akaike. 1974. A new look at the statistical

model identification. IEEE Trans. Automat. Control 19,
6 (Dec 1974), 716–723. DOI:
http://dx.doi.org/10.1109/TAC.1974.1100705

[2] Kenneth P. Burnham and David R. Anderson. 2002.
Model selection and multimodel inference: a practical
information-theoretic approach (2 ed.). Springer. 1–488
pages.

[3] Sebastian Friston, Per Karlström, and Anthony Steed.
2016. The Effects of Low Latency on Pointing and
Steering Tasks. IEEE Transactions on Visualization and
Computer Graphics 22 (2016), 1605–1615. DOI:
http://dx.doi.org/10.1109/TVCG.2015.2446467

[4] Errol R. Hoffmann. 1992. Fitts’ Law with transmission
delay. Ergonomics 35, 1 (1992), 37–48. DOI:
http://dx.doi.org/10.1080/00140139208967796

[5] Jin Huang, Feng Tian, Nianlong Li, and Xiangmin Fan.
2019. Modeling the Uncertainty in 2D Moving Target
Selection. In Proceedings of the 32nd Annual ACM
Symposium on User Interface Software and Technology
(UIST ’19). Association for Computing Machinery, New
York, NY, USA, 1031–1043. DOI:
http://dx.doi.org/10.1145/3332165.3347880

2

http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1109/TVCG.2015.2446467
http://dx.doi.org/10.1080/00140139208967796
http://dx.doi.org/10.1145/3332165.3347880


[6] I. Scott MacKenzie and Colin Ware. 1993. Lag As a
Determinant of Human Performance in Interactive
Systems. In Proceedings of the INTERACT ’93 and CHI

’93 Conference on Human Factors in Computing Systems
(CHI ’93). ACM, New York, NY, USA, 488–493. DOI:
http://dx.doi.org/10.1145/169059.169431

[7] Xiangshi Ren, Jing Kong, and Xing-Qi Jiang. 2005.
SH-Model: A Model Based on Both System and Human
Effects for Pointing Task Evaluation. IPSJ Journal 46, 5
(2005), 1343–1353. DOI:
http://dx.doi.org/10.2197/ipsjdc.1.193

[8] Richard H.Y. So, Germen K.M. Chung, and Ravindra S.
Goonetilleke. 1999. Target-Directed Head Movements
in a Head-Coupled Virtual Environment: Predicting the
Effects of Lags Using Fitts’ Law. Human Factors 41, 3
(1999), 474–486. DOI:
http://dx.doi.org/10.1518/001872099779611067

[9] Colin Ware and Ravin Balakrishnan. 1994. Reaching for
Objects in VR Displays: Lag and Frame Rate. ACM
Transactions on Computer-Human Interaction 1, 4 (Dec.
1994), 331–356. DOI:
http://dx.doi.org/10.1145/198425.198426

[10] Difeng Yu, Hai-Ning Liang, Xueshi Lu, Kaixuan Fan,
and Barrett Ens. 2019. Modeling Endpoint Distribution
of Pointing Selection Tasks in Virtual Reality
Environments. ACM Trans. Graph. 38, 6, Article Article
218 (Nov. 2019), 13 pages. DOI:
http://dx.doi.org/10.1145/3355089.3356544

[11] Jian Zhao, R. William Soukoreff, Xiangshi Ren, and
Ravin Balakrishnan. 2014. A model of scrolling on
touch-sensitive displays. International Journal of
Human-Computer Studies 72, 12 (2014), 805–821. DOI:
http://dx.doi.org/https:

//doi.org/10.1016/j.ijhcs.2014.07.003

3

http://dx.doi.org/10.1145/169059.169431
http://dx.doi.org/10.2197/ipsjdc.1.193
http://dx.doi.org/10.1518/001872099779611067
http://dx.doi.org/10.1145/198425.198426
http://dx.doi.org/10.1145/3355089.3356544
http://dx.doi.org/https://doi.org/10.1016/j.ijhcs.2014.07.003
http://dx.doi.org/https://doi.org/10.1016/j.ijhcs.2014.07.003

	References 

