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A PROOFS

A.1 THEOREM 1

This proof (of Theorem 1) uses techniques from the proof of Theorem 1 in the paper (Pan et al.,
2020), adapting them to the setting considered in this paper. An informal overview is as follows.
The maximum of the two Q values is a particular case in the computation of the operator. Here,
we mainly show this process also can guarantee convergence. We start with a proposition from the
paper (Pan et al., 2020) that shows the relation between the soft-max and the log-sum-exp function.

Proposition 1
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1

β
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β
, (10)

where pi = eβxi∑n
j=1 eβxj

denotes the weights of the softmax distribution, lseβ(X) denotes the log-sum-

exp function lseβ(X) = 1
β log(
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i=1 eβxixi∑n
j=1 eβxj

. H(X) is the entropy of the distribution. It is easy to check that the maximum entropy

is achieved when pi =
1
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Theorem 1 (Convergence of value iteration with the DDQS operator) For any dynamic double
Q softmax operator gdqβt , if βt approaches∞, the value function after t iterations vt converges to
the optimal value function V ∗.

Proof.
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Vj)||∞ (11)
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For the term (A), the log-sum-exp operator has been proved as a non-expanding operator in the paper
(Fox et al., 2015). In mathematics, the log-sum-exp function is almost equal to the max function.
That is why this makes sense. Here, we prove that it’s also a non-expanding operator in our greedy
Q setting. Define a norm on Q value as ∥Qi − Qj∥ ≜ maxs,a |Qi(s,a) − Qj(s,a)|. Suppose
ϵ = ∥Qi − Qj∥. Please note that in our setting,Qi(s,a) = minQ1

i (s,a), Q
2
i (s,a), Qj(s,a) is

similar defined. Then

log

∫
exp(Qi(s

′,a′)) da′ ≤ log

∫
exp(Qj(s

′,a′) + ϵ) da′

= log

(
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expQj(s

′,a′) da′
)

= ϵ+ log

∫
expQj(a

′,a′) da′. (15)

Similarly, log
∫
expQi(s

′,a′) da′ ≥ −ϵ + log
∫
expQj(s

′,a′) da′. Therefore ∥T Qi − T Qj∥ ≤
γϵ = γ∥Qi −Qj∥.

Consider for Q1 and Q2, we expand the composed Q function, we derive

∥T Qi − T Qj∥ ≤ γ∥Qi −Q1
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j∥

when Qi = Q1
i , it means Q1

i is the min value, for the term (A),we have
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So T is a contraction. We can get the same result when Qi = Q2
i . And due to the min operator, Q1

and Q2 are updated iteratively. Consequently, the two Q functions converge to the optimal value,
satisfying the modified Bellman equation. Thus, the optimal policy is unique.

For the term (B), the details can be found in (Pan et al., 2020). A direct understanding is that as β
increases, this term will eventually become zero.

B ALGORITHM

Compared to SAC and OAC algorithms, the BACC algorithm 1 primarily makes modifications in
the exploration component. In practical applications, instead of calculating the state-value function,
BACC directly updates the Q-functions. In our algorithm, several key steps are followed: 1)Dynamic
Increase of βt (line 3): This is done to ensure the convergence of the Q-value, as described in
section 4.1; 2)Action Sampling from Exploration Policy (line 5): Actions are sampled from the
exploration policy to interact with the environment, as detailed in section 4.2; 3)Storing Transitions
in Memory Buffer: The resulting transitions are stored in a memory buffer; 4)Updating the Q-
function (line 12) and Actor (line 13): BACC samples transitions from the memory buffer to update
both the Q-function and the actor, as explained in section 4.3.

C HYPER PARAMETERS

Table 1 provides an overview of the common BACC parameters utilized in the comparative eval-
uation presented in Figure 3. However, for the results in Figure 5(a-b), which were evalu-
ated on the RoboSchool benchmark, we made slight adjustments to the hyperparameters. In the
HumanoidFlagrunHarder-v1 environment, we set βt to 10, and sr to 3. In the HumanoidFlagrun-v1
environment, we used βt=1 and sr=0.1.
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Algorithm 1 Bold Actor and Conservative Critic (BACC).
Require: θ1, θ2, ϕ ▷ Initial parameters θ1, θ2 of the Q function and ϕ of the target policy πT .

1: θ̆1 ← θ1, θ̆2 ← θ2,D ← ∅ ▷ Initialize target network weights and replay buffer
2: for each iteration do
3: increase βt according to the iteration number
4: for each environment step do
5: at ∼ πE(at|st, βt) ▷ Sample action from exploration policy as in (4.2).
6: st+1 ∼ p(st+1|st,at) ▷ Sample state from the environment
7: D ← D ∪ {(st,at, R(st,at), st+1)} ▷ Store the transition in the replay buffer
8: end for
9: for each training step do

10: sample batch transition (st,at, R(st,at), st+1) from the buffer
11: compute target Q̂i(st,at) for i ∈ 1, 2

12: update θi with ∇̂θiJQ(θi) for i ∈ 1, 2 ▷ Q parameter update
13: update ϕ with ∇̂ϕJπ(ϕ) ▷ Policy parameter update
14: θ̆1 ← τθ1 + (1− τ)θ̆1, θ̆2 ← τθ2 + (1− τ)θ̆2 ▷ Update target networks
15: end for
16: end for
Ensure: θ1, θ2, ϕ ▷ Optimized parameters

Parameter Value

Shared
optimizer Adam
learning rate 3 · 10−4

discount (γ) 0.99
replay buffer size 106

number of hidden layers (all networks) 2
number of hidden units per layer 256
number of samples per minibatch 256
nonlinearity ReLU

SAC
target smoothing coefficient (τ ) 0.005
target update interval 1
gradient steps 1

OAC
beta UB 4.66
delta 23.53

BACC
dynamic weight (βt) epoch number*1
sample range (sr) 7
sample size (sn) 32

Table 1: BACC Hyper-parameters

D ENVIRONMENT PROPERTIES

The properties of each environment are summarized in Table 2.
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Environment State dim Action dim Episode Length

Humanoid-v2 376 17 1000
Ant-v2 111 8 1000
HalfCheetah-v2 17 6 1000
Walker2d-v2 17 6 1000
Hopper-v2 11 3 1000
Swimmer-v2 8 2 1000

Table 2: The details of Mujoco Environments used in this paper.

E MORE RESULTS

E.1 RELATION BETWEEN BETA AND SAMPLE SIZE

We sample n integers uniformly from [1,1000] and give the numerical result of the lseβ(X), smβ(X)
and 1

βH(X). According to the results shown in Table 3,Table 4,Table 5, we can see that a large
beta will lead smβ(X) give a consistent result with the max operator. And, smβ(X) is better than
lseβ(X), it approximate the maximum from the lower bound. With a large beta, the maximum value
can be aprroximated regardless of the sample size.

n, beta=0.01 lseβ(X) smβ(X) 1
βH(X) maximum

10 992.46 932.61 59.85 976
100 1252.17 900.62 351.50 995
1000 1461.84 899.60 561.094 999
10000 1692.55 900.98 779.09 999
100000 1920.21 899.25 896.54 999
1000000 2150.74 899.56 nan 999

Table 3: The results when beta=0.01.

n, beta=1 lseβ(X) smβ(X) 1
βH(X) maximum

10 834.69 834.00 0.69 834
100 970.02 969.92 0.09 970
1000 1000.29 998.70 1.58 999
10000 1001.69 998.31 3.38 999
100000 1004.10 998.41 5.68 999
1000000 1006.36 998.41 7.85 999

Table 4: The results when beta=1.

E.2 REWARD DIFFERENCE BETWEEN EXPLORATION AND EVALUATION

As shown in Figure 6, Because both algorithms are related to exploration, the evaluation return is
higher than the exploration return. However, something goes wrong in OAC exploration. As we use
transition sampled from the replay buffer to train the policy, it does not seem to have much impact
on policy learning. Instead, it shows that our exploration strategy is better than the OAC method.

E.3 REWARD COMPARISON BETWEEN BACC AND OAC

As shown in Figure 7, our method performs better in policy evaluation. Another thing to note is that
our method is inspired by OAC, and we found some problems with the exploration strategy of OAC.
Therefore, we need to prove that our exploration strategy is better, as shown in Figure 8, this figure
shows that our exploration strategy is better.
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n, beta=100 lseβ(X) smβ(X) 1
βH(X) maximum

10 947.0 947.0 0.0 947
100 996.0 996.0 0.0 996
1000 997.0 997.0 0.0 997
10000 999.02 999.00 0.02 999
100000 999.05 999.0 0.05 999
1000000 999.07 999.0 0.07 999

Table 5: The results when beta=100.
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Figure 6: Exploration and evaluation difference of BACC and OAC

E.4 MORE HYPER-PARAMETER EXPERIMENTS

Learning the Q value. The parameter βt influences the learning of the Q function. In practice, we
dynamically increase the βt by setting it as the multiplication of β and the epoch number of timestep
t. In the early stage of training, the Q function cannot provide little information, so a small β can be
used to encourage the exploration. The different β results are shown in Figure 9(a). As we can see,
a smaller β can produce a slightly better result. Our method is not so sensitive to this parameter in
our setting. Nevertheless, a smaller β indeed takes a better result.

Better exploration. As shown in Figure 9(b), if we use a smaller value of sr, that is, we sample
action around the current policy, we can see the final result compared to the two larger values is
terrible, which shows that aimless exploration does lead to poor results, it is difficult to get good
results if sr is too small. Policy learning depends on how well the initial policy is. When sr=7, we
get better results indicating that the policy divergence problem can be solved by explicit sampling
point out-of-distribution. Thus, we can do more OOD sampling with the Q function to explore action
space. Additionally, according to the results of sr=7 and sr=9, we know that sr should not be as big
as possible. Bigger sr does not mean better results because the policy gradient comprises the ∇ϕQ
and∇ϕπ. Suppose we optimize the policy with many low-probability actions, which may prefer by
the Q function. In that case, the policy gradient may be too small to promote the parameter update.

Exploration policy. When constructing an exploration policy, a key question is how many actions
need to be evaluated to obtain a usable exploration policy. If constructing the policy needs many
actions to be evaluated, our method becomes computationally burdensome and resource-intensive.
As shown in Figure 9(c), when sn=10, the final result is the best; when sn=1000, the best result is
achieved at about one million steps, but the final result does not gain an advantage. According to the
results in the figure, it can be seen that BACC can be effective by evaluating only a limited number
of actions, and the improvement of the final performance does not lie in the complete evaluation
of actions in the action space. Instead, the exploration strategy is the main factor for performance
improvement.

Time cost. Our experimental setup consists of a computer with Ubuntu 18 operating system,
equipped with a 9900K CPU and an RTX 2060 GPU. Without using the exploration strategy pro-
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Figure 7: Average evaluation episode return of BACC and OAC
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Figure 8: Average exploration episode return of BACC and OAC

posed in this paper, it takes 6.619 seconds to complete one epoch on average. In most of our experi-
ments, we evaluate 32 actions. With this setting, running one epoch takes an average of 7.29 seconds.
If we evaluate 64 actions, running one epoch takes an average of 7.09 seconds. The GPU may be
more efficient when computing data with a batch size 64. From this, the additional time added due
to exploration is insignificant. One epoch requires 1000 interactions with the environment. When
averaged per exploration step, the time consumed is almost negligible.

We show all the results of different hyper-parameters on these six environments. As shown in
Figure 10, Figure 11 and Figure 12, combine the numerical results, we can better choose the value
for hyper-parameters.

E.5 VISUALIZATION FOR THE Q VALUE
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Figure 9: Three hyper-parameters related to the exploration policy. (a): In practice, the value of βt

is obtained by multiplying β with the epoch number of timestep t. (b): The parameter sr determines
the sample range, where a large value indicates that sampled actions could deviate further from the
distribution of the current policy. (c): We uniformly sample sn actions within the sample range to
construct our exploration policy.
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Figure 10: The results of different sample range on the six environments.

Visualization of the Q function. Our approach is based on the maximum entropy framework
and assumes that the Q function is in an energy-based form. We design experiments to validate
this assumption. The action space in the Simmer environment is two-dimensional, making it an
ideal validation environment. We select an intermediate state of the Q network during the training
process, sample 400*400 points across the entire action space, and calculate the corresponding Q
values. The results we obtained are shown in Figure 13. We plot the 3d surface of the Q function,
and a 2d plane for rotor2=-1.

To observe the surface of the Q network, we plot different stage Q value, which is evaluated based on
a random start state and sampled actions in the Swimmer-v2 environments. As shown in Figure 14,in
the initial stage, the surface is not flat, which is influenced by the input (state and action); if the state
and action is zero vector, this surface should be flat, all zero. This phenomenon shows that neural
networks imply prior knowledge about choosing actions. Policy initialization is closely related to
policy learning. As training progresses, the final optimal action dramatically differs from the initial
policy.
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Figure 11: The results of different sample size on the six environments.
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Figure 12: The results of different beta on the six environments.

F LIMITATIONS AND BROADER IMPACTS

Limitations. In low-dimensional action spaces, our method shows little improvement. It is partic-
ularly noticeable that in the swimmer-v2 environment, state-of-the-art results can reach an episode
reward of 350. Furthermore, exploration costs should also increase as the action space’s dimension-
ality increases. The conclusions we drew earlier may have limitations. However, it is challenging to
develop environments with higher-dimensional action spaces, and we still need to fully validate our
conclusions in such environments.

Broader impacts. We do not anticipate any negative consequences from using our method in
practice.

19



Under review as a conference paper at ICLR 2023

rotor2

rotor1

(a) Swimmer

rotor1

-101

ro
to

r2

-1
0

1

Q
 v

al
ue

0.400

0.425

0.450

0.475

0.500

0.525

(b) 3D visualization

-1 -0.5 0 0.5 1
rotor1

0.495

0.500

0.505

0.510

0.515

0.520

0.525

Q
 v

al
ue

(c) 2D plane

Figure 13: Visualization of the Q function. (a): The swimmer has two rotors, and its moving is
controlled by adjusting the torque applied to the two rotors. (b): The Q values of the two-dimension
actions are plotted in 3D Space. (c): We plot a particular case for rotor2=-1 to show that the Q
function has an energy-based form in early-stage training.
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Figure 14: 3D surfaces of different epoch Q function
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Figure 15: Additional evaluation in the Roboschool simulation. We use different hyper-parameters.
“bacc b1 r0.1” means that β = 1 and sr = 0.1.
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Figure 16: More results in the Humanoid-v2 environment. (a) “random” means randomly taking
Q1(s, a) or Q2(s, a) when constructing πE . (b) “range3̄6” means sr=36. (c) “bacc-explore” means
expore without greedy Q, just with policy. Furthermore, “bacc-explore-min” means no use of the
min value as the target value. (d) “tripleQ” means the value function ensemble framework comprises
triple Q networks.
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