
Scaling Up and Distilling Down:
Language-Guided Robot Skill Acquisition

Supplementary Material

Contents

1 Policy Rollout Visualizations 1

2 LLM Prompts 2

2.1 LLM Pipeline Design . 2

2.2 LLM Pipeline . 2

2.3 Prompt Structure . 2

2.4 APIs for Success Condition Code Generation . 3

2.5 Example Completions . 10

2.5.1 Ambiguous Task Description Handler . 10

2.5.2 Planning . 11

2.5.3 Success Condition Inference . 11

3 Training & Data Details. 11

3.1 Data Generation . 11

3.2 Network Architecture & Hyperparameters . 12

3.3 Training . 12

4 Utilities Implementation 12

5 Benchmark 12

5.1 Mailbox . 13

5.2 Transport . 13

5.3 Drawer . 13

5.4 Catapult . 13

5.5 Bus Balance . 14

6 Full Results 14

1 Policy Rollout Visualizations

Our policy’s 6DoF manipulation behavior is best visualized through videos. Please visit scalingup-
distillingdown.github.io to view the videos.

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

https://scalingup-distillingdown.github.io/
https://scalingup-distillingdown.github.io/

2 LLM Prompts

Below, we include all prompts used in our approach. We use the same LLM pipeline and prompts in all
domains and tasks. We first outline the rationale behind our design of the LLM pipeline (§ 2.1). Next, we
describe in detail the LLM modules and how they are used in the data generation stage (§ 2.2), summarize
the general prompt structure (§ 2.3), and outline the API supplied to the LLM for success condition
inference (§ 2.4). Finally, we show some examples of LLM completions (§ 2.5).

In all of our experiments, we use GPT3 (text-davinci-003) with temperature 0.0.

2.1 LLM Pipeline Design

Our LLM pipeline is factorized into multiple LLM modules, allowing each module’s prompt to speciallize
in a small reasoning skill (e.g. one set of prompts for deciding whether a task involves a single or multiple
objects). We found that this not only improves the LLM’s performance, but also makes designing and
maintaining prompts easy. For instance, during development, if the LLM outputs an unexpected task tree,
the error could be traced back to a single module, and only that module’s prompt needs to be updated.
Another convenient feature of this approach is that it also saves on token usage. Since each module’s task
is small (e.g. answer only “one” or “multiple”), the amount of completion tokens is significantly smaller
than a monolithic prompt. Further, when a module’s prompt is updated, only that module’s outputs needs
to be updated, allowing cost-effective approaches to cache-ing LLM’s completions.

2.2 LLM Pipeline

The recursive LLM-based planner starts with an ambiguous task description handler (Listing 1), which
transforms ambiguous task descriptions such as “move the block onto the catapult then shoot the block
into the furthest bin” into more specific task descriptions like “move the block onto the catapult then shoot
the block into the furthest bin by pressing the catapult’s button”. While this handler’s task can occasionally
overlap with the LLM planner’s task, we found that it was more effective to keep them separate.

Next, given a un-ambiguous task description, the LLM planner first decides whether the planning step
is necessary by checking whether the task involves touching only a single object or requiring further
decomposition (Listing 2). If the task involves multiple objects, it proceeds with planning (explained in the
next paragraph). If the task involves only one object part, an LLM identifies which object part name it should
interact with (Listing 3). If the object part name is a single-link rigid object, the LLM is asked for which
object it should move (the pick object part) and where (the place object part) using the prompt in Listing 4.

In the planning step, the LLM planner outputs a list of subtasks (Listing 5). Given the recursive nature
of this planning module, parent tasks also need to keep track of and propagate the current state of the
environment to child tasks. For instance, the “open the fridge” subtask should be followed with “with
the fridge door opened, move the eggs from the fridge ...”, such that the recursive call for moving the eggs
knows it does not need to open the fridge door again.

After it has inferred the full task tree, the LLM also infers a success condition for every task in the task
tree (Listing 6) in the form of a code-snippet. Similar to [1], we inform the LLM which state API utilities
are available for its usage by including import statements at the top of the file and demonstrating how
they are used in the examples.

2.3 Prompt Structure

All prompts start with instructions to explain to the LLM what the task is (e.g. “given an input task
description, the goal is to output a list of subtasks ..”), followed by a few “shots” of examples, separated
by a “#” symbol (in text-based prompts) or a multi-line comment (in code-based prompts). Each shot
starts with a structured text encoding of the scene’s object’s and their parts’ names in the form of a bullet
list. In the planning, success condition inference, single-or-multiple , pick-and-place, and ambiguous task
description LLM tasks, we found that it was helpful to encourage the LLM to output its reasoning (either
with an explicit “reasoning:” field or through in-line code comments). In contrast, we found the object
part identifier task to be more effective without this explicit reasoning field.

2

2.4 APIs for Success Condition Code Generation

All functions take as the first argument the simulation state, which contains information on object and
part names, kinematic structure, contact, all degrees of freedom, and collision meshes.

Contact. This function takes as input two object (part) names, and returns whether they (or any of their
parts) are in contact.

Activation. A pair of functions, check activated and check deactivated, take as input
an object part name and checks whether the revolute/prismatic joint connecting the object part to its parent
link are near their maximum or minimum values, respectively. This is useful for checking whether a lid
is opened/closed or a button is pressed/released.

Spatial Relations. We provide two spatial relations, check on top of and check inside,
which takes two object (part) names and returns whether the first object (part) is on top of the second
object (part) or inside the second object (part), respectively. An object is on top of another if they are
in contact and the contact normal’s dot product with the up direction is greater than 0.99. An object is
inside a container if that the intersection of that object’s axis-aligned bounding boxes with the container’s
axis-aligned bounding boxes is at least 75% of the object’s axis-aligned bounding box’s volume. This
axis-aligned bounding box information can be parsed from the collision checker of most physics simulators.

Listing 1: Ambiguous task description handler’s prompts
1 instructions:
2 given an input task description, the goal is rephrase the task such that it is not ambiguous.
3 if the task is already specific enough, just return the original task description.
4 below are some examples:
5 #
6 task: stack the blocks on top of each other
7 scene:
8 - navy block
9 - maroon block

10 - violet block
11 reasoning: the block stacking

order is ambiguous. we can specify which block should be placed on which, in which order.
12 answer: move the maroon block onto the navy block, and the violet block on the maroon block.
13 #
14 task: move the lilac block onto the brown block
15 scene:
16 - brown block
17 - lilac block
18 - yellow block
19 reasoning: the blocks

to interact with are fully specified, so just return the original task description.
20 answer: move the lilac block onto the brown block.
21 #
22 task: sort the blocks based on their color’s temperature onto corresponding plates
23 scene:
24 - red block
25 - orange block
26 - blue block
27 - purple block
28 - red plate
29 - blue plate
30 reasoning: which blocks and plates belong to the same color temperature

group are ambiguous. we can specify exactly which blocks should be placed on which plate.
31 answer: move the red

and orange blocks onto the red plate, and the purple and blue blocks onto the blue plate.
32 #
33 task: open the jar
34 scene:
35 - jar
36 + jar lid
37 reasoning: opening a jar is

a primitive action and is fully specified, so just return the original task description.
38 answer: open the jar.
39 #
40 task: close the second drawer
41 scene:
42 - drawer
43 + first drawer
44 + first drawer handle
45 + second drawer
46 + second drawer handle

3

47 + third drawer
48 + third drawer handle
49 reasoning: closing the second drawer is a

primitive action towards a specific drawer, so just return the original task description.
50 answer: close the second drawer.
51 #
52 task: move the ingredients for the omelette onto the kitchen counter
53 scene:
54 - kitchen counter
55 + cupboard
56 + cupboard door
57 + cupboard door handle
58 + salt
59 + pepper
60 - fridge
61 + fridge door
62 + fridge door handle
63 + fridge top shelf
64 + eggs
65 + butter
66 + cheese
67 + milk
68 + fridge bottom shelf
69 + mushrooms
70 + broccoli
71 + freezer
72 + lamb shank
73 + trader joe’s dumplings
74 + tilapia fillet
75 reasoning: which ingredients belong to

the omelette is ambiguous. we can specify exactly which items to take out of the fridge.
76 answer: move the eggs, butter, cheese,

and mushrooms onto the kitchen counter and the salt and pepper onto the kitchen counter.
77 #
78 task: open the fridge, move the cheese onto the kitchen counter, and then close the fridge.
79 scene:
80 - kitchen counter
81 + cupboard
82 + cupboard door
83 + cupboard door handle
84 + salt
85 + pepper
86 - fridge
87 + fridge door
88 + fridge door handle
89 + fridge top shelf
90 + eggs
91 + butter
92 + cheese
93 + milk
94 + fridge bottom shelf
95 + mushrooms
96 + broccoli
97 + freezer
98 + lamb shank
99 + trader joe’s dumplings

100 + tilapia fillet
101 reasoning: which actions to perform

and in which order is fully specified, so just return the original task description.
102 answer: open the fridge, move the cheese onto the kitchen counter, and then close the fridge.

Listing 2: One-or-Multiple module’s prompts
1 instructions:
2 given an input task description, the goal is to classify whether

performing the task will involve touching only "one" object or "multiple" objects.
3 all objects start in a de-activated

state (e.g., doors, drawers, cabinets, cupboards, and other objects with doors are
closed, lights are off, etc.) unless specified otherwise (e.g., with the door opened).

4 after performing the task, objects should be reset to their de-activated state if relevant.
5 below are some examples:
6 #
7 task: move the blue block onto the plate
8 scene:
9 - green block

10 - blue block
11 - red block
12 - plate

4

13 reasoning: "moving the blue block onto the plate" involves
two objects, the blue block and the plate. moving the blue block requires touching
it. the plate does not have any activation state, so does not need to be touched.

14 answer: one.
15 #
16 task: stack the blocks on the plate
17 scene:
18 - green block
19 - plate
20 - red block
21 - blue block
22 reasoning: "stack the blocks" can be decomposed into moving

the red block onto the plate, moving the green block onto the red block, and moving the
blue block onto the green block. performing these steps involve touching multiple blocks.

23 answer: multiple.
24 #
25 task: with the red block on

the plate and the orange block on the red block, move the green block onto the pink block
26 scene:
27 - orange block
28 - pink block
29 - plate
30 - green block
31 - red block
32 reasoning: "moving the green block onto the pink block" involves

two objects, the green block and the pink block. moving the green block requires touching
it. the pink block does not have any activation state, so does not need to be touched.

33 answer: one.
34 #
35 task: move the lasagna into the microwave
36 scene:
37 - microwave
38 + microwave door
39 + microwave door handle
40 - kitchen counter
41 - fridge
42 + fridge door
43 + fridge door handle
44 - lasagna
45 reasoning: "moving the pasta into

the microwave" involves only two objects, the lasagna and the microwave. however, it is
not a primitive task because the microwave has a door (activation state), but it starts
off being closed (de-activated). opening the microwave involves touching the microwave.

46 answer: multiple.
47 #
48 task: with the microwave opened, move the pasta into the microwave
49 scene:
50 - microwave
51 + microwave door
52 + microwave door handle
53 - kitchen counter
54 - fridge
55 + fridge door
56 + fridge door handle
57 - pasta
58 reasoning

: "moving the pasta into the microwave" involves two objects, the pasta and the microwave
. the microwave’s door needs to be opened (activation state), but it is already opened
. since the task asserts that the microwave is opened, it also does not need to be closed
afterwards. this means performing the task does not involve touching the microwave.

59 answer: multiple.
60 #
61 task: open the microwave
62 scene:
63 - fridge
64 + fridge door
65 + fridge door handle
66 - dumplings
67 - microwave
68 + microwave door
69 + microwave door handle
70 - kitchen counter
71 reasoning:

"opening the microwave" is a primitive task. it involves only one object, the microwave.
72 answer: one.
73 #
74 task: with the microwave opened and the sandwich in the microwave, close the microwave
75 scene:
76 - fridge
77 + fridge door
78 + fridge door handle

5

79 - sandwich
80 - microwave
81 + microwave door
82 + microwave door handle
83 - kitchen counter
84 reasoning:

"closing the microwave" is a primitive task. it involves only one object, the microwave.
85 answer: one.

Listing 3: Object part identifier’s prompts
1 instructions: given an input task

description, the goal is to identify which object part from the scene to interact with.
2
3 below are some examples:
4 #
5 task: stack the blue block on the plate
6 scene:
7 - red block
8 - blue block
9 - green block

10 - plate
11 answer: blue block.
12 #
13 task: with the red block on the plate, stack the green block on the red block
14 scene:
15 - red block
16 - blue block
17 - green block
18 - plate
19 answer: green block.
20 #
21 task: turn on the lights
22 scene:
23 - light switch
24 - ceiling light
25 - wall
26 answer: light switch.
27 #
28 task: open the microwave
29 scene:
30 - microwave
31 + microwave door
32 + microwave door handle
33 + microwave start button
34 + microwave plate
35 - kitchen counter
36 + cupboard
37 + cupboard door
38 + cupboard door handle
39 answer: microwave door handle.
40 #
41 task: with microwave

opened and the lasagna on the kitchen counter, move the lasagna into the microwave
42 scene:
43 - kitchen counter
44 + cupboard
45 + cupboard door
46 + cupboard door handle
47 - fridge
48 + fridge door
49 + fridge door handle
50 + fridge top shelf
51 + fridge bottom shelf
52 + freezer
53 - lasagna
54 - microwave
55 + microwave door
56 + microwave door handle
57 + microwave start button
58 + microwave plate
59 answer: lasagna.
60 #
61 task: with the fridge door opened, open the cupboard
62 scene:
63 - microwave
64 + microwave door
65 + microwave door handle
66 + microwave start button
67 + microwave plate

6

68 - kitchen counter
69 + cupboard
70 + cupboard door
71 + cupboard door handle
72 - fridge
73 + fridge door
74 + fridge door handle
75 + fridge top shelf
76 + fridge bottom shelf
77 + freezer
78 - lasagna
79 answer: cupboard door handle.

Listing 4: Pick & place handler’s prompts
1 instructions: given an input pick and place description, the goal is to

identify which object to pick and where to place among the objects listed in the scene.
2
3 below are some examples:
4 #
5 task: move the blue block on the plate
6 scene:
7 - red block
8 - blue block
9 - green block

10 - plate
11 pick: blue block.
12 place: plate.
13 #
14 task: with the red block on the plate, move the green block to the top of the red block
15 scene:
16 - red block
17 - blue block
18 - green block
19 - plate
20 pick: green block.
21 place: red block.
22 #
23 task: with microwave

opened and the lasagna on the kitchen counter, move the lasagna into the microwave
24 scene:
25 - kitchen counter
26 + cupboard
27 + cupboard door
28 + cupboard door handle
29 - fridge
30 + fridge door
31 + fridge door handle
32 + fridge top shelf
33 + fridge bottom shelf
34 + freezer
35 - lasagna
36 - microwave
37 + microwave door
38 + microwave door handle
39 + microwave start button
40 + microwave plate
41 pick: lasagna.
42 place: microwave plate.

Listing 5: Planning module’s prompts
1 instructions: given a input task description

, the goal is to output a list of subtasks, which, when performed in sequence would
solve the input task. all objects start in a de-activated state (e.g., doors, drawers

, cabinets, cupboards, and other objects with doors are closed, lights are off, etc
.) unless specified otherwise (e.g., with the door opened). after performing the task,
objects should be reset to their de-activated state if possible. below are some examples:

2 #
3 task: move the red block

onto the plate, the blue block onto the red block, and the green block on the blue block
4 scene:
5 - red block
6 - blue block
7 - green block
8 - plate
9 reasoning

: no objects have activation states. the blocks can be directly placed onto the plates.
10 answer:

7

11 - 1. move the red block onto the plate
12 - 2. with the red block on the plate, move the blue block onto the red block
13 - 3. with the red block on

the plate and the blue block on the red block, move the green block onto the blue block
14 #
15 task: move the eggs, salt, and pepper onto the kitchen counter
16 scene:
17 - kitchen counter
18 + cupboard
19 + cupboard door
20 + cupboard door handle
21 + salt
22 + pepper
23 - fridge
24 + fridge door
25 + fridge door handle
26 + fridge top shelf
27 + eggs
28 + butter
29 + cheese
30 + milk
31 + fridge bottom shelf
32 + freezer door
33 + freezer door handle
34 reasoning: the fridge and cupboard has doors

(activation states) which start off closed (de-activated). they need to be opened before
objects can be taken out of them. after the task is done, they need to be closed (reset).

35 answer:
36 - 1. open the fridge
37 - 2. with the fridge door opened, move the eggs from the fridge onto the kitchen counter
38 - 3. with the eggs on the kitchen counter, close the fridge
39 - 4. with the eggs on the kitchen counter, open the cupboard
40 - 5. with the eggs on

the kitchen counter and the cupboard door opened, move the salt onto the kitchen counter
41 - 6. with the eggs and salt on the

kitchen counter and the cupboard door opened, move the pepper onto the kitchen counter
42 - 7. with the eggs, salt, and pepper on the kitchen counter, close the cupboard door
43 #
44 task: with the fridge door opened, move the eggs, salt, and pepper onto the kitchen counter
45 scene:
46 - kitchen counter
47 + cupboard
48 + cupboard door
49 + cupboard door handle
50 + salt
51 + pepper
52 - fridge
53 + fridge door
54 + fridge door handle
55 + fridge top shelf
56 + eggs
57 + butter
58 + cheese
59 + milk
60 + fridge bottom shelf
61 + freezer door
62 + freezer door handle
63 reasoning: the fridge and cupboard has doors (activation states

). the fridge’s door is already opened (activated) and so don’t need to be reset. the
cupboard’s door starts off closed (de-activated) but needs to be opened before objects
can be taken out of it. after the task is done, the cupboard need to be closed (reset).

64 answer:
65 - 1. with the fridge door opened, move the eggs from the fridge onto the kitchen counter
66 - 2. with the fridge door opened and the eggs on the kitchen counter, open the cupboard
67 - 3. with the fridge door opened, the eggs on the

kitchen counter, and the cupboard door opened, move the salt onto the kitchen counter
68 - 4. with the fridge door opened, the eggs and salt on the

kitchen counter, and the cupboard door opened, move the pepper onto the kitchen counter
69 - 5. with the fridge

door opened, the eggs, salt, and pepper on the kitchen counter, close the cupboard door

Listing 6: Success Condition Inference module’s prompts
1 from utils import (
2 check_contact,
3 check_activated,
4 check_deactivated,
5 check_inside,
6 check_on_top_of,
7 EnvState,

8

8)
9

10
11 """
12 instructions:
13 given a input task description, the goal is to output the success condition for
14 that task. unless otherwise specified, all objects start in a de-activated state
15 (e.g., doors, drawers, cabinets, cupboards, and other containers are closed,
16 lights are off, etc.) unless specified otherwise (e.g., with the door opened).
17 after performing the task, objects should be reset to original state if possible.
18 """
19
20
21 # robot task: touch the apple
22 # scene:
23 # - apple
24 # + apple body
25 # + apple stem
26 def touching_apple(init_state: EnvState, final_state: EnvState):
27 return check_contact(
28 final_state, "robotiq left finger", "apple body"
29) and check_contact(final_state, "robotiq right finger", "apple body")
30
31
32 # robot task: release the cup
33 # scene:
34 # - cup
35 # + cup body
36 # + cup handle
37 def released_cup(init_state: EnvState, final_state: EnvState):
38 finally_touching_cup = check_contact(
39 final_state, "robotiq left finger", "cup handle"
40) and check_contact(final_state, "robotiq right finger", "cup handle")
41 finally_released_cup = (not finally_touching_cup) and (
42 not final_state.gripper_command
43)
44 return finally_released_cup
45
46
47 # robot task: move the milk carton into the shelf
48 # scene:
49 # - milk carton
50 # - coke can
51 # - shelf
52 def milk_carton_is_on_shelf(init_state: EnvState, final_state: EnvState):
53 return check_on_top_of(final_state, "milk carton", "shelf")
54
55
56 # robot task: move the milk carton from the shelf
57 # scene:
58 # - milk carton
59 # - coke can
60 # - shelf
61 def milk_carton_is_not_on_shelf(init_state: EnvState, final_state: EnvState):
62 return not check_on_top_of(final_state, "milk carton", "shelf")
63
64
65 # robot task: open the washing machine
66 # scene:
67 # - washing machine
68 # + washing machine door
69 # + washing machine door handle
70 # + control panel
71 # + on off button
72 def washing_machine_opened(init_state: EnvState, final_state: EnvState):
73 return check_activated(final_state, "washing machine door")
74
75
76 # robot task: move the sock into the washing machine
77 # scene:
78 # - washing machine
79 # + washing machine door
80 # + washing machine door handle
81 # + control panel
82 # + on off button
83 # - sock
84 def sock_inside_washing_machine(init_state: EnvState, final_state: EnvState):
85 # the washing machine can be opened (activated state) or closed (de-activated
86 # state). since its activation state was not specified, the washing machine starts
87 # off closed. therefore, it needs to be closed after the sock is moved inside.
88 sock_inside_washing_machine = check_inside(final_state, "sock", "washing machine")

9

89 washing_machine_door_closed = check_deactivated(final_state, "washing machine door")
90 return sock_inside_washing_machine and washing_machine_door_closed
91
92
93 # robot task: with the washing machine opened, move the sock into the washing machine
94 # scene:
95 # - washing machine
96 # + washing machine door
97 # + washing machine door handle
98 # + control panel
99 # + on off button

100 # - sock
101 def sock_inside_washing_machine_with_washing_machine_opened(
102 init_state: EnvState, final_state: EnvState
103):
104 # the washing machine can be opened (activated state) or closed (de-activated
105 # state). the washing machine starts off opened, so it does not need to be closed
106 # after the sock is moved inside.
107 sock_inside_washing_machine = check_inside(final_state, "sock", "washing machine")
108 return sock_inside_washing_machine

2.5 Example Completions

Most modules are designed such that their answers are multi-choice (e.g. single or multiple). We show
examples of more interesting open-ended completions for the ambiguous task description handler, planning,
and success condition inference modules. The LLM’s outputs are highlighted in blue.

2.5.1 Ambiguous Task Description Handler

task: move the block onto the catapult arm, then press the button to shoot the block into the
closest box
scene:
- catapult

+ button
+ catapult arm

- yellow block
- closest box
- furthest box
- middle box
- table
reasoning: which block to move onto the catapult arm is ambiguous. we can specify exactly
which block to move onto the catapult arm.
answer: move the yellow block onto the catapult arm, then press the button to shoot the block
into the closest box.

task: send the amazon package for return
scene:
- mailbox

+ mailbox lid
+ mailbox lid handle

+ mailbox flag
- amazon package
- table
reasoning: which actions to perform and in which order is ambiguous. we can specify exactly
which actions to take.
answer: open the mailbox lid, place the amazon package inside the mailbox, raise the mailbox
flag, and then close the mailbox lid.

10

2.5.2 Planning

task: move the yellow block onto the catapult arm, then press the button to shoot the block
into the closest box
scene:
- catapult

+ button
+ catapult arm

- yellow block
- closest box
- furthest box
- middle box
- table
reasoning: the catapult has a button (activation state) which starts off de-activated. it
needs to be pressed to shoot the block. after the task is done, the button should be reset to
its de-activated state.
answer:
- 1. move the yellow block onto the catapult arm
- 2. with the yellow block on the catapult arm, press the button to shoot the block into the
closest box
- 3. with the yellow block in the closest box, reset the button to its de-activated state

task: open the mailbox lid, place the amazon package inside the mailbox, raise the mailbox
flag, and then close the mailbox lid
scene:
- mailbox

+ mailbox lid
+ mailbox lid handle

+ mailbox flag
- amazon package
- table
reasoning: the mailbox lid has an activation state (closed/de-activated). it needs to be
opened before the package can be placed inside. after the task is done, the lid needs to be
closed (reset).
answer:
- 1. open the mailbox lid
- 2. with the mailbox lid opened, move the amazon package from the table into the mailbox
- 3. with the amazon package in the mailbox, raise the mailbox flag
- 4. with the amazon package in the mailbox and the mailbox flag raised, close the mailbox lid

2.5.3 Success Condition Inference
robot task: move the yellow block onto the catapult arm
scene:
- catapult
+ button
+ catapult arm
- yellow block
- closest box
- furthest box
- middle box
- table
def yellow_block_on_catapult_arm(init_state: EnvState, final_state: EnvState):
return check on top of(final_state, "yellow block", "catapult arm")

robot task: open the mailbox lid
scene:
- mailbox
+ mailbox lid
+ mailbox lid handle
+ mailbox flag
- amazon package
- table
def mailbox_lid_opened(init_state: EnvState, final_state: EnvState):
return check_activated(final_state, "mailbox lid")

3 Training & Data Details.

3.1 Data Generation

Our data-collection policy uses the 6DoF Exploration Primitives with the Verify & Retry step. For each
domain, we run data generation until we get at least 500 successful trajectories per task. Although this
can be costly when tasks are long horizon with low success rates (the mailbox domain took 2 days on
256 CPU cores Intel Xeon Gold 6230R CPU @ 2.10GHz), data generation happens only once.

11

test

train

Figure 1: Generalization to Novel Objects. The Transport domain requires generalization to diverse and novel
object shapes and colors. Trained to transport 22 toys, our distilled policy generalizes to 8 novel toys (in blue section).
All objects rendered from a fixed camera to show diversity of object size.

3.2 Network Architecture & Hyperparameters

We use the same network architecture and hyperparameters for all domains. Our task descriptions are
encoded using CLIP B/32’s text encoder [2], and projected into a 512-dimensional vector. For each of
the two camera view, we learn a separate Resnet18-based vision encoder, whose features are flattened,
concatenated, and projected into a 512-dimensional vector. The Resnet18 architecture is pre-processed
by replacing BatchNorm with GroupNorm and replacing the final average pool layer with a spatial softmax
pooling [3]. We use an image resolution of 80×120 for each view, processed with a random crop to
72×108. Finally, the proprioception is concatenated with the vision and text encoder as the condition
into the diffusion policy. We use the convolution network-based diffusion policy architecture [3]. The final
network has 108 million parameters. All networks are optimized end-to-end with the AdamW optimizer,
with 5e-5 learning rate and 1e-6 weight decay, and a cosine learning rate scheduler. For evaluation, we
use an exponential moving average of all networks with a decay rate of 0.75.

3.3 Training

We train a separate multi-task policy for each domain using the same hyperparameters and network
architecture. For domains with only a single task, this amounts to a single-task policy. All networks are
trained for 72 hours on a single NVIDIA A6000, and the best checkpoint’s performance is reported.

4 Utilities Implementation

For motion planning, we implemented rapidly-exploring random trees (RRT [4]) with grasped-object-
aware collision checking, allowing the robot to motion plan with dynamic grasping constraints. The
geometry-based grasp and placement sampler is implemented using point clouds created from depth maps,
camera matrices, and segmentation maps from the simulator. While our grasp sampler uses only geometry,
kinematics, and contact information, including other grasp quality metrics (e.g. stability analysis) can
improve its performance. In the placement sampler, we sample candidate place positions at points whose
estimated contact normal is aligned against the gravity direction. The revolute and prismatic joint motion
primitives are implemented by checking the grasp pose relative to the joint (e.g. mailbox lid handle grasp
relative to the mailbox lid hinge), then performing a circular motion around the joint axis or a linear motion
along the joint axis, respectively.

5 Benchmark

Our benchmark is built on top of the Mujoco [5] simulator, using assets from the Google Scanned Objects
dataset [6, 7]. We use a table-top manipulation set-up, with a WSG50 gripper and Toyota Research Institute
Finray fingers mounted on a UR5e. The workspace has two cameras, one front view, which observes
the entire workspace and robot, and a wrist-mounted camera, which is used to help with fine-grained
manipulation [8]. Since all tasks are quasi-static, we opted for a 2Hz control rate to allow objects more time

12

Approach Pencilcase Crayon Vitamin Horse Avg.
Top Mid Bot Top Mid Bot Top Mid Bot Top Mid Bot

LLM-as-Policy (2D) 0 0 0 0 0 0 0 0 0 0 0 0 0
(+) 6DoF Robot Utils 8 8 8 18 42 16 0 7 0 6 7 2 10
(+) Verify & Retry 32 42 46 56 76 58 16 40 38 28 22 18 39

(+) Distill (Ours) 18 46 54 44 56 54 8 14 32 10 26 28 33

Table 1: Drawer Quantitative Results (Success Rate %).

to settle (e.g. after being dropped) between control cycles and reduce the number of control horizon. We end
episodes when any object is dropped to the floor. Below, we clarify how we design the tasks for each domain.

5.1 Mailbox

To be considered successful, the mailbox needs to be closed with the package inside the mailbox, with
the mailbox flag raised within 200 seconds (400 control cycles). During data generation and testing,
the package’s planar position is uniformly random in a planar bound of dimensions [20cm, 10cm]. At
evaluation, the policy has to generalize to unseen package positions. The amazon has is a rigid object
with 6DoF. The mailbox is a fixed rigid object, with one degree of freedom for each of its revolute joints,
one for the mailbox lid, and one for the mailbox flag.

5.2 Transport

To be considered successful, the toy needs to be inside the left bin within 100 seconds. At the beginning
of each episode, a random toy 3D asset is sampled. During data generation and testing, the toy’s position
is uniformly random inside the right bin, and orientation uniformly random along all three euler axes. On
top of novel randomized poses, the policy also has to generalize to unseen object instances with novel
geometry. We use 22 toys for data generation, and 8 for testing (Fig. 1). The toy is a rigid object with
6DoF, while the bins are fixed rigid objects with no DoF. The bin asset names corresponds with their
spatial location (e.g. the left bin is called “left bin” when the scene is presented to the LLM).

5.3 Drawer

This is a multi-task domain with 12 tasks, where each task involves moving one of the four objects
(vitamin bottle, pencil case, crayon box, horse) into one of the three drawers (top, middle, bottom). The
task description follows the template “move the 〈object〉 into the 〈 drawer〉”. To be considered successful,
the specified object needs to be inside the specified drawer within 120 seconds. During data generation
and testing, each of the four object’s position is uniformly random within a planar bound of dimensions
[10cm,10cm], centered around 4 evenly spaced locations along the table. At test time, the policy has to
generalize to unseen object positions in the same distribution as its data generation.

All four objects are rigid objects with 6DoF. The drawer is a fixed articulated object with 3 DoF, one for
each of the drawers.

5.4 Catapult

This is a multi-task domain with 3 tasks, one for each of the three bins. The task description follows the
template “move the block onto the catapult arm, then press the button to shoot the block into the 〈bin〉”
where 〈bin〉 is either closest, middle, or furthest bin. The bin asset names corresponds with their spatial
location (e.g. the furthest bin is called “furthest bin” when the scene is presented to the LLM).

In order to be considered successful, the block needs to be inside the specified bin within 40 seconds. This
is a short amount of time, which prevents policies from retrying after failure. The block is a rigid object
with 6DoF. The bins are fixed rigid objects with no degrees of freedom. The catapult has two degrees
of freedom, one revolute joint for the catapult arm, and one prismatic joint for the button. This task is
designed to study tool-use, and does not have any pose randomization. Thus, different seeds affect only
the policy’s pseudo random samplers or the diffusion process.

We implement the catapult with a special callback function which checks whether the button sliding joint
is near its max value. If it is, then the constraint that holds the catapult arm down is disabled, releasing
the spring loaded catapult arm hinge joint.

13

Approach Balance Catapult Transport Mailbox
Near Mid Far Train Test

LLM-as-Policy (2D) 36.0 0.0 100.0 0.0 — 18.0 0.0
(+) 6DoF Robot Utils 4.0 5.3 0.8 0.7 — 42.0 0.0
(+) Verify & Retry 24.0 5.3 0.8 0.7 — 72 6.0

(+) Distill (Ours) 72.0 70.0 100.0 70 50.0 50.0 48.0

Table 2: Full Quantitative Results (Success Rate %).

5.5 Bus Balance

In order to be considered successful, the bus needs to be fully balanced on top of the block within 100
seconds. On top of testing for intuitive physics, this high precision requirement of this task was also used
to test the policy’s precision and ability to recover from failure, which is why we allow a generous time
budget. The task description is “balance the bus on the block”.

The bus is a rigid object with 6DoF, dropped from a fixed location above the table with uniformly random
orientation. This means when the bus drops, it lands in different positions and orientations. The block
is fixed with no degrees of freedom.

6 Full Results

We include the full results for all tasks in the drawer domain in Table 1, and all other domains in
Table 2. We omit data generation baseline numbers on the train set in the transport domain, since they
are non-learning approaches. All approaches are evaluated on 50 different seeds, which controls pose
randomization, which asset is sampled, the pseudo-random robotic utility samplers, and the pseudo-random
diffusion process. We make one exception in the catapult domain, where we evaluate on 1000 seeds due
to the low success rates of getting the block into the middle and far bin. Since the time limit for the catapult
is short, the data-collection policy will not have enough time to retry, leading to identical numbers with
the baseline data-collection policy without verify & retry.

In the drawer domain, we observe that the task is more difficult for:

1. Larger objects: The most challenging objects are the vitamin bottle and the horse toy, both of which
are too large to fit the drawer if they are in an upright orientation. This means to be effective at this task,
the robot should perform sideway grasps on these objects, such that downstream placement is easier.
In contrast, the small crayon box is has the highest success rates amongst the data-collection policies.

2. Top drawer: We observe interacting with this drawer often brings the robot close to its kinematic
reach range. This means slight imprecision in the policy’s predicted actions or small shifts in the
grasped object (which is unaccounted for during motion planning) in execution could lead to failure.
For instance, while moving the objects inside the top drawer, the grasped object could collide with
the drawer, causing the grasped object to drop or the drawer to close.

3. Planar Action Primitives: A top-down grasp on the drawer handle will typically be in collision
with the drawer’s body. Thus, in LLM-as-Policy (2D)’s first action to open the drawer, its call to
the motion planner will fail due to an invalid goal configuration.

References
[1] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng. Code as policies:

Language model programs for embodied control. In arXiv preprint arXiv:2209.07753, 2022.

[2] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, et al. Learning transferable visual models from natural language supervision. In International
Conference on Machine Learning, pages 8748–8763. PMLR, 2021.

[3] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy: Visuomotor
policy learning via action diffusion. In Proceedings of Robotics: Science and Systems (RSS), 2023.

14

[4] S. M. LaValle et al. Rapidly-exploring random trees: A new tool for path planning.

[5] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033. IEEE, 2012.
doi:10.1109/IROS.2012.6386109.

[6] L. Downs, A. Francis, N. Koenig, B. Kinman, R. Hickman, K. Reymann, T. B. McHugh, and
V. Vanhoucke. Google scanned objects: A high-quality dataset of 3d scanned household items, 2022.
URL https://arxiv.org/abs/2204.11918.

[7] K. Zakka. Scanned Objects MuJoCo Models, 7 2022. URL https://github.com/kevinzakka/
mujoco scanned objects.

[8] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni, L. Fei-Fei, S. Savarese, Y. Zhu,
and R. Mart́ın-Mart́ın. What matters in learning from offline human demonstrations for robot
manipulation. In arXiv preprint arXiv:2108.03298, 2021.

15

http://dx.doi.org/10.1109/IROS.2012.6386109
https://arxiv.org/abs/2204.11918
https://github.com/kevinzakka/mujoco_scanned_objects
https://github.com/kevinzakka/mujoco_scanned_objects

	Policy Rollout Visualizations
	LLM Prompts
	LLM Pipeline Design
	LLM Pipeline
	Prompt Structure
	APIs for Success Condition Code Generation
	Example Completions
	Ambiguous Task Description Handler
	Planning
	Success Condition Inference

	Training & Data Details.
	Data Generation
	Network Architecture & Hyperparameters
	Training

	Utilities Implementation
	Benchmark
	Mailbox
	Transport
	Drawer
	Catapult
	Bus Balance

	Full Results

