Under review as a conference paper at ICLR 2025

REVISED NTK ANALYSIS OF OPTIMIZATION AND GEN-
ERALIZATION WITH ITS EXTENSIONS TO ARBITRARY
INITIALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent theoretical works based on the neural tangent kernel (NTK) have shed
light on the optimization and generalization of over-parameterized neural networks,
and partially bridge the gap between their practical success and classical learning
theory. However, the existing NTK-based analysis has a limitation that the scaling
of the initial parameter should decrease with respect to the sample size which is
contradictory to the practical initialization scheme. To address this issue, in this
paper, we present the revised NTK analysis of optimization and generalization
of overparametrized neural networks, which successfully remove the dependency
on the sample size of the initialization. Based on our revised analysis, we further
extend our theory that allow for arbitrary initialization, not limited to Gaussian
initialization. Under our initialization-independent analysis, we propose NTK-
based regularizer that can improve the model generalization, thereby illustrating
the potential to bridge the theory and practice while also supporting our theory. Our
numerical simulations demonstrate that the revised theory indeed can achieve the
significantly lower generalization error bound compared to existing error bound.
Also importantly, the proposed regularizer also corroborate our theory on the
arbitrary initialization with fine-tuning scenario, which takes the first step for NTK
theory to be promisingly applied to real-world applications.

1 INTRODUCTION

Though neural networks (NNs) have achieved great success in practice, it remains a well-known
mystery that over-parameterized NNs generalize well and do not suffer from overfitting even with a
simple first-order optimization (Neyshabur et al., 2014; Livni et al., 2014; Zhang et al., 2016; Arora
et al., 2018), seemingly contradicting the traditional learning theory. To theoretically explain this
phenomenon, extensive research has been conducted, and one of the main directions is based on the
neural tangent kernel (NTK). Given a NN fy(+) parametrized by @ and n training inputs {x;}?_,, the
NTK is defined as a Gram matrix H € R"*" induced by the structure of target prediction function
whose (4, j)-th entry is given by
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The NTK was introduced in Jacot et al. (2018) to control the dynamics of learning NNs. In the
over-parameterized regime, the trained parameter of NN is close to its initialization, which also
makes the NTK almost unchanged throughout the training process. This stability of NTK allows
the learning dynamics of NN to be easily analyzed throughout the training process, thus making it
possible to derive training and generalization error bounds by using existing learning theory.

As a representative study using NTK, Arora et al. (2019a;b) showed the following important results
for over-parameterized NNs:

(a) (Training error bound) A training error bound reflecting a tighter characterization of training
speed than that of studies was proposed in Arora et al. (2019a). This bound implies that not only
is a network able to represent any finite sample perfectly (as shown in Zhang et al. (2016)), but
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the speed at which a network learns training samples varies depending on a complexity measure
reflecting how well the data is ordered.

(b) (Generalization error bound) A generalization error bound, referred to as complexity measure of
data (CMD) was proposed in Arora et al. (2019a). CMD has no stringent conditions on certain
properties of the trained NN and the true model; it only depends on input x and label y of training
data and the initial parameter scale x of NN, hence we can compute the bound before actually
training the network. CMD is considered as one of the most important achievements in the topic
of generalizability of over-parameterized NNs and has been the cornerstone of many follow-up
studies in recent years (Arora et al., 2019b; Su & Yang, 2019; Oymak et al., 2019; Xu et al.,
2019; Zhang et al., 2019; Hu et al., 2019; Du et al., 2018).

The above results (a)~(b) derived in Arora et al. (2019a;b) provide the upper bounds on the train-
ing/generalization error that are uniformly available over all network scaling (e.g., initialization)
parameter . Note that Arora et al. (2019a;b) focus only on the case where

k = o(1) with respect to n )
in order to have meaningful bounds that can converge to zero as n increases.

Surprisingly, however, we prove in this paper that, contrary to the theories of Arora et al. (2019a;b),
the training/generalization errors in (a)-(b) do not hold when x decreases with respect to n as in
Eq. 2. The high-level reason for this is as follows. As trained parameter is known to be close to
its initial one in the over-parameterized regime (Jacot et al., 2018; Arora et al., 2019a;b; Du et al.,
2018; 2019; Ji & Telgarsky, 2019; Cao & Gu, 2019; Ma et al., 2019; Li & Liang, 2018; Hu et al.,
2019; Oymak et al., 2019), the output value of trained NN |fy(x)] is close to that of its initial NN
| fo(0)(x)|. Meanwhile, the output value of its initial NN deceases to zero as 7 increases if the scale
of initialization decreases with respect to n. Thus, it cannot guarantee zero training error under the
condition Eq. 2, as the output value of trained NN decreases to zero but the target label does not.

We further resolve the above issue and revise the analyses of Arora et al. (2019a;b) without major
modifications of the original statements. Hence, our revision makes it possible for results (a)—(b) to
maintain their original meanings and implications without any issue on decreasing . Our revised
analyses provide tighter results on training/generalization error bounds, and with these improvements,
we can guarantee the bounds to converge to zero even when « is a constant w.r.t. n.

Building on the proof technique in the revised theory, we further extend our analysis based on the
Gram matrix and network initial parameters drawn from a Gaussian distribution to allow for arbitrary
initialization. Grounded on our initialization-independent analysis, we propose the NTK regularizer
that can boost the model generalization, which is unavailable in previous studies. Note that our
initialization-independent analysis enables NTK theory to be applied to pre-trained networks, which
is expected to provide the connections to various practical scenarios such as fine-tuning. Toward this,
we empirically verify that our revised theory indeed achieves lower generalization error bounds than
the baseline theory and present the potential of the proposed NTK regularizer in fine-tuning scenario.

Notations. The sets {1,2,...,i} and {4,%+ 1, ..., j} are denoted by {3} and {i : j}, respectively.
The Frobenius norm is denoted by ||-||. For a matrix H, Ap;, (H) denotes the smallest eigenvalue of
H. Training samples are given as n input-label pairs {(x;, y;)}?_, generated from a data distribution

D(x,y), i.i.d. For simplicity, we assume that ||x|| = 1 for x ~ D. We denote inputs and labels in the
training dataset by X = (x1,...,X,) € R andy = (y1,...,yn) ' € R", respectively.

2 NTK-BASED ANALYSIS FOR TRAINING/GENERALIZATION ERROR BOUNDS

We first review the training and test error bounds of Arora et al. (2019a) in Section 2.1, and disprove
and revise them in Sections 2.2 and 2.3, respectively.

2.1 PRELIMINARY: TRAINING/GENERALIZATION ERROR BOUNDS OF ARORA ET AL. (2019A)

Consider a two-layer ReLU network fyw a(x) with scalar outputs as in Arora et al. (2019a):

fwa(x) = % Z aro(w, x). 3)
r=1
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Here x € R? is a given input datapoint, W = (w1, ..., W,,,) € R4X™ is the weight parameter in the
first layer, a = (a1, ..., @) € R™ is the weight parameter in the second layer, and o (+) is the ReLU
activation. The setting indicates that there are m hidden neurons.

Using n samples (X, y), we train the neural network Eq. 3 so that its prediction function fw a(-)
minimizes the following squared error

1 n
)= 52 (0~ fwalx)” @)
i=1

by updating the network parameter W via the discrete time optimization of gradient descent (GD) as

Wk 1) = Wk) — 1200 oy,

We denote by u(k) = (ui(k),...,un (k)T = (fw),a(X1)s o f'w(k),a(xn))T € R™ the network
output with trained parameter W (k) at k-step. The parameter W is assumed to be randomly

initialized as w, ~ A(0, k?1;) using standard deviation  for € {m} as in Arora et al. (2019a).
Each element of a is independently initialized (and fixed) as following /({—1, 1}).

By setting the network fg(x) and its parameter 8 of NTK in Eq. | as fw a(x) and W (0), respectively,
Arora et al. (2019a) derived a specific NTK (with m = oc) as Gram matrix H* € R"*™ as follows:
given data matrix X = [x1, ..., X, ] of n input training samples, (i, j)-th entry of H* is given by

x] x;(m — arccos(x] x;))
2m

where I{} is the indicator function. We use Ag to denote Ayin (H*). Then, all NTKs obtained by
updated parameters { W (k) }7° , are close to H* in the over-parameterized regime. Using this fact
and extending Du et al. (2018) to hold for arbitrary k, Arora et al. (2019a) provided the following
theorem, which guarantees zero training error with a convergence rate depending on ).

Theorem 2.1 (Theorem 3.1 in Arora et al. (2019a)). Fix a failure probability 6 € (0, 1). Suppose
that |ly|| = O(v/n), m = Q (max (%‘27253’ ’)\1—;’ log (%) ')) Ao > 0, and n = O(23). Then, with

probability at least 1 — § over the random initialization of (W (0), a), it follows that for any  and
allk > 0,

HY == Ewon(o1) [X,iij {w'x; > O,Wij > O}] =

)

ly —ulk+ DI < (1>|| u(h)|. )

As a corollary of Theorem 2.1, Arora et al. (2019a) showed a new training error bound reflecting
a tighter characterization of training speed such that its convergence rate is mainly affected by the
training data belonging to the top eigenspaces of H*. This bound is given as follows.

Corollary 2.1 (The training error bound, Theorem 4.1 in Arora et al. (2019a)). Suppose all conditions
in Theorem 2.1 hold. Then, with probability at least 1 — ¢ for 6 € (0, 1) over the random initialization
of (W(0),a), forall k > 0,

n 3

el =l =320 Ty 0+ ). ©

where {v;}1"_, are orthonormal eigenvectors of H> and {\;}!'_, are the corresponding eigenvalues.

This bound, given as the right-hand side in Eq. 6, reflects the convergence rate in more details by
using all the spectral information of H* (i.e., {\; } ' 1), but the training error bound in Eq. 5 reflects
only the least influential part (i.e., \yg = )\n) among these information. This improvement over
Theorem 2.1 allows to demonstrate that true labels yield faster learning speeds than random labels
(Arora et al., 2019a; Zhang et al., 2016). Meanwhile, for this bound in Eq. 6 to converge to zero, its
second term must also decrease to zero and the corresponding condition is given as follows.

Remark. For the error term % in Eq. 6 to decrease to 0 w.r.t. n, it should hold that x = o(1) w.r.t. n.

Using Theorem 2.1, Arora et al. (2019a) also derived the following generalization error bound, named
complexity measure of data (CMD).
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Theorem 2.2 (The generalization error bound, Theorem 5.1 in Arora et al. (2019a)). Suppose that all
conditions except \g > 0 in Theorem 2.1 hold and we fix a failure probability 6 € (0, 1). Suppose
also that m = Q(k~2poly(n, \g ', 6~1)). Suppose further that \o > 0 holds with probability at
least 1 — 0/3 for n i.i.d. training samples {(x;,y;)} 7, from true model distribution D. Consider
any loss function £ : R x R — [0, 1] that is 1-Lipschitz in the first argument. Then, with probability at
least 1 — 0 over the random initialization of (W (0), &) and the training samples, the neural network
JW (k),a(x) trained by GD for k > Q(anO log %) iterations has population loss? Lo(fwk),a(x)) =

E(x,)~D [L(fW (k),a(X), y)] bounded as

2y T(H>)- 1y log 35
Lp(fw),a(x)) < % +0 <\<§§> +0 <1/n“>. )
—_— —_——

CMD Error term £

The CMD bound, given in the right-hand side of Eq. 7, only depends on the training samples (e.g.,
y, H* \g) and «. This makes it possible to know whether a NN can generalize without actually
training the NN, as mentioned above.

Remark. For the error term £ = ‘ﬁg’ in Eq. 7 to decrease to 0 with respect to the sample size n, it

Ao
should hold that 5 = o (%)

2.2  DISPROOF OF EXISTING NTK-BASED TRAINING/GENERALIZATION ERROR BOUNDS

From the remarks above, « should follow o(1) and o(\g/+/n) for the training and test errors in Eq. 6
and Eq. 7 to approach zero, respectively. In fact, we have shown in Figure 1 that Ay does not increase
with n in standard benchmark datasets, thus o(\o/+/n) implies o(1). Hence,  should follow o(1)
for both training and generalization errors in Eq. 6 and Eq. 7 to approach zero. These conditions on x
can be allowed only if the original Theorem 2.1 is valid for such «, as Theorem 2.1 says.

However, in this section, we show that Theorem 2.1 actually does not hold under these conditions on
K (i.e., decreasing ). Toward this, we visit the case where )\ satisfies the following mild condition

Ao = O(n”) > 0 for some constant y < 1. 8)
Under Eq. 8, we claim that an additional condition for x (i.e., non-decreasing ) is needed for the
statements in Theorem 2.1 to hold.

Theorem 2.3. Suppose the condition Eq. 8 holds for a constant v < 1 and m = Q(n3~%7). Suppose
Surther k = o(1) for n. Then, for any 7 satisfying 0 < \on < 2, there exists a finite integer k (and n)
with probability at least 1 — § for 6 € (0, 1) over the random initialization of (W (0), a) such that

A
Iy =t + DI > (1= ) Iy~ ui). ©)
It can be clearly seen that Eq. 5 and Eq. 9 are contradictory and hence the following corollaries hold.
Corollary 2.2. Theorem 2.1 does not hold if the condition k = o(1) w.r.t. n and Eq. 8 hold.
Corollary 2.3. Corollary 2.1 fails to guarantee that NNs attain zero training loss if Eq. 8 holds.

Corollary 2.4. Theorem 2.2 fails to guarantee that NNs attain zero gen. err. if A\g = O(y/n) > 0.

The question that naturally arises at this point is how easily the condition Eq. 8 is satisfied in practice.
In addition to the observation that Ay does not increase with n in practice as shown in Figure 1, we
also find a simple sufficient condition for Eq. 8 to hold, provided in the following proposition:
Proposition 2.1. Suppose that n input samples are not parallel, i.e., x; # cx; for any c € R and
different i,j € {n}2. Then, \g = O(y/n) > 0 holds.

Proposition 2.1 confirms that the condition A\g = O(y/n) > 0 for Corollary 2.4 holds (i.e., Theorem
2.2 fails) easily in the practically common case where the training data is not parallel.

2 Arora et al. (2019a) claimed that Eq. 7 holds for a general loss, but in fact they implicitly assumed squared
loss and did not consider a general loss in the proof.
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Figure 1: (a) and (b) show the value of \g w.r.t. sample size n for the standard benchmark image
datasets, MNIST and CIFAR-10, respectively. This result shows Ao = O(1) holds easily in practice.

2.3 REVISING NTK-BASED TRAINING/GENERALIZATION ERROR BOUNDS

By Theorem 2.3, x should not decrease w.r.t. n (i.e., K = 0(1)) in order for the statements in Theorem
2.1 to hold. Thus, we derive tighter bounds so that we avoid the case of setting decreasing & (i.e.,
k = ©(1)). In fact, Du et al. (2018) already showed that this is possible for Theorem 2.1 with
k = O(1). Here, we revise training and generalization bounds in Corollaries 2.1 and 2.2.

Theorem 2.4 (Revision of Corollary 2.1). Suppose all conditions in Theorem 2.1 hold and k. = ©(1).
Then, with probability at least 1 — 6 for 6 € (0,1) over the random initialization of (W (0), a), it
follows that for all k > 0,

n 3

1 1 9 2 n
Sy —uml =230 = (T —u0) +0( =), a0

i=1
where {v;}1"_, are orthonormal eigenvectors of H> and {\;}!'_, are the corresponding eigenvalues.

Compared to Corollary 2.1, the training error bound in Theorem 2.4 does not have the term x/¢.
Accordingly, this tighter bound can converge to zero as the iteration number k increases even in the
case for k = O(1). This is formally stated in the following:

2 ) with
0

any « > 0. Then, with probability at least 1 — 0 for § € (0,1) over the random initialization of
(W(0),a), the right hand side of Eq. 10 converges to zero as k and n increase.

Proposition 2.2. Suppose all conditions in Theorem 2.1 hold, k = ©(1), and m = 2 (

We also revise the CMD bound in Theorem 2.2 as follows, under the condition x = O(1).

Theorem 2.5 (Revision of Theorem 2.2). Suppose that all conditions except Ag > 0 in Theorem 2.1
hold and we fix a failure probability § € (0,1). Suppose also that Ao > 0 holds with probability at
least 1 — /3 for n i.i.d. training samples {(x;,y;) }'_, from data distribution D, and that k = ©(1)

and m = Q(poly(n, Ao 1,07 1)), Then, with probability at least 1 — § over the random initialization
of (W(0), a) and the training samples, it follows that for any k > Q(anO log %),

1 2 2(y — u(0))T(H>®)~(y —u(0 log x5
(x,guﬂ y—fw<k>,a(x)‘ :\/ (y —u(0))"( 3 )"y —u0) /Ogn/\ms D

Revised CMD

Compared to the original CMD bound in Eq. 7, the revised version Eq. 11 does not have the error
term in Eq. 7, (v/nk)/(Xod), which is the culprit for generalization error bound to blow up. By
applying Corollary 6.2 in Arora et al. (2019a) to our setting, we can also bound the first term in Eq. 11
even with the introduction of u(0) exactly as in the original CMD bound:

Proposition 2.3. Suppose y; — u;(0) = g(x;) == 3_; o (B, xi)P7 for all i € {n}, where for each j,
p; €{1,2,4,6,...} and a; € Rand 5; € R? are any constants w.r.t. n. Then,

\/z(y_u(O))T(Hoo)—l(y_u(O)) _ 6%, pilasl 1B 1™ —o(i)
n - Vn -\

12)
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In that sense, the revised bound directly improves the CMD (in addition to fixing it) by only removing
its error term without sacrificing any additional assumption. Also, in Section 4, we will demonstrate
that our proposed generalization error bound based on revised CMD could be much smaller than the
original bound by showing that revised CMD does not significantly differ in value from the existing
CMD for benchmark datasets.

3 TOWARDS GENERALIZED ANALYSIS ALLOWING ARBITRARY
INITIALIZATION

Although we present the revised NTK analysis in Theorem 2.5, our theory depends on the Gram
matrix H* and the initial network parameter W (0) (due to the initial network output u(0)), both
of which depend on the Gaussian distribution. In this section, we extend our theory that can allow
for arbitrary initialization. Based on our extended initialization-independent analysis, we introduce
promising applications that can bridge our theory to practice.

3.1 PROBLEM SETUP

Similar to our revised NTK theory in Section 2, we could consider 2-layer ReLU networks, but for
our theory and the application in the subsequent section (Section 3.3), we consider more generalized
settings. Toward this, we consider a multi-layer neural network f(-) with an arbitrary depth, consisting
of two components: a feature extractor ¢v (+) and a linear classifier fw (-), as follows:

hvw(x) = fw(ov(z)) = fw(x). (13)

where z € R% is an input datapoint, x € R% here denotes the representation encoded by the feature
extractor ¢y (-) : R% — R and fw(-) : R% — R denotes a (linear) classifier. Each component
¢(-) and f(-) is characterized by the trainable parameters V and W respectively. Note that the feature
extractor (or also called an encoder) ¢ (-) can be any neural network that yields dj-dimensional
representations, e.g., the feature vectors after global average pooling layer in popular CNNs such as
VGG (Simonyan & Zisserman, 2014), ResNet (He et al., 2016), EfficientNet (Tan, 2019), and many
other architectures. Throughout the paper, we assume that the parameter of feature extractor is fixed
by V =V*

Allowing theoretical analysis in subsequent sections, we replace the linear classifier f(-) with a two-

layer ReLU classifier with the vector-valued outputs, i.e., fw (x) = (fw(%)[1],--- , fw(x)[d,])T €
R? whose i-th output in this setting is computed by
. Vo o T
@i = =2 ailrlo(w, ), (14)
\/m r=1
where x = ¢v(z) € R% is a latent feature, W = [wy, -+, w,,] € R%X™ is the trainable

parameter in the first layer of the replaced classifier, A = [ay, ...,aq,| € R™*% is the (randomly
fixed) weight matrix in the second layer, and o (+) is the ReLU activation.

Similar to the network considered in Section 2, to initialize the parameter A, we directly extend
the setting of Arora et al. (2019a) so that only diagonal blocks are randomly initialized as follows:
a;[r] ~U{—1,1}) fori € {do} andr € {m-i —m+ 1 : m - i}, otherwise a;[r] = 0, where
m = m/d, and we assume 772 is an integer throughout the paper for simplicity. In Eq. 14, we use
the scaling factor of y/d,/m, which is comparable to the scaling of 1/1/m used in related studies
(Bai & Lee, 2019; Nitanda & Suzuki, 2019; Zhang et al., 2019; Du et al., 2018; Arora et al., 2019a;
Du et al., 2019). While we have the additional 1/d, term, the vector-valued network we consider in
Eq. 14 can be divided into d,, scalar-valued networks, and hence the effective number of hidden units
for each component is equal to m/d,. We provide the detailed proof on the equivalence between the
vector-valued network and the multiple number of scalar-valued networks in Appendix C.

3.2 GENERALIZATION ERROR WITH ARBITRARY INITIALIZATION

Let X = [x1 = ¢v+(21), * ,Xn := ¢v+(2,)]T € R" % be a set of dj,-dimensional latent
feature vectors obtained by the feature extractor ¢y« (Z) with the input dataset Z = [z1, 22, - - , Zp].
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With the transformed dataset X, we specify the training process by using gradient descent (GD)
optimization and assuming the training loss £(+) as the mean square error (MSE), specified as

£ (v w(Z),¥) = L(W) = Y~ F(W)]? (15)

where Y € R9*" is a multi-class labels and F(W) := [fw(X1)," - , fw(Xn)] € R%*" denotes
an another representation of prediction function hv+ w(z). Then, the network parameter W is
assumed to be updated via GD on the loss L(W). For our analysis, we define the Gram matrix for
each class i € {1 : d,} computed on the model parameter W(k) as
do
[H; (k)]pq = [Hi(W(k))]pq = mX;Xq Z [ﬂ{wr(k)TXp 2 var(k)TXq > 0}} . (16)
reM;

Note that we use A} to denote Apin (H;(0)) and g to denote min({\j}% ).

Using the above notations, we present mild conditions required for our theorem to be satisfied.

Condition 1 (Variable R decreases fast enough for increasing n). Given W (0), there exists a R
satisfying the following condition for each ¢ € {1 : d,}

> > 1w (0)x,| <R} = (’)(/\O) (17)

pe{l:in} reM.
where T = m/d, and M. ={m-c—m+1:m-c}.

Condition 2 (W (0) is bounded and m is sufficiently large). The initial weight W (0) satisfies the
following two conditions

pe{lin} reM;
é S S [ we0)x, " = 0(1). (18)

pe{l n} reM;

Condition 3 (Elements of iy« w 1) are bounded). For an input sample z € R% obtained from D
and for every k > 0, it follows that with probability at least 1-— 5 over the random configuration of
A and input sample z, the following holds |hv* wk)(z ‘ =0O(1) foreachi € {1:d,}.

Note that the condition 3 is easily satisfied as each element of network output has a bounded magnitude
invariant of n in practice. Further, the conditions 1 and 2 also easily hold by a practical assumption
that correlation between a target training sample and a weight column follows the Gaussian variable
(i.e., they are independent of each other) if they have no deterministic relation. We formally state it as
follows:

Proposition 3.1. (a) Suppose that |w,.(0)| is invariant of n for any r € {1 : m} (i.e., |w,(0)| =
O(1)). (b) Suppose that given some positive constant €, (0)Tx,| > e satisfies forany r € {1 : m}
and p € {1 : n} without having randomness. (c) Suppose also that for any r € {1 : m} and
p € {1 : n} with having randomness, P HWT(O)TXP‘ < z| = O(w) satisfies for any x > 0 (e.g.,
w,.(0) " x, follows the Gaussian distribution). Then, both conditions 1 and 2 hold with R = 0(2—3)
and m = O(n®) for some sufficiently large .

Proposition 3.1 indicates that the conditions 1 and 2 hold even when W (0) is partially random (i.e.,
only some columns of W (0) are random and the others have the deterministic relation with training
dataset). In addition, we show that the proposed conditions | and 2 even hold in the case where W (0)
is completely random, proving its global mildness, as specified in the following remark.

Remark. For simplicity, we let ||x;|| = 1 forall j € {1 : n}. Suppose that each element of W (0) is
i.i.d. given as the normal distribution. Then, as Proposition 3.1 holds, with probability at least 1 — ¢
over W (0), both the conditions I and 2 hold with R = O(%) and m = O(n®) for some sufficiently
large constant a.

Under the above setup and conditions, then we are now ready to present our theorem, which shows
the generalization bound with arbitrary initialization as follows.
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Theorem 3.1 (Generalization Error Bound with Arbitrary Initialization). Suppose that the conditions
1 ~3hold, ||Y;|| = O(/n) foralli € {1:d,}, m = Q(Ag"il;é), m = Q(d"%?i\oﬂ), the set
0 )

min(Ag
{x;j = ¢v-(25)}}_1 of n training samples is bounded as max;eny ||[x;| < 1, and n = O(2%).
Suppose also that Ay = O(n”) > 0 with a constant vy < 1 with probability at least 1 — 6 /3 for n i.i.d.
training samples {(z;,y;) }1'_, from data distribution D. Then, with probability at least 1 — § over

the random initialization of A and the training samples, it follows that for any k > Q(n%o log %),

1
do ||H;(0) 2 (YZ- — hy~ (Z)Z) ‘ log %~
1 9 ’ V*,W(0) g Yis
— — < 707
Ep 5 Y — F(W)|| ] < ;:1 T +0 | do - , (19)

Multi-class Revised CMD

where Y, by« w(0)(2); € R" denote all the collection of labels/outputs of the class i, resp.

Note that the upper bound 1 of condition max ¢, [|x;|| < 1 in Theorem 3.1 can be easily extended
to the case of any constant other than 1, thereby being satisfied in practice. As the second term in
Eq. 19 trivially converges to 0 as n increases, so it can be interpreted that the first term in Eq. 19
represents the generalization error bound. The multi-class revised CMD term in Eq. 19 does not
rely on the Gram matrix H* but on the Gram matrix H(0), which allows arbitrary initialization.
Furthermore, Theorem 3.1 can be thought of as a generalization of Theorem 2.5 in the absence of a
feature extractor ¢+ (-) since we only have a 2-layer ReLU classifier in this case.

3.3 OPENING THE DOOR TO PRACTICE: NTK REGULARIZER IN FINE-TUNING

In this section, we discuss the potential applications based on our revised analysis on generalization
error, and as an example, we will introduce how our bound can be utilized in practice. As an
observation, we can regard the k’-th step parameter W (k’) for any &’ € N as a new initial parameter
W (0) so that the parameter W (k’ 4 1) updated at the next step from k’-th step can be viewed as the

parameter W (1) updated only once from the new initial parameter W (0). Since Theorem 3.1 allows
arbitrary initialization, this observation provides the following remark.

Remark. Suppose that all conditions in Theorem 3.1 for W (0) hold if W (0) is replaced with W (k)
at any step k. Then, the generalization error bound can be again characterized as

do
% Z HHi(k?)_l/Q (Y = bve wry(Z)s) ‘ : (20)
=1

where H; (k) is defined in Eq. 16. By the above observation and remark, the multi-class revised CMD
in Eq. 20 could further be thought of as the generalization error bound of some fine-tuned networks.
This fact motivates the following NTK regularizer,

. 21

!HAW)‘”Q (Yi = hv- w(2)i)

1 &
Rtk (W) = 7n Z;

and training with the regularization loss can play a crucial role in directly reducing the general-
ization error. Therefore, we propose to solve the following optimization problem in fine-tuning:
minw {£ (hv+ w(2),y) + pRntk (W)} where p represents the strength of the regularizer.

In fact, the proposed NTK regularizer in Eq. 21 requires the computations of inverse Gram matrix
H;(k)~'/? for each class i € {1 : d,}, which makes network training computationally heavy in
practice. To bypass this issue, we suggest to use the fixed Gram matrix H;(0) computed on the
initial parameter W (0) for all 4 (in fine-tuning regime, the initial parameter W (0) boils down to
some pre-trained parameter W*). The intuition behind this is as follows: the generalization error
bound depends on the multi-class revised CMD as in Theorem 2.5 for arbitrary initialization. In the
over-parametrization regime, since the model parameter will remain close to its initial point during
training, the Gram matrix H;(k), depending on the k-th model parameter W (k), will also stay close
to its initial Gram matrix H;(0) for all 4. Though the Gram matrix H; (k) is fixed to H;(0) in NTK
regularizer in Eq. 21, the gradient-based training on regularized loss is still possible since the gradient
with respect to W will be backpropagated through hv -+ w in Ryt (W).
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Table 1: Comparisons of generalization error bound: Theorem 2.2 (baseline) vs. Theorem 2.5 (ours).
Note that the error term & is absent in Theorem 2.5 of our revised analysis. Our revised theory
removing the error term achieves significantly lower generalization error bound.

.. Revised . Revised
Dataset Error Term £ | Original Original . "Err. Bound
in Eq. 7 CMD Gen. Err. Bound
(Ours) (Ours)
MNIST 7% 103 0.5998  0.5997 0(10%) o101
FashionMNIST 1 x10° 0.2617 0.2618 0(10%) o(10-1)
CIFAR-10 4 x 103 2.0605  2.0604 0O(10%) 0(1)

Lastly, note that our NTK regularizer is expected to exhibit its greatest effect in boosting general-
ization given a considerably lack of data, rather than in cases where a sufficient number of samples
are available to achieve plausible performance. Also, the inverse Gram matrix involves O(n?) com-
putations w.r.t. sample size n, we mainly focus on the lack-of-data scenario for evaluating NTK
regularizer.

4 NUMERICAL SIMULATIONS

The primary goal in experiments is to verify (i) the tighter generalization error bound of our revised
analysis in Section 2 and (ii) whether the generalization is indeed improved via NTK regularizer,
which will corroborate our theory in Section 3.

4.1 THEORY VALIDATION: COMPARIONS OF GENERALIZATION ERROR BOUNDS

In order to compare the generalization error bounds between Theorem 2.2 and Theorem 2.5, we
consider 2-layer ReLU networks with the width m = 10000. Since the baseline theory includes an
error term £ which is absent in our revised bound, the key points in comparing the generalization
error bound is (i) how much the baseline CMD term differs from the revised CMD term, and (ii)
the scale of the error term. Toward this, we consider three benchmark datasets: (i) MNIST, (ii)
FashionMNIST, and (iii) CIFAR-10. While our theory can allow the multi-dimensional outputs
as in Theorem 3.1, the baseline error bound in Theorem 2.2 could only guarantee the regression or
binary classification (refer to Corollary 5.2 in Arora et al. (2019a)), i.e., single output case. Thus, we
randomly pick two classes for each dataset. The revised CMD term depends on the initial network
output u(0), thus we initialize W (0) with the practical Kaiming normal distribution (He et al., 2015)
whose scaling does not rely on the sample size n at all, which violates the conditions of Theorem 2.2.

Table 1 illustrates the direct comparison of generalization error bound. Note first that the revised
CMD does not significantly differ from the original CMD. Although the revised CMD is slightly
larger than the original CMD in FashionMNIST dataset, the difference is only on the scale of 1073,
To compute the scale of the error term £ in Eq. 7, which is the second most important factor in the
comparison of generalization errors, we set the failure probability = 0.01 (larger value is also fine).
Note that the error terms £ have the scale of 103 ~ 10° while the CMD terms have values only about
0.6, 0.26, and 2.06 for each dataset as can be seen in Table 1. Hence, our revised analysis removing
the error terms could significantly improve the existing generalization error bound. It is important to
note that the results in Table 1 are not limited to solely to the width m = 10000, since our findings
hold true across a broad range of width m from 102 to 10%, and we provide the results in Appendix A.

4.2 VERIFICATION OF MULTI-CLASS REVISED CMD VIA NTK REGULARIZER

In order to verify our theory (Theorem 3.1) on the arbitrary initialization, we use the NTK regularizer
proposed in Eq. 21. Toward this, we fine-tune pre-trained models given a limited number of samples,
which closely mirrors the typical scenario in medical applications. Thus, we consider the skin cancer
classification for our experiments. The details on experimental settings are provided in Appendix.

Model. We use pre-trained ResNet-18 (He et al., 2016) on the ImageNet (Deng et al., 2009), which
is publicly available from popular deep learning libraries (Abadi et al., 2016; Paszke et al., 2019). As
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—— NTK Reg. (Ours)
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]

)
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%

Test Accuracy (%)
Multi-class Revised CMD
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(a) Example images of skin cancer dataset  (b) Accuracy comparison (c) Multi-class revised CMD

Figure 2: (a) Example images of skin cancer dataset, (b) the results on skin cancer varying the
number of training samples. (¢) comparison of multi-class revised CMD among different methods.

suggested in our theory, we replace the classifier of ResNet-18 with a 2-layer ReLU network, and the
parameter A of second layer of the classifier is initialized and fixed according to Section 3.1. The
parameter V* of the feature extractor is frozen to those of the pre-trained model (one of conventional
fine-tuning strategy), while only the parameter W (0) of the first layer of the classifier is updated.

Dataset. The skin cancer classification has been considered as one of popular medical applications
in many literature (Esteva et al., 2017; Wu et al., 2022; Bello et al., 2024). The goal of this task is to
classify types of skin cancer for given images into: (i) benign or (ii) malignant. In this experiment, we
collect RGB images of size 224 x 224 of combined dataset, which consists of HAM 10000 (Tschand]l
et al., 2018) and International Skin Imaging Collaboration (ISIC 2020). The dataset is splitted into
2077/560/660 images for train/valid/test respectively and we provide example images of the dataset
in Fig. 2(a) for better understanding. The detailed information of dataset is provided in Appendix.

Baselines. To validate the efficacy of NTK regularizer, we consider two baselines: (i) no regularizer
(regular fine-tuning) and (ii) Tikhonov regularizer corresponding to the case of H;(k) being the

identity matrix I in Eq. 21, i.e., Rrikhonov(W) = % Zf’;l Y; — hv-w(Z)||. The reason for
considering the Tikhonov regularizer is to examine the role of the Gram matrix in Rntx.

NTK regularizer works in practice. We consider small amount of training dataset to simulate a
limited-number-of-sample scenario. Toward this, we randomly choose {50, 100, 200, 500} samples
from training dataset, on which we fine-tune the pre-trained ResNet-18. As depicted in Fig. 2(b),
NTK regularizer indeed improves the generalization upon regular fine-tuning. Note that the advantage
of NTK regularizer over the Tikhonov regularizer clearly can be clearly observed, which indicates
that the Gram matrix plays an important role in model generalization. In addition, we also compare
the multi-class revised CMD term as illustrated in Fig. 2(c). An interesting observation is that the
multi-class revised CMD decreases as the model generalization improves observed in Fig 2(b). This
suggests that directly reducing the multi-class revised CMD can potentially enhance the generalization,
which demonstrates the validity of our proposed NTK regularizer.

5 CONCLUSION

In this study, we revised the existing NTK-based theory of optimization and generalization for
overparametrized neural networks. Our revised analysis successfully remove the unreasonable
assumption on the initialization and provide tighter bound for generalization error. Going further, we
extended our revised analysis that allow for arbitrary initialization and multi-dimensional outputs. By
extending NTK theory to a network with arbitrary initialization, we were able to propose the concept
of NTK regularzer, which was previously unattainable, and validate its effectiveness. The most
promising aspect of this study is that it enables the application of NTK theory to pre-trained networks.
This extension of NTK theory is expected to be applicable to various practical scenarios that require
predicting the performance of pre-trained networks, such as fine-tuning, domain adaptation, out-of-
distribution detection, and more. We empirically validated that our revised analysis indeed achieve
significantly lower generalization error bound and also showed our NTK regularizer to be effective in
fine-tuning, demonstrating that NTK theory provides a connection to real-world applications.

10
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APPENDIX

A EXPERIMENTAL SETTINGS AND ADDITIONAL RESULTS

A.1 COMPARISON OF CMD FOR VARIOUS WIDTHS

Figure 3 illustrates the comparison of original CMD and the revised CMD. Note that the difference between
the original CMD and revised CMD is not significant across all widths m = 10% ~ 10, Also, the scale of
difference between the original CMD and revised CMD is only about the level of 10~3. Thus, it can be clearly
concluded that the scale of error term £ in Table 1 is dominant in generalization error bound, thus our revised
theory removing the error term significantly improves the existing generalization error bound.

. MNIST . FashionMNIST . CIFAR-10
a a a
8 —— Revised CMD ) —— Revised CMD & 2064 —— Revised CMD
£ 0.603- —— Original CMD £ 0.2661 —— Original CMD 8 —— Original CMD
a A A 2.063
50,6021 K s
z Z 0.264- 7 2.002
= 0.601- = =
= =z £ 2.061-
2 0600 £ 062 -
z E £ 2.000-
S 10 0t © e 109 0t 102 10? 104
Width, m Width, m Width, m
(a) MNIST (b) FashionMNIST (c) CIFAR-10

Figure 3: Comparisons of CMD term varying the width m.

A.2 ADDITIONAL RESULTS ON NTK REGULARIZER

For evaluating NTK regularizer, we conduct additional experiments and provide more results in this section.
For this purpose, we consider fine-tuning scenario as in Section 4 and use ResNet-18 pre-trained on ImageNet
dataset. As suggested in Section 3, we replace the linear classifier of original ResNet-18 with 2-layer ReLU
networks. For 2-layer ReLU classifier, we choose the width m = 10000 and initialize each parameter according
to Section 3.1. Also, our theorem 3.1 allows the multi-dimensional network outputs, thus we consider image
classification with CIFAR-10 dataset, which corresponds to d, = 10.

To simulate a limited-number-of-sample situation, we also randomly choose n € {50, 100, 200, 500} samples
in training dataset. Note that we do not employ any data augmentation technique to solely validate the effect of
NTK regularizer more accurately. As baseline methods, we consider no regularizer (regular fine-tuning) and the
Tikhonov regularizer Rikhonov introduced in Section 4.2, which can evaluate the role of Gram matrix in Rntk.

Table 2 shows the results of fine-tuning ResNet-18 with varying the number of samples. Note that fine-tuning
with NTK regularizer consistently outperforms baselines, which indicates that our proposed regularizer indeed
can enhance the model generalization across all sample sizes. Also, directly reducing the multi-class revised
CMD in 3.1 indeed helps to improve the generalization. For this experiment, we do not employ additional
training technique such as weight decay, learning rate scheduling, data augmentation, and etc. In this sense, it
should be emphasized that fine-tuning with NTK regularizer can achieve better performance when equipped
with such training recipe.

Table 2: CIFAR-10 classification test accuracy (%) varying the training sample size n.
Methods | n=50 n=100 n=200 n=>500
No Reg. 31.21 34.61 38.77 41.75

Tiknonov Reg. Rrikhonov | 31.32 34.82 38.92 42.03
NTK Reg. Rntk (Ours) | 32.71 35.47 39.41 42.65

13
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B PROOFS OF SECTION 2

B.1 ADDITIONAL DEFINITIONS

We recall weight matrix W (k) at the kth step of gradient descent as

OL(W
Wk +1) = W) ~ 02 . )
Furthermore, we define Z (k) = % € R™¥*" Thus, Z (k) is derived as
1 ]1171(!6)@1:1:1 ]I1,n(k)a1mn
Z(k)= —— € R™Mxm (23)
vm Imi(k)amzr ... Ipan(k)amas
where I, (k) := 1{z] w, (k) > 0}. Then, equation 138 can be expressed as
vec(W (k + 1)) = vec(W (k)) — nZ(k)(u(k) — y). (24)

B.2 PROOF OF PROPOSITIONS

In this section, we introduce the proofs of Propositions 2.1, 2.2, and 2.3, which are given sequentially as follows.

Proposition B.1 (Proposition 2.1). Suppose that x; # ax; for any a € R and different i,j € {n}?. Then,
Xo = O(v/n) > 0 holds.

Proof of Proposition B.1. As ||x;|| = 1 forall i € {n}, there exists a finite constant ¢ < 1 such that |z; ;| <
cfori,j € {n}. From the definition of H*, |[[H*]; ;| < cfori,j € {n}>. Let z € R" be a vector whose
elements belong to {—1/+y/n,1/y/n}. Then, |(H*2z);| < ¢cy/n = O(y/n) fori € {n} so that

|H 2] _ V3 H 2 oy (25)

Izl vn
Thus, from the definition of Ao and equation 25, Ao is upper bounded as
veRn st v =1 ||v| ||z]|

From Theorem 3.1 in Du et al. (2018), it follows that Ao > 0 if @; # ax; for any a € R and different
i,j € {n}?. Thus, the proof is completed. O
n6+a

¥ )
with any o > 0. Then, with probability at least 1 — 6 for § € (0, 1) over the random initialization of (W (0), a),
the right hand side of equation 10 converges to zero as k and n increase.

Proposition B.2 (Proposition 2.2). Suppose all conditions in Theorem 2.1 hold, k = ©(1), and m = Q(

Proof of Proposition B.2. Note that the right hand side of equation 10 is given as

3

%iu — )2k (v;(yfu(O)))QJrO(ﬁni)\géQ). @27)

=1

Note that the first term in equation 27 is upper bounded as

1 k (a) _ k
Zr1 =)y —u@] Lo —m)"), @
where (a) follows from Lemma 15. As it follows from the conditions in Theorem 2.1 that 0 < (1 —nXo) < 1

holds, by applying this fact to equation 28, we obtain that the first term of the right hand side in equation 10
converges to zero as k increases.

% Zn:u — )2k (viT (y - u(O)))2 <

=1

Ifm = Q( ”;:a ), the second term in equation 27 is given as
3
O("i> ) 29)
VmA2s?
That is, the second term of the right hand side in equation 10 also converges to zero as n increases, thereby
completing the proof by applying equation 28 and equation 29 to equation 27. O

14
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Proposition B.3 (Proposition 2.3, variant of Corollary 6.2 in Arora et al. (2019a)). Suppose y; — u;(0) =
g(®i) =3, (B, @:)Pi for all i € {n}, where for each j, p; € {1,2,4,6,...} and a; € R and B; € R?
are any constants w.r.t. n. Then,

\/2(y7u(0))TH*_1(y7u(0)) < 622, pilasl 118;1™ :o( 1 )

Z SC i)

(30)

Proof of Proposition B.3. The proof is completed by replacing y; in Corollary 6.2 in Arora et al. (2019a) with
yi —u;(0) forall ¢ € {n}. O

B.3 PROOF OF THEOREM 2.3

In this section, we prove Theorem 2.3. We first show some technical lemmas.

The following lemma provides an upper bound of the magnitude of the initial NN output.

Lemma 1. Suppose that set {x;}}_1 of n training input samples is bounded as max;cn} ||2;|| < 1. Then, it
follows that with probability at least 1 — & over the random initialization of (W (0), a),

2
2 nK
[u(0)]* = 0( ™). G31)

Proof of Lemma 14. Tt follows that

Ea[|[w(0)II] = Ea [||(fw o) (@1), - fw (o) (@) ]|]

2
=Ea Z|fw(0>(mj)}
—
2
=Ea Z‘ aro(w, ;)
=1 re{l:m}
2
—Z 3 ’ wlz;)| . 32)
j=1lre{l:m}
Furthermore, it follows that
IS ftwle)[ <530 3 fwlef
m
Jj=1re{l:m} j=1re{l:m}
(a) m
< ST (33)
mr:l

where v, for r € {m} is independently sampled from A (0, x*) and (a) follows from the rotational invariance
of Gaussian random vector and the fact that w, follows A/ (0, k*I) for r € {1 : m}.

By combining equation 147 and equation 148 and using the fact that E[> """ | vZ] = mx?, we obtain

Ew(0).a[ [u(0)[*] = O(ns?).

Therefore, by using Markov’s inequality, ||x(0)|> = O(nk?/8) is satisfied with probability at least 1 — §. [J

Then, by using Lemma 14, we can also obtain an upper bound of gap between the initial NN output and label as
Lemma 15.

Lemma 2. Suppose that set {x;}7_1 of n training input samples is bounded as max;cny ||2;|| < 1. If
lyll = O(y/n) is satisfied, it follows that with probability at least 1 — § over the random initialization of
(W(0),a),

ly — w(0)[* = o(%{l)“)v

Proof of Lemma 15. Tt follows from Lemma 14 that with probability at least 1 — &,

2max(||y|)?, |[w(0)|?) = O(max (1, %2) n) - o(%ﬁ)”). (G4
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Then, the proof is completed by applying the following inequality to equation 149.

ly = w(0)1* < llyll* + [[w(0)|* < 2max(|ly]*, u(0)|*)
O

The following lemma (i.e., Lemma 16) gives an upper bound of the gap between each trained weight vector and
its initialization, when the training loss is reduced by the GD optimization. This lemma is the result of extending
the condition for « to arbitrary x > 0 from x = 1, which is given in Corollary 4.1 in Du et al. (2018).

Lemma 3 (Variant of Corollary 4.1 in Du et al. (2018)). We are given arbitrary k > 0. Suppose that set
{z;}j=1 of n training input samples is bounded as max ;¢ () ||@;|| < 1. If the following condition holds for
K e€{0,1,...k—1},

’ A !
ly = u()[* < (1 = 29" ly — w(©)], (35)

then for every r € {m},

4\/n —u(0 ,
w0~ w.0)) < HEZ2OL ), 36)
where w; (k) is the column of W (k) =: [w1(k), ..., wm (k)] at the k-th step of GD.
Proof of Lemma 16. Since
oL
8'(wr Z — Yq)arTq 1('wr—rwq > 0),
we get
LW W) | _ VA ,
ek SASLIPYA| G AL | Py .
|t | = o=
Thus, we have
k-1
OL(W (K
Joo-(6) — w @) < 3 | 2507
k=0 "
<13 Y2y - u)|
k=0 Vim
(a) - 77)\0 k /2
-_— 0
< \sz: lly — w(0)]|
Vi nA
< — n(1— —0 y—u(0
NG z:: i O
_ 4Vl — ()]
~ \/EAO ’
where (a) follows from equation 150. O

As a result of Lemma 16, from the following lemma (i.e., Lemma 4), we can obtain an upper bound of the
magnitude of trained NN output, when the training loss is reduced by the GD optimization.

Lemma 4. We are given arbitrary k > 0. Suppose that set {a:J Fi=1 ofn training input samples is bounded as

max;e(n} ||@;]| < 1. If the following condition holds for k' € {0,1, ...,k — 1},
2 N
ly = )| < (1 = T ly - w ()], (37)

then, with probability at least 1 — § over the random initialization of (W (0), a),

nmax(k,1)®  nk? )

2— -
lu)I* = 0 (=G5 + ) (38)
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Proof of Lemma 4. Define a set of all weights whose distance from W (0) is smaller than R’ as

L(W(0),R) := {VV = [t ..., W] € R™XY

b, —w,(0)|| <R ¢ 39
max [ub, —w(0)]| < B} (39)

Then, for any matrix W = [w1, ..., W] € R™*< belonging to I'(W (0), R') and any j € {n}, it follows that

Eaolfw (2;)°] = Ea [nll( > ara(w:m]-))2:|

re{m}
1
—E, [( ST o x;)” + S aTaT/U(wjmj)a(w;mj))]
m re{m} ror’e{m}x{m},r#£r
(a) 1 . 1 . .
& E( Z a(w;rmj)2) + E( Z Ea[aTaw]a(w:mj)a(w:/wj))
re{m} ror'e{m}x{m},r#£r
_ 1 ST N2
(S wtarent)
re{m}

where (a) follows from b, and w, are independent of the random vector a (i.e., W, and W, are only
depending on W (0) and R’ as W is an arbitrary matrix satisfying W € T'(W(0), R')). Thus, by using
Markov’s inequality, we obtain with probability at least 1 — ¢ over the random initialization of a,

(41)

Define @(W) := (fu (€1), ..., fyv- (®1))T € R™. Then, applying the union bound over equation 41 for
J € {n}, the following inequalities hold with probability at least 1 — 2(8) over the random initialization of
(W(0),a),

n m

(42)

where (a) follows from equation 41, (b) follows from the fact that W belongs to I'(W(0), R) (i.e.,
|, — w-(0)|| < R), (c) follows from Cauchy-Schwarz inequality, and (d) follows from the fact that
IE[IZ:”:(1$ |w-(0)]*] = mx? and Markov’s inequality (i.e., 7" | [|w(0)||*> = mx? /3 holds with probability
at least 9).

On the other hand, it follows from Lemmas 15 and 16 that W (k) belongs to I'(W (0), R’) with probability
at least 1 — & over the random initialization of (W (0), a), where R’ = ,/ W for some constant
m 0

c. This implies W in equation 42 can be replaced by W (k) (i.e., @(W) in equation 42 can be replaced by
a(W(k)) = u(k)).

By using the union bound over the above statement (i.e., (W) in equation 42 can be replaced by @(W (k)) =
u(k)) and the inequality in equation 42 and setting R’ = , / %, it follows that with probability at
least 1 — §2(8) over the random initialization of (W (0), a),

3 2 2
2 n°max(k, 1) nK”
lu(i))* = O("TEGT + ).

The proof is completed by rescaling J to a constant such that equation 43 holds with probability at least 1 —4§. [

43)

Now, by using Lemma 4, we prove Theorem 2.3 (i.e., Theorem B.1) as follows.

17
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Theorem B.1 (Theorem 2.3). Suppose that |ly|| = O(v/n), Ao = O(n”) > 0 with a constant v < 1, and
m = Q(n* 7). Suppose further that k = O(n®) holds for some constant o < 0. Then, with probability at
least 1 — 0 over the random initialization of (W (0), @), there exists a finite integer k such that

A
ly = w(k+1)* > (1= O)Ily u(k)|*, (44)

where 1 is any constant such that 0 < Aon < 2.
Proof. If the following condition equation 45 holds for k' € {0,1, ...,k — 1}

N2 A
ly = w(k)|* < (@ = 9" ly — u(O)]?, (45)
then, with probability at least 1 — § over the random initialization of (W (0), a), it follows that

2

(@) n°max(k, 1 nkK
| 2 0" 4 1)
2o(1+%5)
_ O(1+n1+2a)
= o(n), (46)

where (a) follows from Lemma 4 and () follows from and m = Q(n*~27).

On the other hand, if the following condition equation 47 holds for all & € {0, 1, ...}

A
ly = w®)]® < (1= 9" Jly —u(O)], @)

there exists an integer k € {0,1, ...} (e.g.,any k > ((nXo)/(2 — nXo)) " log(|ly — w(0)||? /e), as derived
from equation 220) such that for arbitrary small constant € invariant of n,

Hy—u(l@)H2 <e. (48)
As € is invariant of n, equation 48 implies that
7112
[u(®)[|” = e(lyl*). 49)
In the case where k = k and ||y||> = ©(n), as equation 48 implies Hu(l:;)H2 = O(||y||*) in equation 49 and
equation 45 also implies Hu H = o(n) in equation 46, equation 48 and equation 45 are not satisfied at the
same time. This is because ||u (k) ”2 O(||ly||?) in equation 49 is not equal to ||u(l¥)”2 = o(n) in equation 46

in this case (k = k and ||y||* = ©(n)).

Then, for any 7 satisfying that 0 < Aon < 2, if equation 45 with this constant 7 is satisfied for all k¥’ > 0, there
should exist a integer k satisfying equation 48, which means that equation 45 and equation 48 are satisfied at the
same time. Therefore, equation 45 is not satisfied for some constant k' € {0, 1,2, ...} and for any 7 satisfying
that 0 < Ao < 2. O

B.4 MODIFICATION OF THEOREM 4.1 IN DU ET AL. (2018)

In order to prove Theorem 2.5 stated in Section 2.3, we first prove Theorem F.1 in this section, since Theorem
2.5 is proved by using the result of Theorem F.1. Theorem F.1 is the result of extending the condition for x
to kK = ©(1) from x = 1, which is given in Theorem 4.1 in Du et al. (2018). Therefore, most of the proof
processes for Theorem F.1 (and its technical lemmas) are already proved in Du et al. (2018); we provide them in
this section for completeness.

To prove Theorem F.1, we first introduce some technical lemmas.

We introduce the following lemma (i.e. Lemma 5), which is Lemma 3.1 in Du et al. (2018). This result provides
that the Gram matrix H (0) obtained in the finite NN width regime is lower bounded as Ao and remains near
from that in the infinite NN width regime.

Lemma 5 (Lemma 3.1 in Du et al. (2018)). Define matrix H (k) € R"™*" such that p, q-th entry of H (k) is
given by

1
Hyq(k) = —@y2q Y _[1{wr(k) @y > 0,wr (k) aq > 0}], (50)

r=1

18
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where w; (k) is the jth column vector of W (k) such that [w1(k), ..., wm (k)] = W (k). If m = Q(’;—Z log(%)),

0
it follows that with probability at least 1 —§ over the random initialization of (W (0), @), || H(0) — H*[|, < 22
and Amin (H(0)) > 3 Xo, where Amin (H(0)) is the smallest eigenvalue of H (0

The following lemma (i.e. Lemma 17) is a direct extension of Lemma 3.2 in Du et al. (2018) with respect to «;
we further specify x in Lemma 17 as Du et al. (2018) assume that x = 1. This result provides that the induced
Gram matrix H is lower bounded by Ao and remains near from the Gram matrix H (0).

Lemma 6 (Variant of Lemma 3.2 in Du et al. (2018)). Suppose that w, ..., w,, are independently generated

from N'(0, k2T and m = Q(’;—i log(%)). Then, with probability at least 1 — 6, the following holds. For any
9]

set of weight vectors w, ..., Wy, € R? that satisfies |w,(0) — w,|| < C”ji;‘o := R for any r € {m}, some

positive constant c, then the matrix H € R™*"™ whose p, q-th entry is defined by

x, x, Z[]l{w:a:p >0, w, x4 > 0}] (5D

r=1

satisfies | H — H(0)l, < 22 and Amin(H) > 22, where H (0) is defined in equation 152 and Amin(H) is
the smallest eigenvalue of H.

Proof of Lemma 17. The following event is defined as

Eor = {Fw : |w — w,(0)]| < R, 1{z, w,(0) >0} # I{z,w > 0}}. (52)
This event happens if and only if |w, (0) "@4| < R. Note that w,.(0) follows N'(0, k*I,). For ¢ € {n}, we get
P(Ey) = P (b < R) < 2B (53)
qr h~N(0,1) > > \/ﬂ:‘i g
Then, for any (p, q) € {n}?, it follows that
1 m
E[|Hpq(0) — Hpql] = E[glwgmq > (1{w.(0) @, > 0,w,(0) '@y > 0} — L{w, @, > 0,w, @y > 0})]]
r=1
1 «— 4R
< = E[1{&r U&y}] < . 54
< o L EHE e S 4
By summing equation 155 over (p, ¢),
4n’R
E Hyq(0) — Hyql] < .
(7 1H30(0) = Hyoll < T2
prq
By Markov’s inequality, with probability at least 1 — § over the random initialization of (W (0), a),
4n’R
Hpg(0) — Hpg| £ ——.
% | PQ( ) pQ| — \/%K/(S
Then,
4n°R
H—-H(0)|, < Hpq(0) — Hyq| < . 55
| ( )||2_§| pa(0) — Hpq| < NoTT (55)

Finally, we can obtain a lower bound of the smallest eigenvalue of H (Amin(H)) by plugging in R and using
Lemma 5 as follows.

4n’R o
Amin (H) 2 Amin (H(0)) — | H — H(0)l, > Amin (H(0)) — NG > > (56)
O

The following lemma (i.e. Lemma 18) is a direct extension of Lemma 4.1 in Du et al. (2018) with respect to x;

we further specify « in Lemma 18 as Du et al. (2018) assume £ = 1. We include the proof of Lemma 18 for

completeness.

Lemma 7 (Variant of Lemma 4.1 in Du et al. (2018)). Let Sy := {r € {m} : 1{&,} = 0} and (Sy)* :=

{m} \ Sq, where Eqr is defined in equation 154. Then, with probability at least 1 — § over the random
CmnR

initialization of (W (0), @), we have 377, [(Sq) ™| < €228 for some positive constant C' > 0.

19



Under review as a conference paper at ICLR 2025

Proof of Lemma 18. Note that

2mR
E[|(S) 1= P&, < , 57
801 = 3 P(Ear) < 57
where the inequality follows from (53). Then,
anR
(58
}] < Tamn )
and by Markov’s inequality, with probability at least 1 — &,
C’mnR
§:| (59)
6K
O

By using Lemmas 5, 17, and 18, we prove the following theorem (i.e. Theorem F.1). Note that Theorem F.1 is a
direct extension of Theorem 4.1 in Du et al. (2018) with respect to x (from x = 1 to k = ©(1)). In the proof of
Theorem F.1, we also add that there exists no contradiction in Theorem 4.1 in Du et al. (2018)

Theorem B.2. (Modification of Theorem 4.1 in Du et al. (2018)) Suppose that k = O(1) for n,
O(y/n), m = Q(max (W’ 2 log( ))), set {x;}7_1 of m training input samples is bounded as

maxjeqny |25 < 1, n = O(:‘LO ), and A\g = O(n”) > 0 with a constant v < 1. The DNN parameter
W (k) is optimized via the gradient descent with the step size 1 = O(%). Then, with probability at least 1 — ¢
over the random initialization of (W (0), @), it follows that for k € {0,1,2, ...},

A
ly = u(®)® < (1= 252" |1y — w(0)]”. (60)

Proof of Theorem F.1. Using Theorem B.1 and the fact that the set of all conditions of Theorem F.1 implies that
of Theorem B.1, we can obtain the fact that  should not be o(1) for n, in order to prove that equation 161 holds
for all k£ > 0. Therefore, we assume that < = ©(1) and prove that equation 161 holds for all £ > 0 in this case.

We first prove that there exists no contradiction when x = ©(1) by assuming that equation 161 holds for all
k > 0. Suppose that k is any integer satisfying

nAo €
klog(1— 129y <log (————), ©61)
2 (Hy—U(O)HQ)
where € is arbitrary small constant invariant of n. As —nXo(2 — 7o)+ < log(1 — m) the following
condition implies equation 219.
k> ((nho)/(2 = nXo)) ™" log(lly — u(0)]* /€) (62)
From n = O(—g) equation 220 is implied by
P (T ly — u(0)]|”
km(AO 1og( : )) (63)

Then, as we assume that equation 161 holds for all £ > 0, it follows that for any k satisfying equation 63,
L2
|y —uih)| <e (64)

This implies that the value of Hy — u(k) H ? can be arbitrarily reduced if integer k is sufficiently large. As e is
arbitrary small and invariant of n, there exists a pair of (e, k) such that the following conditions hold at the same
time:

|y = w(B)||” < e and ||u()||” = O(ly[*)- (65)

On the other hand, it follows from Lemma 4 that for k& satisfying equation 65, with probability at least 1 — §
over the random initialization of (W (0), a), the integer k satisfying equation 65 should also satisfy

rimax(s 1 | 107y @ oty 0

2
[u(®) :O( MmA252 52
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where (a) follows from m = Q(AZ—;)
0

Since we assume k = ©(1) for n, there exists no contradiction such that equation 65 is contrary to equation 66,
whereas it can happen when we assume that = o(1) for n and ||y||*> = ©(n) (Theorem B.1).

Now we prove that equation 161 holds for all £ > 0. This proof is based on that of Theorem 4.1 in Du et al.

(2018). To do this, we use the induction hypothesis. We assume that k& = 0. Then, equation 162 holds for
k' €{0,1,...,k} = {0}.

ly = k)] < (1= B0 Jly — w(o)] (©7)

Next, we assume that k is an integer satisfying k& > 0. We assume that for &' € {0,1, ..., k}, it holds

2 NG
ly = )| < (1 = " ly - w(0)]. (68)
The gradient descent of training loss L(W') with respect to the parameter w, for r € {m} can be derived as
oLw) 1
T, Z —yg)arzy H{w, x, > 0}. (69)

We define the event
Eur = {Fw : lw —w, (0)] < R, 1{a] w,(0) > 0} # 1{z] w > 0}}.

And we define Sy := {r € {m} : 1{E;} = 0}, (Sy)* := {m}\ Sy, and R := c’f% for some positive
constant c. Then,

g4 1) = g (B) = —= > an(oawn( +1) ) = o () 2,)
- % ; ar (a((wr(k) - U%((:))))qu) - a(ww(k)qu))
= n e,
where
.= Lm pa ar (U((wr(k) - n%.(%)))-rmq) - U(wr(k)T:L'q))
= Lm 2 ar (0((wr(k) — ﬁ%((kk))))j—wq) - o(wr(k)qu)).

Then, it follows that for some positive constant C, with probability at least 1 — ¢ over the random initialization
of (W(0),a),
n OL(W (k)
B —7= > 5 @l
vm reGOL dwr (k)
1
CalS)t | AL (k)
- \/TH re{m} awr(k)
@ nvn|(Sq) | lly — (k)|
- m
© Cnng/QR ly — u(k)]
Sk ’

where (a) follows from equation 164 and (b) follows from Lemma 18.

(70)

To analyze I{, by Lemma 16 and the assumption equation 163, we obtain that ||w,(k + 1) — w,(0)]] < R’
and ||w, (k) — w,(0)|| < R forallr € Sy.

Note that R < R, which is equivalent to

f Wly —uwO) o esddo oy O]
R = i <R:= 2 = m=Q 252 .
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Note that from Lemma 15 and the assumption x = ©(1), ||ly — u(0)||* = O(x*n/5) with probability at least
1 — 0 over the random initialization of (W (0), a). Thus, it follows that

n’ Jly = w(O)” n’
m=a( "0 o). an

Hw,(k+1) "z, >0} = 1{w,(k) "z, > 0}.

Since R’ < R, forr € Sy,

Thus,
n= imlmmm = 0k) 3 1w+ )0 2 0k +1) T 2 0)
— —nZ(up ) = yp(k)) (Hap(k) — Hay(K)),
where
Hij(k) = i i[l{wr( ) i > 0,wy (k) "5 > 0)] 72
HA() = —alay 3 [weR) @ > 0,w,(k) 2, > 0},
re(Sq)*

By using Lemma 138, it follows that with probability at least 1 — § over the random initialization of (W (0), a),

(n,n) n 1

ng=1|(8)71 _ cn’R

Hi 1 q=1 )
|H W, < >0 Hp k) < = < 2 (73)

(¢,p)=(1,1)
By using equation 164, we get
i+ 1) = wl < * (0 | T B ) < oty — wl?. (74)
g=1 r=1 T 2

Note that m = Q(#ZB) in equation 166 implies the condition m = Q(Z—g log(%)) in Lemma 17 (by using

Ao = O(n”) > 0 with a constant y < 1). Thus, we can use Lemma 17. From Lemma 17 and the fact that
R’ < R, we get

A
Amin (H (k)) > ?O (75)

where Amin (H (k)) is the smallest eigenvalue of H (k). Then, by using union bound, the following inequalities
hold with probability at least 1 — () over the random initialization of (W (0), a).

ly —u(k+ 1)) = lly — w(k)|; — 2(y — w(k) " (u(k+1) —u(k) + [[ulk+ 1) — u(k)|;
= lly —uk)|l5 — 2n(y — u(k)) " H(k)(y — u(k))
+2n(y —u(k) " H* (k)(y — u(k) — 2(y — w(k)) Lo+ lu(k + 1) — u(k)[|;

(a) 2Cnm*R  2Cnn®/?R
< (L—mho+ L=+ == ) |ly — u(h)l

(b)

< (1—nho+ Aon+0<7’7> +7n?) |y — (k)|

(1—77>\o+ /\07]+O( )+ Aon)\ly u(k)|;

Aon

f
nAo

<( *T)Hy*u(k)”za (76)

where I := (I3, ..., I;)T, (a) follows from equation 170, equation 165, equation 168, and equation 169, (b)

follows from the fact that R := C"f—;“ can be less than 1'(‘)50)‘7?2 by properly setting ¢, and (c) follows from the

definition of step size n = O(%) (i.e., n can be set less than Ao /(5n?)).
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We can rescale ¢ to a constant such that the following condition equation 172 holds with probability at least
1 — 0 over the random initialization of (W (0), a).

(®) by
ly = u(k+ DIE < (1= T52) lly - u(®)3 (7

Therefore, by using the induction hypothesis with equation 172, with probability at least 1 — J, it follows that
fork € {0,1,2,...},

A
ly = w()I* < (1= 220" lly - w(O)]*. (78)
O

B.5 PROOF OF THEOREM 2.4

In this section, we prove Theorem 2.4. We first show some technical lemmas.

The following lemma (i.e., Lemma 19) gives an upper bound of the gap between each trained weight vector and
its initialization. This is the result of fixing x in Lemma C.1 in Arora et al. (2019a) as k = O(1).

Lemma 8 (Specific case of Lemma C.1 in Arora et al. (2019a) and Corollary of Lemma 16). Under same setting
H nG n2 n n

as Theorem F 1, i.e., k = ©(1) for n, ||y|]| = O(/n), m = Q(max (W’ 2 log(g))), set{z;}7—1 of n

training input samples is bounded as max;c (ny ||z;|| < 1, n = O(%), and Ao = O(n") > 0 with a constant

v < 1, it follows that with probability at least 1 — § over the random initialization of (W (0), a),

4/nlly — u(©)] A\
e () = wn (O)] < = Fs -o( N ﬁ) (=R) (79)

Proof of Lemma 19. The condition (150) is satisfied if the conditions in Theorem F.1 hold. Then, the proof is

completed by combing Lemma 16 and the fact that ||y — w(0)|| = O( ”\/*/;) holds with probability at least 1 — ¢

(which is obtained from Lemma 15 and the assumption x = ©(1)). O

The following lemma (i.e., Lemma 20) is the result of fixing ~ in Lemma C.2 in Arora et al. (2019a) as k = ©(1).
Therefore, we omit the proof of Lemma 20 as Lemma 20 is a specific case of Lemma C.2 in Arora et al. (2019a).

Lemma 9 (Specific case of Lemma C.2 in Arora et al. (2019a)). Under same setting as Theorem F.1, i.e.,
nG n2 n 7746

k = O(1) forn, ||ly|| = O(v/n), m = Q(max(w, Qlog(g))), m = Q(W), set {x;}7 1 of n

training input samples is bounded as max ;e (ny ||;|| <1, n = O(%), and o = O(n") > 0 with a constant

~v < 1, it follows that with probability at least 1 — 46 over the random initialization, for all k > 0 we have

nd

(| H (k) — H(0)|| = O(W)7 (80)
1Z(k) — Z(0)|| = O( W)-

We also introduce Lemma C.3 in Arora et al. (2019a) as follows.
Lemma 10 (Lemma C.3 in Arora et al. (2019a)). With probability at least 1 — §, we have | H* — H(0)|| =
O( n4/log(n/é) )
Vm ’
Then, by using the above lemmas, we prove the following proposition. This result is a revision of Theorem 4.1

in Arora et al. (2019a) by removing a s-affected value (i.e., (1 — n)o)" @) in the original bound given as in
(33) in Arora et al. (2019a). Therefore, this proposition is our major contribution to prove Theorem 2.4.

Proposition B.4 (Modification/revision of Theorem 4.1 in Arora et al. (20192)). Under same setting as Theorem
: ’ nb n? n n 4 T
Fl, ie, k= 0O(1) forn, |ly| = O(v/n), m = Q(max (W’ 2 log(g))), set {a;}7_1 of n training
input samples is bounded as max;c (ny ||| < 1, n = 0(2—8), and Ao = O(n") > 0 with a constant -y < 1,
it follows with probability at least 1 — § over the random initialization of (W (0), a) that for all k € {0, 1, ...},

u(k) —y=—(I —nH")"y + e(k), (81)
where
B nXo\ k=1 Tln7/2
||e<k>||0<k( -0 (Ghost) ) (82)
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Proof of Proposition F.1. We define w,(k) :=  fwu)(z,) as the qgth entry of wu(k) :=
(fw ) (®1), s fW(k)(mn))T. Then,

gk + 1) — ug (k) = 7 > arfotuwn(k+ 1)) = olwe(k) )] (83)

We define the event

Agr = {Jw,(0) "] < R},

where R = O( =). Let Sg := {r € {1 : m} : 1{Ag} = 0} and Sy ={1:m}\ S,

\ﬁ,\f

Note that w,-(0) " 2, has the same distribution as A/ (0, x?) so that

R

1 2
]E]lAT :PN M hl < R) = 7L/2md <
(I{Ag¢r}) = Pono.r2) (Rl < R) [R\/TH < o=
Then,
= 2mR
E(IS; ) =E | 1{4,}) <
(151 (Tzl o) < o
and
- oL 2mnR n2\/m
EQ 1S ) =EQ D> 1{As =0 ,
(q=1|q|) q=1r=1 { q} 2K ()\0\/3)

By Markov’s inequality with probability at least 1 — § over the random initialization of (W (0), a),

ZIS =0 ’;g@) (84)

From (183), we get

ug(k+ 1) — uqg(k) \F Z arlo(wr(k+ 1) ay) — o(w. (k) x,)]

r€Sq

- ﬁ ZS: arlo(we(k+1)T2g) — o(we (k) @,)] (85)

We denote the second term as éq(k)

léq (k)| =

Y arlo(wi(k+1) @) — 0w (k) 2,)]

'r€Sql

1
Jm

OL;(W (k)) H
ow, (k)

IA
3
]
|'M
g
&
=

resg =1
n| S+
< ISy ). (56)
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For the first term in (186),

f > arfo(w, (k+1) @) — o(w, (k) "2,)]

TGSq

\F > arl{we(k) @g > 0} (wr(k + 1) — we (k) @4

res,
-+ 5 orttun( e 2 00 23 Z ~ y)arey Lw, () Tz, > 0) e,
- *% p_l(up(k) — yp)m, T T;q Hw, (k) @, > 0}1{w, (k) "@q > 0} + &(k)
= —nZ up(k) — yp) Hop (k) + &(K), 87)
where
=1 Z —ypzy ey Y Huw(k) @y > 0}1{w, (k) @, > 0}. (88)
p=1 rest
Then,
) < Sy ) (59)
Combining (186), (187), (188) and (190),
ug(k+ 1) — ug(k 7,,72 up(k) — yp) Hop (k) + éq(k) + € (k) (90)
which gives
u(k +1) —u(k) = —nH(k)(u(k) — y) + €(k), o1

where €(k) = é(k) + €(k). Note that by using (185),

5/2

" _ " 2ny/n|SF
€Dl < el = > lea®) + el < 3 2B 1y — ) = 020 fy = wih).
q=1 q=1 0
92)
We rewrite (192) as
u(k +1) —u(k) = —nH" (u(k) - y) + ¢(k), 93)
where ¢ (k) = n(H* — H(k))(u(k) — y) + €(k). Then, we get
k—1
u(k) —y = —(1—nH")"(y —u(0) + > (I —nH")'¢(k — 1 -1). (94)
t=0
From (193) and Lemmas 20 and 10, we bound ¢ (k) as
X nn5/2
I < nllH = HE), lly = w)l +O(—2Esrs )y = w(k)]
n/?
< - *_ - e -
< ([ H(O) = HE)| -+ [H = HO)) ly = k)] + O 257 ) Iy~ wb)]
3 5/2
_ nn nny/log(n/d) nm®/ _
= O s + TV R )y — k)]
3
— nn —
= O tessrs ) Iy = w(h)l, )
where the last equality follows from the fact that O(#ZJ/Z’) implies O( \/%’;2;23 7z) and O( Ty 1;%(”/ 5))
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Then,
k—1 k—1
DI =nHYC(k—1-t)| <> I —nH|"||¢(k -1 -1
t=0 t=0

k-1
<D M =nH | ISk =1 - t)|
0

t=

k—1
<o) ¢tk —1— 1)

=
|
—

(a) nn
< Y (1= 1) O i) lly = ulk = 1= 1)
prt V/mAod3/2
®) i’ Ao
<D (1 =020) O(—=—75)(1 = =) ly — u(0)]|
— V/mXod3/2 4
(e) i1 n’ A Vn
<N (1 - no)o(— a1 - oo
= t:O( n 0) (\/EAO&S/Q)( 4 ) (\/g)
N0 \k—1 nn'/?
<Ek(l—— _—
< k(=T O(E ), 96)
where (a) follows from (196), (b) follows from Theorem F.1 such that
A A
ly —u®)ll < (1= 92 ly —u©O)] < 1 = )" [y - u)], ©7)

and (c) follows from Lemma 15 and the assumption x = O(1) (i.e., ||y — u(0)|| = O(%)).

By applying (197) to (195), it follows that under same setting as Theorem F.1, it follows that for k£ > 0, with
probability at least 1 — 6,

u(k) =y = —(I =nH") (y — u(0)) + e(k), ©8)
where
NAo\ k-1 77”7/2
el :O<k( -2 (W)) 99)
O

As a simple corollary of Proposition F.1, now we can prove Theorem 2.4 as follows.

Theorem B.3. [Theorem 2.4, modification/revision of Theorem 4.1 in Arora et al. (2019a)] Suppose that all
conditions in Theorem 2.1 hold. Suppose also that k = ©(1). Then, with probability at least 1 — 0 for 6 € (0,1)
over the random initialization of (W (0), @), it follows that for all k > 0,

Ly — @)l = 230 =0 (o7 (g = u0)) + 0 (100)
Vv n i N VmA3e2 )
where v1, ..., v, € R™ are orthonormal eigenvectors of H* and A1, ..., An, are the corresponding eigenvalues.

Proof of Theorem F.2. Our proof is based on that for Theorem 4.1 in Arora et al. (2019a).
From Proposition F.1, it follows that for all £ € {0, 1, ...},

u(k) —y =~ —nH")*y + e(k), (101)
where
_ RN
le(k)|| = O<k<1 — T) (W) . (102)
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Therefore, we get

(@)
lu(k) -yl

IN

(= nH) (w(0) = )| + lle)]

n

= | Do =) (] (y —u(0))? + [le(k)]

j=1

= n 0\k—1 n7/2
= Z(l*77/\j)2k(vf(y7u(0)))2+O<k( _ MAoyk-1 1 )

= 4 1/mA052
@ |+ 1 ™2
pt 1— N2k (99T _ 2 I A

S0 (0] o~ u(0) vo( 2.

where (a) follows from the triangle inequality and equation 202, (b) follows from (I — nH*)* has the
eigen-decomposition (I — nH*)* = > (1= nAj)*v;v; and y — u(0) can be decomposed as y —
u(0) = 3" (v, (y —u(0)))v;, (c) follows from equation 203, (d) follows from I,?%({k(l —nlo/4)F1} =

=1

O(1/(nXo))- O
B.6 PROOF OF THEOREM 2.5

B.6.1 BACKGROUND ON RADEMACHER COMPLEXITY

Before we prove Theorem 2.5 stated in Section 2.3, we introduce Rademacher Complexity and the theorem
derived from it.

Define a loss function £ : R x R — R. For a function f : R? — R, we define the population loss over true
model distribution D and the empirical loss over n samples S = {(x;,y;)}j=1 from D, respectively, as

Lo (f) = E@,y)~[l(f(2), )]

Ls(f) = ) _le(f(x5),y5)]- (103)

j=1

Then, Rademacher complexity of a function class F mapping R? to R is expressed as

1 n
Rs(F) = EIEZ6 [?gg;qf(acj)], (104)

where € = (€1, ..., €,) " € R™ includes i.i.d. random variables €; ~ unif({1, —1}) for j € {n}. This provides
an upper bound of generalization error as the following theorem given from Mobhri et al. (2018).

Theorem B.4. Suppose the a-Lipschitz loss function £(-, -) is bounded in [0, ] in the first argument. Then, with
probability at least 1 — 6 over sample S of size n,

sup{Lo(f) — Ls(/)} < 20Rs(F) + 36y B2/, (105)
fer n

B.6.2 PROOF OF THEOREM 2.5

In this section, we now prove Theorem 2.5 stated in Section 2.3. We first show some technical lemmas.

As aresult of Lemma 19, we can obtain the following upper bound of the magnitude of trained NN output, when

the neural network is over-parameterized.

Lemma 11. Ler the input data {x;}7_, and label data {y;}}_1 of n training samples independently fol-

low model distribution D(x,y). We consider the same setting as Theorem F.1, i.e, Kk = ©O(1) for n,

lyll = O(/n), m = Q(max ()\4’;7;;3, t\l—z log(%))), set {x;}}_1 of n training input samples is bounded
0 0

as max;eqny |25 <1, n= O(%) and Ao = O(n") > 0 with a constant v < 1. Then, for input sample
x obtained from D(z,y) and for every k > 0, it follows that with probability at least 1 — § over the random
initialization of (W (0), a),

|fwwy.a(@)| =0(5). (106)

ad
5
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Proof of Lemma 11. The proof is similar with that for Lemma 4. Define a set I'(W (0), R) := {W =

Rmxd Rmxd

max, |, — w,-(0)| < R’}. Then, for any matrix W = [y, ..., W] €
re{m}

belonging to T'(W(0), R'), it follows that for any = € R?,

Ea[fw (2)"] = Ea [;L( > aro(w:w))Q]

[’41)17 ...7’Lilm] €

re{m}
1
~ Ea [( 3 o] @) + S ara, o (b, m)a(zﬂm))]
m re{m} rrle{m}x{m},r#r’
(@ %( Z o(w, x )2)+%( Z Ea [araT/]U(w:m)a(w:—/m))
re{m} ror’ €{m}x{m},r#r’
1
=—( X o/ =), (107)
m
re{m}

where (a) follows from w, and w,. are independent of the random vector a (i.e., W, and W, are only
depending on W (0) and R’ as W is an arbitrary matrix satisfying W € T'(W(0), R')). Thus, by using
Markov’s inequality, we obtain with probability at least 1 — ¢ over the random initialization of a,

1 m
< Zlo ) (108)

Using equation 108, the following inequalities hold with probability at least 1 — £2(d) over the random initializa-
tion of (W (0), a),

Fur @ € S (e — w0 (0) + i (0) )
1 — 5 1 «— L.
< o 2l = w0 OF)+ 503 eon (0

INE
X
N

X
N

(109)

where (a) follows from equation 108, (b) follows from the fact that W belongs to I'(W(0), R) (i.e.,
||, — w-(0)|| < R), (c) follows from Cauchy—Schwarz inequality, and (d) follows from the fact that
E[X", [lw,(0)]]*] = mx? and Markov’s inequality (i.e., 3./, ||w;(0)||* = m? /& holds with probability
at least 0).

On the other hand, it follows from Lemma 19 that W (k) belongs to I'(W (0), R’) with probability at least
1 — § over the random initialization of (W (0), @), where R’ = , /% for some constant c. This implies W

in equation 109 can be replaced by W (k) (i.e., fyi, (x) in equation 109 can be replaced by fw () (z)).

By using the union bound over the above statement (i.e., fy;, () in equation 109 can be replaced by fw (1) (x))

and the inequality in equation 109 and setting R’ = , /<& A;Lé , it follows that with probability at least 1 — Q(9)

over the random initialization of (W (0), a),

2 (0) 1 KT 2 g2
[fw (x),a ()] _O<5(\/M) +52>

2
d K
Yo (ﬁ) , (110)
The proof is completed by rescaling § to a constant such that equation 110 holds with probability at least
1—9. O
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We can obtain the following lemma 21 by modifying Lemma 5.3 in Arora et al. (2019a). Note that Lemma 5.3
in Arora et al. (2019a) provides an upper bound of distance between trained NN weights and its initial ones.
Lemma 21 is a result obtained by removing the terms affected by s from this upper bound of Lemma 5.3 in
Arora et al. (2019a). Therefore, this lemma is our major contribution to prove Theorem 2.5.

Lemma 12 (Modification/revision of Lemma 5.3 in Arora et al. (20 1 9a)) Consider the same setting as Theorem
Fl, ie, k = 0O(1) forn, |ly|| = O(v/n), m = Q(max (A4 553 /\2 log( ))) set {x;}}_1 of n training

input samples is bounded as max ¢ (ny ||2;|| <1, n = O(n ), and A\g = O(n™) > 0 with a constant vy < 1.
Then, with probability at least 1 — 0 over the random initialization of (W (0), @), it follows that for all k > 0

e (Lemma 19) ||w,(k) —w,(0)|] = O(fkof) (:=R),Vre{l:m}

W) = WO < (y—u0) T H) 7 (y—ul0) + 0G| G + | [ +

nd

VmA3 82 )

Proof of Lemma 21. The first part is proved by using Lemma 19. The rest is to prove the second part.

From Proposition F.1, we get

u(k) —y = —(I —nH")"(y — u(0)) + e(k), (111)
where
le(k)| = O<k( S b (’7”7/2)> (112)
1 NGOV

We apply (207) to (135), which is

vec(W(k + 1)) = vec(W (k)) — nZ(k)(u(k) — y), (113)
and for k € {0, ..., K — 1} we obtain
vec(W (k)) — vec(W(0))

K-1
==Y nZ(k)(ulk) - y)

= S 02T - nH )y — u(0)) - e(k))
= S 0ZO)I - nH Y (- u(0) + S 0(Z(k) — ZO)T —nH )y —u(0) — 3 nZ(k)e(k).
k=0 k=0 k=0 (114
Then, we bound the first term of (210) as
Z 0)(I —nH")" (y — u(0))
— | Z(0)T(y — u(0))]*
— (y — u(0)) TTH(0)T(y — u(0))
< (y —u(0)) "TH"T(y — u(0)) + |[H" — H(0)|, |ly — w(0)|3 |TI3
(- (o) TTHT(y - u(o)) + o "VEE) (1) (L)’
. n?\/1og(n/0)
= (y = u(O0) ' TH T(y — u(0)) + O( {5 ).
where T := Zk o 'n(l — ) o] = A 17(1;77&)}(1%17; (v1, ..., v, € R™ are orthonormal

i

eigenvectors of H and A1, ..., A, are the corresponding eigenvalues) and (a) follows from Lemma 10 and
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Lemma 15. Then,

K—-1

> nZO)I = nH")"(y — u(0))

k=0

< \/(y —u(0))TTH*T(y — u(0)) + o(%)

A2 /m
n24/log(n/d)

< — TTH*T (y — — | 11

< Vly—u(0) (v u<0>>+0< yrave (115)
By using

* _ < 1_(1_77)\L)K2 T < 1 T _ *\—1

TH'T = ;(T) \iviv; < ;wii =(H")™", (116)

we get

Z_ nZ(0)(I —nH")*(y — u(0))

< iy~ ul0)T (H) "y~ u(0)) + 0< oen/0) W)

<Y nlzm) - 2O, @ —nE)| lly = w1,
k=0

(117)
‘We bound the second term of (210) as

K—-1

> 1(Z(k) = Z(0)(1 — nH")*(y — u(0))

k=0

=

1

<> nlzk) = ZO), IT —nH" |5 Iy — u(0)ll,
0

ol
Il

K

—

<llZ(6) = Z0O)l, Y (1 m0)* 1y~ u O,
k=0
2 0 Zrhagers) 2 101~ 1)y~ w0,

® n?
- O(\/ \/mg(sw)’ (1)

where (a) follows from Lemma 20 and (b) follows from Efgol (1 —nio)* = % < Tlo

By using (208) and the fact that || Z (k)|| < v/n, we bound the third term of (210) as

3 nazhe) O(KZ v (- ) (B )])
n e = nvn - - — S
= P 4 NLONE
K-1 2 4
_ Mo \k—1 nn
~o( (k- o) ()
4
(a) n
(@) O(mxg&)’ (119)
where (a) follows from the fact that Z,f;ol k(11— %)k_l <3S k(- %)k_l = (niO)Z.
Therefore, by applying (213), (214), and (215) to equation 210,
W (k) = W)
n2y/log(n/d) ns3 nt
< _ T H* —1 —
< Vg~ w(0) T (H) (g u<o>>+0< o | S

O
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We introduce the following lemma (i.e., Lemma 22) proved by Arora et al. (2019a). This lemma shows
Rademacher complexity can be upper bounded by a term depending on the distance between the trained weight
and its initial value.

Lemma 13 (Lemma 5.4 in Arora et al. (2019a)). Given R > 0, we assume that the input data {x;}7_,
is given as ||x;|| < 1 for j € {n}. Consider the following function class in equation 216 with W (0) =
[w1(0), ..., wm (0

FWEO — {fy 0t W = [, ooy W], 0 — w,(0)]| < R (Vr € {m}), HW - W(O)H < B}. (120)

Then it follows that with a probability at least 1 — § over the random initialization of (W (0), @), for every

B > 0, the empirical Rademacher complexity Rs (f W(0).a ) based on the function class in equation 216 is
bounded as

ay._ 1 -
Rs(fgéo% )= ;Eee{ﬂ}n |: sup ZEjf(.’Ej):|

< \/];n(u (21255)1/4) +72RZ\/M+R,/2log%

Now, by using Lemmas 19, 11, and 22, we prove Theorem 2.5, which is given as Theorem F.4.

Theorem B.5. [Theorem 2.5, modification/revision of Theorem 5.1 in Arora et al. (2019a)] Suppose that all
conditions except Ao > 0 in Theorem 2.1 hold and we fix a failure probability § € (0, 1). Suppose further that
k=0(1)and m = Q(poly(n, Aot 87h). Suppose also that Mo > 0 holds with probability at least 1 — §/3
forn i.id. training samples {(x;, yi) }i—1 from true model distribution D. Then, with probability at least 1 — §
over the random initialization of (W (0), @) and the training samples, it follows that for any k > Q(ﬁ log %),

—u TH! —u 1 s
(wEND; Y= fww).al® )‘ =O<\/2(y ©) IZ (v (O))>+O<\/Ognko‘s>. (121

Proof of Theorem F.4. We consider a loss function £(a,b) : R x R — R as £(a, b) = (a — b)?/2. We assume
that this loss function £(a, b) is c-Lipschitz in the first argument, this function is bounded in [0, 3], and « and 3
follow O(1). We will prove that this assumption holds at the end of the proof.

Using the loss function and equation 204, we can define the population loss over true model distribution D and
the empirical loss over n samples S, respectively, as

Lo(f) = E@,y~p[l(f(®),y)] = E@y)~p

Ls(f) =D _[(f(®5),95) :Z ) —v5)°), (122)

Jj=1 Jj=1

1

5@ =)

where f : R? — R denotes a trained neural network to be specified (i.e., fov(x))

We assume that \g = O(n”) > 0 with a constant 7y < 1 holds with probability at least 1 — §/3. We also assume
6

the following conditions hold: k = ©(1) forn, ||y|| = O(v/n),n = O(i—g), and m = Q(5453)-
0
With probability at least 1 —§ /6 over the random initialization of (W (0), a), the followings hold simultaneously:

* Optimization succeeds: By using Theorem F.1 with equation 220, and the fact that ||y u(0)|| =
O(%) (which is obtained from Lemma 15 and the assumption x = (1)), if k = Q-+ g 108 7). it
follows that

LW (k) < (1- %)’“0(5) <3 (123)
Then,
Ls(fww) : Z | fw (k) (€4) = yal”
= S LW (k)
2o(l),

where (a) follows from equation 221.
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e From Lemma 21, we get ||w, (k) — w.(0)]| = R (Vr € {1 : m}) where R = O( —= ), and

|W (k) = WO < B where B = \/{y —u(0))T(H") "y - u(0)) + O 5= +

3
\/7;353/2 + \/7>\362) NotethathO(\/%)

e Let B; = j(j =1,2,...). For all ¢, the function class }'W(O)’

is upper bounded by

a B; 2log 2 \1/4y  2R? 20
Rs(fgég)’)é\/%n(u( m“) )+ H\ﬁ+R 2log == (125)

has Rademacher complexity, which

Let j* be the smallest integer such that B < B;«. Then we have Bj» < B+ 1 and j* < O(, /f—o) Note that

fw),a € f;"/é?’a. And we get

W ,a
Rs(Frep ™)

< Ej/;nl (1+ (2102?)1/4) + O(R>Vm) +R,/21og%0
:f;n(w(210g260)1/“‘)+0(ﬁ)JFO(IJ(’IY(TZ;}}’;))+0(1wz2\/a)+R,/210g25O
A BBy oLy oMM
_ A Lo \/ﬁkal\/ﬁ(log%—o)lﬂ)+O(7)+O(P01}’( a>\0»5))
V2n V2n m vn ml/4
- i ol ro("EE).
where A = /(y — u(0)) T (H*)~1(y — u(0)). From the result of Rademacher complexity (Theorem F.3)

and the union bound over a finite set {1 : B;~ }, with probability at least 1 — 6/6, the following inequality holds
forall j € {1,2,...,5"}.

sup  {Lp(f) — ()}<2a7€s(}'w(0) )+o(5 M) (127)

feme) 2n

By using the union bound jointly to consider equation 222, equation 126, and equation 227, we obtain the fact
that with probability at least 1 — 55/6, the followings are satisfied at the same time.

Ls(fw(k),a) = O(%)

fwa € fﬁvéol
ay _ [y =u(0)T(H") ' (y —u(0)) 1 poly(n, 55 5)
Rs(Fp s )_\/ - +o(\/ﬁ)+o<mlf46
!
swp  {Lo(f) = Ls(f) < 2aRs(FR >+0<ﬁ g2(n)> (128
fe]__WO
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If the assumption that o and S follow O(1) holds with probability at least 1 — ¢ /6, by using the union bound, it
follows that with probability at least 1 — 4,
Lo (fw(k),a)
1 2
= E(:c,mwg‘y - fW<k>,a(w)‘

n

“o( 1) +0(aRs(FREN") + O<B log(*°5)>

n 2n

Do() +o(Rs(FRE™) + O( W)

@O< NCEZOME SRR} P D) 10g(£6>>, (129)

2n ml/4 2n

where (a) follow from equation 228, (b) follows from the assumption that o and 3 follow O(1) for n, and (c)
follow from equation 228.

Therefore, as we assume that . = Q(poly(n, A\; ', 7)), we get equation 217 from equation 229.

Now we will prove the assumption that o and 3 follow O(1). From Lemma 11, with probability at least 1 — /6,
| fw (k),a ()] in equation 229 follows O(%) = O(1) for every k£ > 0 and = ~ D. On the other hand, y follows
O(1) for n. This is because y is independent of n, as y is i.i.d. sample of the model D(x, y). These imply that

Yy — fw(k)’a(m)’ in equation 229 follows O(1) for every k > 0 and (x, y) ~ D. Therefore, « and 3 follow
O(1). O

B.7 PROOF OF COROLLARIES IN SECTION 2.2

In this section, we prove Corollaries 2.2, 2.3, and 2.4, which are given sequentially as follows.

Proof of Corollary 2.2. Theorem 2.3 suggests that Theorem 2.1 does not hold, if K = O(n®) holds for some

constant < 0 and Ao = O(n) > 0 holds. It is because condition m = Q(%) = Q(n®*72*) in
0

Theorem 2.1 implies condition m = Q(n*~27) in Theorem 2.3 if ks = O(n®) holds for some constant v < 0

and Ao = O(n) > 0 holds. O

Proof of Corollary 2.3. In order for the error term /4§ in equation 6 in Corollary 2.1 to converges to zero as
n increases, the condition k = 0(d) = o(1) for n should be satisfied. That is, x should follow o(1) for n in
order for Corollary 2.1 to guarantee that the training error converges to zero. However, Corollary 2.1 does not
hold under this condition of k if Ao = O(n) > 0 holds. This is because Corollary 2.2 implies that Corollary 2.1
does not hold if K = o(1) for n holds and Ao = O(n) > 0 holds, as Corollary 2.1 is derived from Theorem 2.1.
Therefore, if Ao = O(n) > 0 holds, there exists no instance of « satisfying both zero convergence of training
error and correctness. O

Proof of Corollary 2.4. In order for the error term VALY equation 7 in Corollary 2.2 to converge to zero as n

Aod
increases, the condition k = of /?oﬁf) = o(%) should hold. However, Corollary 2.2 implies that Corollary 2.2

does not hold if k = o(1) for n holds and Ao = O(n) > 0 holds, as Corollary 2.2 is derived from Theorem 2.1.
As the condition kK = 0o(Ao/+/n) implies k = o(1) for n if A\g = O(y/n), Corollary 2.2 fails to guarantee both
of zero generalization error and correctness if Ao = O(y/n) holds. O

B.8 EXPERIMENT DETAILS: FIGURE |

All experiments are executed under the Tensorflow environment with NVIDIA Titan RTX GPU. Note that Ao
denotes the minimum eigenvalue of H*, where X = (x1,...,&n) € R%*™ is set of n input training samples.
To plot Figure 1, we randomly select the same number of training samples for each class from 10 categories. We
repeat this task 500 times; we showed the average value of A\ as the blue line, and shaded around this line by
using the minimum/maximum values as borders.
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C ADDITIONAL NOTATIONS AND SETUP FOR PROOF OF THEOREM 3.1

The key idea for proof of Theorem 3.1 is similar to the proof of Theorem 2.5, but we provide the full derivations
for completeness of the paper.

C.1 ADDITIONAL NOTATIONS AND SETUP

For notational simplicity, we let d = d, and | = d,.

Additional notations. We are given sets = [z1, ..., ] € R¥*™ and y = [y1, ..., yn] € R*™ of n input
and label training samples, {z;}7_; and {y;}7_1, respectively. For i € {l}, we denote by g; € R™ each row
vector of training label matrix y € R'*™ such that y = [y1, ..., yn] = [g1, ..., 1] " € R"*™. The spectral norm
is denoted by ||-||,,. Thus, (¢, j)-th entry of H™ is given by

[H*]i]‘ = EwwN(on)[l';rmj ]l{wai Z 07 le'j Z OH

Setup for subnetwork. As we define in Section 3, we consider the neural network F(W) :=
[fw (1), ..., fw(zn)] € R™™, which has training parameter W = [w1, ..., wn] € RY™ and as in-

put training set x € Rdxnj and denote by m an integer satisfying m = ml. Define submatix W; =
[wm.(i,1)+1, ,’LUmz} S Rde of W = [Wl—r, ceny VVZT]T fori € {l}

For i € {l}, we define function fw, (z) : R? — R as follows.

1 T
fwi () == —= ai[r]o(w, x) (130)
\/E re{m~(i—21:)+1:m~i}

Note that the weight matrix in the first layer in the neural network fw, (x) includes only submatix W; of W and
the weight matrix in the second layer in the neural network fw, (x) includes only vector a; of @ = [a1, ..., a(].
For this reason, we call fw, (x) the (ith) subnetwork of original/two-layer NN fw () : R? — R’ given in
equation 3, as fw () = [fw, (), ..., fw, (z)] " holds by the definitions of fy(x) and fw, (x) in equation 3
and equation 130. Thus, it follows that

FW) = [(fw (1), ooy fvy (@0)) 5 ey (Fv (1), s fi () 1] T € R (131)
For i € {l}, we define vector u; € R™ of the ith network outputs for n training samples as
wi := (fw, (1), .., fwv, (z0)) T (132)

GD optimization in whole network. We recall weight matrix W (k) at the kth step of gradient descent as

OL(W
W(k+1):=W(k)—n 8§/V )|W:W<k). (133)
Furthermore, we define Z (k) := #V% € R™¥X™ Thus, Z(k) is derived as
1 H1,1(k)a1x1 ]I1,n(k)a1xn
Z(k) = — e R™Ix" (134)
Vvm Imai(k)amz1 ... Imn(k)amzn
where I, 4 (k) := 1{x, wy(k) > 0}.
Then, equation 138 can be expressed as
vec(W(k + 1)) = vec(W (k)) — nZ(k)(u(k) —y). (135)
GD optimization in subnetwork. By using equation 132, we define the following loss
Li(W;) == (ui — gi) " (wi — gi)/2- (136)
Define weight matrix W (k) at the kth step of GD to minimize equation 136 as
oOL;(W;

Define w’ (k) as the jth column vector of W (k) such that [w} (k), ..., W, (k)] = Wi (k). We define u; (k) €
R™ as the vector u; € R™ obtained at the k-th step of GD in equation 137. That is,

ui(k) = (fw, () (@1), ooy fvi oy (zn)) T (138)
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Furthermore, we define Z; := avc(zgtévi) € R™*" and Z;(k) = #‘,‘% € R™¥*" Thus, Z;(k) is
derived as
1 Ly (k)ail]zy .. T, (k)ai[l]zn .
Zik)=— | = . L € R™xn, (139)
VL (R)asimlz .. T (k)as [l

where I, (k) := 1{x, w} (k) > 0}. Then, equation 137 can be expressed as

vec(Wi(k + 1)) = vec(W;(k)) — nZi(k)(ui(k) — gi)- (140)
GD optimization in whole network. As we show in Section ??, we define weight matrix W (k) at the
kth step of GD to minimize L(W) := 3!, L;(W;) = 1 ||y — F(W)||? given in equation 15 as

=1
L
W(k+1):=W(k) _7788(‘}3/)|W:W(k)7 (141)

where L;(W;) is given in equation 136.

C.2 INITIALIZATION

We initialize parameter W (0) = [W1(0)", ..., W;(0)T]T € R¥*™ in equation 137 such that each element
of W(0) is i.i.d. sample following A (0, x?). We initialize parameter @ = [a1, ..., a7] in equation 130 as
a;i[r] ~ unif({—1,1}) fori € {{} andr € {m -i —m + 1 : m - i}, otherwise a;[r] = 0.

D EQUIVALENCE BETWEEN ORIGINAL NETWORK AND SUBNETWORKS

We prove in Theorem D.1 that the original/trained NN fy (x) () is equivalent to the set of [ trained subnetworks
Ufwi o) (@)oo, fv, (i) ()] " for any kth step of GD.

Theorem D.1. If W (0) = [W1(0)", ..., W;(0) "], then W (k) = [Wi(k), ..., Wy(k)] for all k > 0. That
is, fw (o) (2) = [Fvs 1) (@), ooy fiw 0y ()]

Proof of Theorem D.1. 1t suffices to show that W (k) = [W1(k), ..., Wi (k)] for all k. It follows that
OL(W) OL(W) OL(W)

ow =1 oWy T oWy ]
I l
(a) OL;(W5) OL;(W;)
2 [; e ; W, ]
(2 [8L1(W1) 8Ld(Wd)}
owy U7 oWy
where (a) follows from the loss definition (136) and (15), and (b) follows from the fact that if 4 # j,
OL;(W;) 0
ow; 7
given that a;[r] = 0 fori € {d} andr ¢ {m -4 —m +1:m -i}. Thus, forall k,
OL(W) _ OL1(Wh) OLq(Wy)
W lw-w ) = [W|W1:W1(k)y - W\wd:vvdw)]
so that W (k) = [W1(k), ..., Wi(k)]. O

E ASSUMPTION

All assumptions used in this paper were presented as follows. The assumptions used were specified in each
theory as not all the assumptions were used in each theory.

Assumption 1. There exist R and @ such that with probability at least 1 — 9, the following equation 142 is
satisfied for each i € {1 : 1},

Y Y e O ml <R <¢, (142)

pe{lin} reM;

where m = m/land M; ={m-i—m+1:m-i}.
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Assumption 2. There exists ' such that with probability at least 1 — 6, the following equation 143 is satisfied
foreachi € {1:1},

Yo > Hw(0) e <R} <, (143)
pe{lin} reM;
o R O O ! KN
where m =m/l, My ={m-i—m+1:m-i}, and R’ = O(ﬁko).
Assumption 3. With probability at least 1 — 6, the following equation 144 is satisfied for each i € {1 : I},
Do D w0 T < A (144)

pe{lin} reM;
where m = m/l, M; = {m-i—m+1:m-i}, and K is a constant invariant of n or m (i.e., k = O(1)).
Assumption 4.
4
n
"=t )
T i (38 )
Assumption 5.
/ min(Ag, A3)
v = O( n* )

Assumption 6. Let the input data {x;}}_, and label data {y;};_1 of n training samples independently follow
model distribution D(x,y). Then, for input sample x obtained from D(x,y) and for every k > 0, it follows
that with probability at least 1 — § over the random initialization of (W (0), a), the following equation 145 is
satisfied for each i € {1 : 1},

| fw e (2)[i]] = O(1). (145)

F PROOF OF THEOREMS 2.4 AND 2.5 WHEN THE NETWORK HAS A SCALAR
OUTPUT AS [ =1

We simplify H;(0) as H(0).

F.1 MODIFICATION OF THEOREM 4.1 IN DU ET AL. (2018)

In order to prove Theorem 2.5 stated in Section 2.3, we first prove Theorem F.1 in this section, since Theorem
2.5 is proved by using the result of Theorem F.1. Theorem F.1 is the result of extending the condition for
to kK = ©(1) from x = 1, which is given in Theorem 4.1 in Du et al. (2018). Therefore, most of the proof
processes for Theorem F.1 (and its technical lemmas) are already proved in Du et al. (2018); we provide them in
this section for completeness.

To prove Theorem F.1, we first introduce some technical lemmas.

The following lemma provides an upper bound of the magnitude of the initial NN output.

Lemma 14. Suppose that set {x;}7_1 of n training input samples is bounded as maxc () ||z;|| < 1. Then, it
follows that with probability at least 1 — & over the random initialization of (W (0), a),

TLK/2

lu@]* = 0(*5-). (146)

Proof of Lemma 14. 1t follows that

Eallu(0)|*] = Ea[ || (fw (@) @1), s fw (o) ()]

Ea [Z |fw o) () }

2
=E, Z’ aro( wjx]) :|
j=1 re{l:m}
— 3 ‘ o(w) z; ‘ : (147)
J 1re{l:m}
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Furthermore, it follows that with probability at least 1 — J,

LSS Jotw e

j=1lre{l:m} j=1re{l:m}

2

< nk?, (148)

where (a) follows from the assumption equation 144.

By combining equation 147 and equation 148, we obtain the fact that with probability at least 1 — 4,
Ea[[u(0)* ] = O(ni?).

Therefore, by using Markov’s inequality, [|u(0)||> = O(nk?/3) is satisfied with probability at least 1 — €(#).
The proof is completed by rewriting £2(4) as d. O

Then, by using Lemma 14, we can also obtain an upper bound of gap between the initial NN output and label as
Lemma 15.

Lemma 15. Suppose that set {x;}7_1 of n training input samples is bounded as max;c(ny ||z;]| < 1. If
llyll = O(\/n) is satisfied, it follows that with probability at least 1 — § over the random initialization of
0),a),

max(k?, 1)n)

ly — (O = 0(*=5

Proof of Lemma 15. Tt follows from Lemma 14 that with probability at least 1 — &,

2 2
2max(|lyl?, u(0)*) = O max (1, ") n) = oMLY (149)
Then, the proof is completed by applying the following inequality to equation 149.
ly —u(0)I* < lyll* + l[u(0)|* < 2max(|ly]*, [lw(0)]*)
O

The following lemma (i.e., Lemma 16) gives an upper bound of the gap between each trained weight vector and
its initialization, when the training loss is reduced by the GD optimization. This lemma is the result of extending
the condition for  to arbitrary x > 0 from x = 1, which is given in Corollary 4.1 in Du et al. (2018).

Lemma 16 (Variant of Corollary 4.1 in Du et al. (2018)). We are given arbitrary k > 0. Suppose that set
{x;}j=1 of n training input samples is bounded as max ;e () ||z;|| < 1. If the following condition holds for
K e{0,1,... . k—1},

ly = wt)|” < (1= 2y — u(O)]?, (150)
then for every r € {m},
Avnlly —wO) _.
llwr (k) —wr(0)]] < B (= R), 1s1)

where w; (k) is the column of W (k) =: [w1(k), ..., wm (k)] at the k-th step of GD.

Proof of Lemma 16. Since

aggt)v:/) - % q;(uq — Yq)Urq 1(wTqu > 0),
we get
OL(W (k' n 1
0] -
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Thus, we have

on(k) — wr ) <7 3

K'=0

OL(W (K')) H
ow, (k')

—UZ\ﬁHy u(®)

k=0

fz Oy ()

k’—O

_fz =0y — w(o)]

< 4/nlly —u(0)
— \/>A0 )

where (a) follows from equation 150. O

The following lemma (i.e. Lemma 17) is a direct extension of Lemma 3.2 in Du et al. (2018) with respect to x;
we further specify x in Lemma 17 as Du et al. (2018) assume that x = 1. This result provides that the induced
Gram matrix H is lower bounded by Ao and remains near from the Gram matrix H (0).

Lemma 17 (Variant of Lemma 3.2 in Du et al. (2018)). Define matrix H (k) € R™*™ such that p, q-th entry of
H (k) is given by
m

Hyo(k) = %x; 20 S (L {w, (k) T2y > 0,w, (k) Tzq > 0}, (152)

r=1

where w;(k) is the jth column vector of W (k) such that [wi(k), ..., wm (k)] = W (k). Suppose that the
assumptions 1 and 3 hold. Then, with probability at least 1 — 0, the following holds. For any set of weight
vectors wi, ..., wm € R that satisfies | wy(0) — w,|| < R for any r € {m}, a positive constant R, then the
matrix H € R"*" whose p, q-th entry is defined by

1 m
Hpq = Ex;xq > 1wz, > 0,w, 74 > 0}] (153)

r=1
satisfies | H — H(0)]], < 2n*¢ and Amin(H) > Amin (H (0))—2n2p, where H (0) is defined in equation 152
and )\mm(H) is the smallest eigenvalue of H.
Proof of Lemma 17. The following event is defined as

Eqr = {Fw : |w — w, (0)|| < R, 1{z, w-(0) > 0} # 1{x, w > 0}}. (154)
This event happens if and only if |w,(0) "z,| < R.
On the other hand, for any (p, q) € {n}?, it follows that

[Hpq(0) — Hpy| = %\x;xq > (1{w,(0) "z > 0,wr(0) "y > 0} — L{w, zp > 0,w, x4 > 0})|
r=1
1 m
< — 1 r T 1
_m; {Epr UELY} (155)

By summing equation 155 over (p, q),

Z [Hpq(0) — Hpq| < %ZZ H{&Epr U &qr} < — ZZ W&} = 2n Zzlﬂwr xp| <R}

pg r=1 p r=1 p r=1
(156)
By applying the assumption equation 142, with probability at least 1 — J, we get
2n u
= 1{|w,(0) "z, < R} < 2n°¢p. 157
D> Llwe(0) | < R} <20 (157)

p r=1
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Then, it follows from applying equation 157 to equation 156 that

|H — H(0)[|, < |Hpg(0) — Hpg| < 2n°p. (158)

Finally, we can obtain a lower bound of the smallest eigenvalue of H (Amin(H)) by plugging in equation 158
as follows

Amin(H) 2 Amin(H (0)) — | H — H(0)l, > Amin (H(0)) — 2n%. (159)

O

The following lemma (i.e. Lemma 18) is a direct extension of Lemma 4.1 in Du et al. (2018) with respect to x;
we further specify « in Lemma 18 as Du et al. (2018) assume £ = 1. We include the proof of Lemma 18 for
completeness.

Lemma 18 (Variant of Lemma 4.1 in Du et al. (2018)). Let Sq := {r € {m} : 1{&} = 0} and (S,)* :=
{m} \ Sq, where Eq; is defined in equation 154. Then, from the assumption equation 142, with probability at
least 1 — & over the random initialization of W (0), we have 37 |(Se)*| < nmep.

Proof of Lemma 18. From the assumption equation 142,

SIS) =D 1{&} < nme. (160)

qg r=1

O

By using Lemmas 17 and 18, we prove the following theorem (i.e. Theorem F.1). Note that Theorem F.1 is a
direct extension of Theorem 4.1 in Du et al. (2018) with respect to  (from k = 1 to k = ©(1)).

Theorem F.1. (Modification of Theorem 4.1 in Du et al. (2018)) Suppose that the assumptions 1 and 3 hold
with ¢ = O(%), k= 0O(1) forn, ||ly|| = O(v/n), m = Q()\ZRZ(S) set {x;}7_1 of n training input samples
is bounded as max;e (ny ||z;|| < 1,7 = O(2%), and Ao = O(n") > 0 with a constant v < 1. The DNN
parameter W (k) is optimized via the gradient descent with the step size n = 0(2—2) Then, with probability at
least 1 — 0 over the random initialization of (W (0), a), it follows that for k € {0,1,2, ...},

o

5" lly = u(0)]. (161)

ly = w(k)[I* < (1~

Proof of Theorem F.1. This proof is based on that of Theorem 4.1 in Du et al. (2018). To do this, we use the
induction hypothesis. We assume that & = 0. Then, equation 162 holds for &' € {0, 1, ..., k} = {0}.

2 Ao\ k'
ly = w®)[* < (1= 2" |y - w0 (162)
Next, we assume that k is an integer satisfying k& > 0. We assume that for k' € {0, 1, ..., k}, it holds
2 Aok
ly —w(k)|* < (@ = L ly — u(O). (163)

The gradient descent of training loss L(W') with respect to the parameter w, for r € {m} can be derived as

OL(W \ﬁ Z — yg)arzy L{w, x4 > 0}. (164)

Owr
We define the event
Egr 1= (Fw ¢ 1w — w, ()] € B, 1{a] w,(0) > 0} # 1{a] w > 0}}.
And we define S, := {r € {m} : 1{&} = 0} and (S;)* := {m} \ S,. Then,

uq(k+1) —uq(k) = % ar(o(w.(k + 1)qu) B U(wr(lc)qu))
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where
7= TZS: (o (e = w25 ) — o, 7))
B 5 (ol ) )

Then, it follows that for some positive constant C', with probability at least 1 — () over the random initialization
of (W(0),a),
OL(W (k) "
g < -1
‘ 2 | —= \/E Z | a W, ( ]C)

TG(SQ)J-
nl(Sa)*| IL(W (k)
= m félﬁi‘}H o, (k) H
@ ny/nl(S0) " lly = u(ml (165)

m

g

where (a) follows from equation 164.

To analyze I{, by Lemma 16 and the assumption equation 163, we obtain that ||w,(k 4+ 1) — w,(0)]] < R’ and
lwr (k) — wr(0)|| < R’ forall r € Sy. Note that R’ < R, which is equivalent to

o A/nlly —u(0)] _ofnlly —u)]?
R = i <R = m=9Q R .

Note that from Lemma 15 and the assumption x = O(1), [ly — w(0)||> = O(k?n/8) with probability at least
1 — ¢ over the random initialization of (W (0), @). Thus, it follows that

_ofrlly=u©)]*\ _ [ n’s
m_Q(7A3R2 =Q NER5 ) (166)

Hw,(k+1) 2, >0} = 1{w, (k) "z, > 0}.

Since R’ < R, forr € Sy,

Thus,
= > gy () = (1) 3 L (1) g > 0,0,k +1) T, > 0)
p=1 reSq
- —nz up(K) = yp (k) (Hop (k) — Hop ().
where

Hiy (k) = %xjxj SO (8w (6) T > 0,w, (k) T2y > 0}] (167)

HE(k) = %xjxj S (1w (k) T > 0,w, (k) Tw; > 0},
re(Sq)L

By using Lemma 18, it follows that with probability at least 1 — § over the random initialization of W (0),

(n,n) n 1
ny. " . |(S
PO ST A e ST (168)
? (g,p)=(1,1) m

By using equation 164, we get

= aL
Juk + 1) — u(k)} < | <ty —ww.aey
Now, using Lemma 17, the fact that " < R, and the assumption that ¢ = O(—g) < 2702, we get
Amin (H (k) > Ao — 2n°¢ > % (170)
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where Amin (H (k)) is the smallest eigenvalue of H (k). Then, by using union bound, the following inequalities
hold with probability at least 1 — () over the random initialization of (W (0), a).

ly —w(k+ D)5 = lly —uk)l3 =20y —u®) " (wlk+1) —u(k) + fulk +1) - uk®)];

= |ly — w(k)ll — 20(y — w(k)) " H(k)(y — u(k))
+2n(y — (k) H* (k)(y — u(k)) —2(y — u(k)) "Iz + [[u(k + 1) —u(k)|

S (1 —nXo + 200’0 + 2nnv/nep +n°n?) |y — u (k)|
b)
21—t /\on+0(f)+77n)lly*U(k)H§

5

( ) A
U—n%+-kw+%XJﬁ)+ 2on) [ly — u(k)]3
77)\0
< (=) ly —u®)ll3 (171)
where I, := (I%,...,IS)T, (a) follows from equation 170, equation 165 (Applying Lemma 18,

L
2 nv/nl(Sq) Til\y—u(k)\l <nny/ne ||y — u(k)]|), equation 168, and equation 169, (b) follows from the as-
sumption that ¢ = 0(2—‘2’) < 1322,
set less than Ao /(5n%)). We can rescale § to a constant such that the following condition equation 172 holds
with probability at least 1 — § over the random initialization of (W (0), a).

and (c) follows from the definition of step size n = O(%) (i.e., 7 can be

® A
ly —u(k+ D3 < (1 - =32

5 ) ly —u (k)3 (172)

Therefore, by using the induction hypothesis with equation 172, with probability at least 1 — J, it follows that
fork € {0,1,2,...},

A
ly = u(®)* < (1= 750" |1y — w(0)]”. (173)

O

F.2 PROOF OF THEOREM 2.4 WHEN THE NETWORK HAS A SCALAR OUTPUT AS[ =1

In this section, we prove Theorem 2.4. We first show some technical lemmas.

The following lemma (i.e., Lemma 19) gives an upper bound of the gap between each trained weight vector and
its initialization. This is the result of fixing x in Lemma C.1 in Arora et al. (2019a) as k = O(1).

Lemma 19 (Specific case of Lemma C.1 in Arora et al. (2019a) and Corollary of Lemma 16). Under same

setting as Theorem F.1, i.e., the assumptions I and 3 hold with o = O(%), k= 0(1) forn, O(y/n),
m = Q(%), set {x;}i_1 of m training input samples is bounded as maxc (ny ||lz;|| < 1, n = 0(2—3),

and Ao = O(n") > 0 with a constant v < 1, it follows that with probability at least 1 — § over the random
initialization of (W (0), a),

R) (174)

4y [ly — u(O)] _ Kn N
o) = wr ()l £ S _JKWMWQQ_

Proof of Lemma 19. The condition (150) is satisfied if the conditions in Theorem F.1 hold. Then, the proof is

completed by combing Lemma 16 and the fact that ||y — w(0)|| = O( 'i\/*/;) holds with probability at least 1 — §

(which is obtained from Lemma 15 and the assumption x = ©(1)). O

The following lemma (i.e., Lemma 20) is the result of fixing  in Lemma C.2 in Arora et al. (2019a) as k = ©(1).
Therefore, we omit the proof of Lemma 20 as Lemma 20 is a specific case of Lemma C.2 in Arora et al. (2019a).

Lemma 20 (Modification of Lemma C.2 in Arora et al. (2019a)). Let the assumption 2 hold. Under same

setting as Theorem F.1, i.e., the assumptions | and 3 hold with ¢ = O(%) k= O(1) forn, = O0(y/n),
m = Q(%), set {x;}i_1 of m training input samples is bounded as maxc (ny ||z;|| < 1, n = 0(2—8),

and Mo = O(n") > 0 with a constant v < 1, it follows that with probability at least 1 — § over the random
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initialization, for all k > 0 we have

2
|E®) - HO) = 0(2 4 n2"), (175)

1Z(k) — Z(0)]| = O<\/’;f + W).

/
Proof of Lemma 20. Define R’ = O( r}\ 7

over the random initialization of (W (0), a), we have ||w,(k) — w,(0)|]| < R’ forallr € {1: m} and k > 0.
On the other hand, the following event is defined as

). From Lemma 19, we obtain that with probability at least 1 — &

Avq = {Jw-(0) x| <R}, g€ {n},re{m} (176)
Then, with probability at least 1 — ¢ over the random initialization of (W (0), a), it follows that for all r, p
KILp(k) # Lr,p(0)} = [{Arp}.
It is because the following event &£, happens if and only if |w,(0) " z4| < R’
Egr = {Fw i lw —w. (0)]| < R, I{wg w,(0) > 0} # 1{zg w > 0}}
Then, it follows that for any p, ¢ € {n},

Y T (B)Ing (k) = L (0)1g (0))| (177)

m
r=1

(M () # Lp (0)} + Iy (k) # 1.4 (0)})

1

[Hpq (k) — Hpq(0)]

3

IA
3=

r

<

3=
NE

(A} + HA} + 20w, (k) = w, (0)]| > R'}).

1

ﬂ
Il

This event happens if and only if |w,(0) "z, < R’. On the other hand, for any (p, q) € {n}?, it follows that
with probability at least 1 — (),

IH(0) = HO)l = 3 1Hyall) = HialO)
<3 Z (A} + g} + 20 (k) = w, 0)]) > R}
© 2% 2n ZZHAW} 178)
r=1 p
¢ 2”25 +on (179)

where (a) follows from Lemma 19 (with probability at least 1 — 6, ||w,(k) — w,(0)|| < R’ forall r € {m}
and all £ > 0) and (b) follows from the assumption equation 143.

Similarly, it follows that with probability at least 1 — (4),

HZ(k)—Z(O)IV:*ZZIHrq ra(0)]”
*ZZH{HW ) # Lrq(0)}

— LSS (6} + Ml () — w0 > RY)

q r=1

IN

(a)
< ”i + g, (180)

where (a) follows from the assumption equation 143.

Therefore, the proof is completed by rescaling €2(d) to 6. O
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Then, by using the above lemmas, we prove the following proposition. This result is a revision of Theorem 4.1

in Arora et al. (2019a) by removing a s-affected value (i.e., (1 — n)o)" ‘F'C“) in the original bound given as in
(33) in Arora et al. (2019a). Therefore, this proposition is our major contrlbutlon to prove Theorem 2.4.

Proposition F.1 (Modification/revision of Theorem 4.1 in Arora et al. (2019a)). Let the assumption 2 hold.

Under same setting as Theorem F.1, i.e., the assumptions 1 and 3 hold with ¢ = O(%) k = O(1) forn,

lyll = O(/n), m = Q(%), set {x;}7_1 of n training input samples is bounded as max;cny ||z;]| < 1,
0

n= O(%), and o = O(n") > 0 with a constant ~y < 1, it follows with probability at least 1 — § over the

random initialization of (W (0), @) that for all k € {0,1, ...},

u(k) —y = —(I — nH(0))"y + e(k), (181)
where
Nhok_1,20%2V8 2020 nlne
e(k)]| =0 k(1—— + + . 182
le(k)Il (( ) NG ﬁ) (182)
Proof of Proposition F.1. We define wuq4(k) = fww(zg) is the qth entry of wu(k) =
(fw) (1), s fw (k) (xn)) . Then,
ug(k+1) — Zar o(wr(k+ 1) xq) — o(wr (k) z4)]. (183)
Define R = O( m";’; \/3). From Lemma 19, we obtain that with probability at least 1 — § over the random

initialization of (W (0), @), we have ||w,(k) — w,(0)|| < R’ forallr € {1 : m} and k¥ > 0. On the other
hand, the following event is defined as

Avq = {Jwe(0) x| <R}, g€ {n},re{m} (184)
Then, with probability at least 1 — & over the random initialization of (W (0), a), it follows that for all r, p
KL p(k) # Lp(0)} = [{Arp}.
It is because the following event &£, happens if and only if |w,.(0) "z,| < R’
Egr = {Fw : lw —w, (0)]| < R, I{wg w,(0) > 0} # 1{zg w > 0}}

Let Sy :={r € {1: m} : 1{Aq} = 0} and S := {1 : m} \ S;. Then from the assumption equation 143,
with probability at least 1 — ¢ over the random initialization of W (0), we have

D 1(Sg)* | < nmep. (185)
From (183), we get
uq(k +1) — ug(k) :Tlm gg:q arlo(wr(k+1) " 24) — o(wr (k) "24)]
+ Tlm > arfo(w(k+1) " z4) — o(we (k) z4)] (186)

TGS%

We denote the second term as é4(k)

lég (k)] = | Y arlo(wi(k +1)"ag) = o(we (k) a,)]

TESL

T > lwe(k+1) — we (k)|
.

- 3~

TESL

OLi(W (k)) H

IA
3
]
|'M
g
&
=

IN

ly — u(k)l. (187)
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For the first term in (186),

\F Y arlo(we(k +1) " 2g) — o (we(k) " zy)]

TGSQ

\F Z ar1{w, (k) 24 > 0} (w, (k + 1) — w,(k)) "z,

r€Sq

\F Z ar1{w-(k xq > 0}(— Z up(k p)arzy L{w,(k ) Tp 2> 0})T$q

rESq

=-1 (up(k) — yp)x;LJ Z ]l{w,«(k)T:rp 2 O}H{WT(k)qu > 0} + & (k)

mo3 €S,
= 1> (w0) ~ 1) Hap () + 08, (188)
where
)=2 Z —yp)agag > Lw (k) 2y > 031{w, (k) Tzg > 0} (189)
p=1 TESqi
Then,
@l < 5 1y ), (190

Combining (186), (187), (188) and (190),
uq(k + 1) — uq(k) = _772 up(k) — yp)Hop (k) + éq(k) + € (k) (191)

which gives
u(k +1) —u(k) = —nH(k)(u(k) — y) + €(k), (192)

where €(k) = €(k) + €(k). Note that by using equation 185,

el < (B, = Z|eq )bl < 30 2Ly i) = 0 (i) ly - i)

(193)
We rewrite (192) as
u(k + 1) = u(k) = —nH(0) (u(k) —y) + (k). (194)
where ¢(k) = n(H(0) — H(k))(u(k) — y) + €(k). Then, we get
-
w(k) —y =—(1—nH(0))" 0) + Y (I —nH(0)'¢(k—1—1). (195)
=
From (193) and Lemmas 20, we bound ¢ (k) as
ISR < 0 I H(O) = (R, |y = w(k)]| + O (nnv/ng) lly — u(k)]|
= 0(Z0 4 o024 /)y — w(b)] (196)
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Then,

(1 nH®)'¢(k—1-1t)

PT

III nH )| [¢(k —1 1)

IA IA :
R‘ ~+ >
LIMI =

ZIII nHO)|" [¢(k —1 1)

R“w

(1 —=nXo)" I¢(k —1 )]

<3
<>’€z‘:1

a 2n26
< > (1= m20) 0T 4 2% /g ) lly — u(k — 1 - 1)
t=0 m
Oy 2n25 A
< _ t 2 77 0 .
< ;(1 nXo) O( p” +2n°p —&-nnfnp) u(0)||
(© 2 2n26 A N
< _ t <«n-o 2 _ M Vvn
< D0 (1=120) O T2 + 207 + /g’ ) ( oo
=0
5/2 52, 2
< _L)‘O)kflo(zn \[ 2n _’_nnap)’ (197)
4 m Nz Vo
where (a) follows from (196), (b) follows from Theorem F.1 that
A A
ly = u(k)| < (1= L2 |ly —w(©)] < (1 = Z2)* |ly — w(0)], (198)

2 4
and (c) follows from Lemma 15 and the assumption x = (1) (i.e., ||ly — u(0)|| = O(%)).

By applying (197) to (195), under same setting as Theorem F.1, it follows that for k£ > 0, with probability at
least 1 — 6,

u(k) —y = —(I —nH(0))"* (y — w(0)) + e(k), (199)
where
B _L)‘O o1 271,5/2\/5 2715/2(,0/ 77/27790/
IIe(/f)I—O(k(l ) ( —+ 75 + 75 )>. (200)
O

As a simple corollary of Proposition F.1, now we can prove Theorem 2.4 as follows.

Theorem F.2. [Theorem 2.4, modification/revision of Theorem 4.1 in Arora et al. (2019a)] Let the assumption 2
hold. Under same setting as Theorem F.1, i.e., the assumptions I and 3 hold with p = O(%) k= 0O(1) forn,

lyll = O(/n), m = Q(/\2R26) set {x;}7_1 of n training input samples is bounded as max;cny ||z;]| < 1,

n= 0(2—8), and Ao = O(n") > 0 with a constant y < 1, it follows with probability at least 1 — 6 for § € (0, 1)
over the random initialization of (W (0), @) that for all k > 0,

1 21 2% (T 2 {”4\/3 n'y’ 90/”3/2} ’
Zly — w2 ==S"(1 = nx (v,- — w(0 ) +0 T + . oD
Iy = =300 =) (o] (o~ w(0) or gt T
where v, ..., v, € R™ are orthonormal eigenvectors of H(0) and A1, ..., Ay, are the corresponding eigenvalues.
Proof of Theorem F.2. Our proof is based on that for Theorem 4.1 in Arora et al. (2019a).
From Proposition F.1, it follows that for all k£ € {0, 1, ...},
u(k) —y = (I —nH)'y + e(k), (202)
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where

(203)

_ C Aok 20°2VE 202" nPnyf
||e(k)|—0<k(1 4) ( — 7 + \/g)>‘

Therefore, we get

(k) yl? € (@~ nHOY () - )| + etk

371 - ) @] (g — w(0))® + (k)]

j=1

© © ok [ nAo\k—1,2n°2VE 2020 nPng! r
= E 1—n)\; —u(0 10| |k -2 + +
(@) n ok - 2 r 1 2715/2\[ 2715/2()0/ n27]<p' :|2
= E 1—nX)" (v +0 +
j:1( nAs) ( j (y ( 77)\0( m N/ N/ )
n (%23 9/2 ’ /272
(©) 2k, T pn
= 1—n)\; v u( + + ,
D= o] (v - ( O AR v o )

where (a) follows from the triangle inequality and equation 202, (b) follows from (I — nH <0))’“ has the
eigen-decomposition (I — nH® )k = > (1= n\;)*v;v; and y — u(0) can be decomposed as y —
u(0) =37, (v, (y —u(0)))v;, (c) follows from equation 203, (d) follows from 1}33()){{]@(1 —nXo/4)* 1} =

O(1/(nXo)), and (e) follows from i = O(X\o/n?). O

F.3 PROOF OF THEOREM 2.5 WHEN THE NETWORK HAS A SCALAR OUTPUT AS [ =1

F.3.1 BACKGROUND ON RADEMACHER COMPLEXITY

Before we prove Theorem 2.5 stated in Section 2.3, we introduce Rademacher Complexity and the theorem
derived from: it.

Define a loss function £ : R x R — R. For a function f : R? — R, we define the population loss over true
model distribution D and the empirical loss over n samples S = {(x;,y;)}j=1 from D, respectively, as

LD(f) = IE(ac,y)N’D [é(f(x)v y)]

n

Ls(f) =" _[e(f(x5),95)]. (204)

Jj=1

Then, Rademacher complexity of a function class F mapping R? to R is expressed as
1 n
Rs(F) = —Ec[sup> e, f(w;)] (205)
n feria

where € = (€1, ..., €,) " € R™ includes i.i.d. random variables e; ~ unif({1, —1}) for j € {n}. This provides
an upper bound of generalization error as the following theorem given from Mobhri et al. (2018).

Theorem F.3. Suppose the a-Lipschitz loss function £(-,-) is bounded in [0, 8] in the first argument. Then, with
probability at least 1 — 0 over sample S of size n,

?gg{ﬁb(f) —Ls(f)} <20Rs(F) +33

log (2/9)
—== (206)

F.3.2 PROOF OF THEOREM 2.5

In this section, we now prove Theorem 2.5 stated in Section 2.3. We first show some technical lemmas.

As aresult of Lemma 19, we can obtain the following upper bound of the magnitude of trained NN output, when
the neural network is over-parameterized.

We can obtain the following lemma 21 by modifying Lemma 5.3 in Arora et al. (2019a). Note that Lemma 5.3
in Arora et al. (2019a) provides an upper bound of distance between trained NN weights and its initial ones.
Lemma 21 is a result obtained by removing the terms affected by s from this upper bound of Lemma 5.3 in
Arora et al. (2019a). Therefore, this lemma is our major contribution to prove Theorem 2.5.
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Lemma 21 (Modification/revision of Lemma 5.3 in Arora et al. (2019a)). Let the assumption 2 hold. Consider

the same setting as Theorem F.1, i.e., the assumptions | and 3 hold with ¢ = O(%), k = O(1) forn,

lyll = O(v/n), m = Q(max ()\4"7253, ’;—2 log(%))), set {x;}7_1 of n training input samples is bounded as
of 0

maxe oy |2;]| < 1,7 =0(2%), and o = O(n") > 0 with a constant v < 1. Then, with probability at least
1 — 0 over the random initialization of (W (0), a), it follows that for all k > 0

e (Lemma 19) ||w,(k) — w,(0)|| = O ) (:=R),Vre{l:m}

(m/\o\/g

m)\g 'r])\g m

- W (k) - W) < iy —u@)TH®) " (y —u(0) + 0< wp t g (R

Proof of Lemma 21. The first part is proved by using Lemma 19. The rest is to prove the second part.
From Proposition F.1, we get
u(k) —y = —(I —nH"")" (y — u(0)) +e(k), (207)

where

(208)

ekl = O(m _ Poyes (20VE | 20y ”2”“0,)>
) |

m Vo Vo
We apply (207) to (135), which is

vee(W (k + 1)) = vee(W (k)) — nZ (k) (u(k) — y), (209)
and for k € {0, ..., K — 1} we obtain
vec(W (k)) — vec(W(0))

K—1
== 3" nZk)(uk) - )
k=0
K—1
= > nZ()((I = nH) (g — u(0) = e(k)
k=0
K—1 K—1 K—1
= > " nZ(0)I —nH)* (y —w(0)) + > n(Z(k) — Z(0))(I —nH)"(y — u(0)) — > nZ(k)e(k)
k=0 k=0 k=0
210)
Then we bound the first term of (210) as
K—1 2
> nZ0)I —nH) (y —w(©0)| = (y—w(0) THOT(y - u(0)),
k=0
where T := 37 S (1 — o) Foiw) = 300, %viv; (1, ..., vn € R™ are orthonormal
eigenvectors of H™* and A1, ..., A, are the corresponding eigenvalues). Then,
K—1
S nZ(O)(1 - nH®) (y — u(0)) ’ =/l — w(0)) THOT(y - u(0)) @11
k=0
By using
Op 5 L= 0=m) e S LT (@)
THYT = ;( Ai v < ; AU = (HO)™ (212)
we get
K—1
> 0Z(0)(I —nH) (y — u(0)|| < v/(y — u(0))T(H*) "1 (y — u(0)). (213)
k=0
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We bound the second term of (210) as

K-1
> n(Zk) - Z(0)(1 —nH™)* (y — u(0)) ‘
k=0
K-1
< > 0lzk) - 2O, || = 9B Iy~ wO)l,
k=0
K-1 X
0
< > 0l 2() = 2O, ||L-nH| Iy — ),
k=0
K-1
<nllZ(k) = Z©O)l, Y (1 =nX0)" ly —u(0)l,
k=0
(@) né -
O( +nso’> n(1=nXo)" [ly — u(0)l,
k=0
O} n?2d = n2y
0 < et (214)
where (a) follows from Lemma 20 and (b) follows from Zk o 77(1 —nXo)* = % < 710.
By using (208) and the fact that || Z (k)|| < v/n, we bound the third term of (210) as
K—-1 K—1
A0 k1 2n5/2f M2y n2pg
Z(k)e(k)|| =0 n- |k(1— +
R R B S R e )
K-—1 5/2 5/2 ’ 2 ’
NAO\k—_1 2n \[ 2n nne
= 1 - L
O O e )
o 1 2 3 5 2 3 ./ 5/2 ’
(:)O 72(”\[_"_”90_‘_” 7)90)7 (215)
NAG m Vo Vo
where (a) follows from the fact that ZkK:_Ol k(1 - %)kil <> om o k(1 — %)kﬂ = (nio)z.
Therefore, by applying (213), (214), and (215) to equation 210,
W (k) — W (0)]| < /(g — u(0))T (H©)~}(y —u(0))
2§ 2, 1 2 3 5 2 3,/ 5/2 /
+O[ =2+ B2 VS 2 L)
mAg A G m Vo Vo
O

We introduce the following lemma (i.e., Lemma 22) proved by Arora et al. (2019a). This lemma shows
Rademacher complexity can be upper bounded by a term depending on the distance between the trained weight
and its initial value.

Lemma 22 (Lemma 5.4 in Arora et al. (2019a)). Given R > 0, we assume that the input data {x; };‘:1 is given as
llz;|| < 1forj € {n}. Consider the following function class in equation 216 with W (0) =: [w1(0), ..., wym (0)]

Fo % =l a: W = [1, .., o], [ — wr(0)]] < R (9 € {m}),

)] < BY. @16)

Then it follows that with a probability at least 1 — § over the random initialization of (W (0), a), for every
B > 0, the empirical Rademacher complexity Rs(F W(g)’ ) based on the function class in equation 216 is

bounded as

Rs(Fp ) = Eee{im{ sup Zejf(m]

fe}‘;‘,/y(? a1
B 2log 2\1/4\  2R?\/m 2
< B (1 (RoEEYY L2V g 2,
< 7 +(—, + og 5
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Now, by using Lemmas 19 and 22, we prove Theorem 2.5, which is given as Theorem F.4.

Theorem F.4. [Theorem 2.5, modification/revision of Theorem 5.1 in Arora et al. (2019a)] Suppose that all
conditions except Ao > 0 in Theorem F.1 hold and we fix a failure probability 6 € (0, 1). Suppose further that
assumption 2, 4, 5, and 6 hold. Suppose also that Ao > 0 holds with probability at least 1 — §/3 for n i.i.d.
training samples {(xi, y;) }i—1 from true model distribution D. Then, with probability at least 1 — & over the
random initialization of (W (0), @) and the training samples, it follows that for any k > Q(ﬁ log %),

g o<\/ 2<y—u<o>)TIfl<0>1<y—u<O>>> +0< /logn;;,a), o)

Proof of Theorem F.4. We consider a loss function £(a,b) : R x R — R as £(a, b) = (a — b)*/2. We assume
that this loss function £(a, b) is c-Lipschitz in the first argument, this function is bounded in [0, 3], and « and 3
follow O(1). We will prove that this assumption holds at the end of the proof.

1
el p Yy — fw (x)

Using the loss function and equation 204, we can define the population loss over true model distribution D and
the empirical loss over n samples S, respectively, as

1

Lo(f) = E@y~oll(f(2)y)] = E@ o5 (f(2) = y)?

n

£() = YoM @) wi)) = D [ (F ()~ w)?) @18)

j=1 Jj=1
where f : R? — R denotes a trained neural network to be specified (i.e., fu (k)

We assume that Ao = O(n”) > 0 with a constant v < 1 holds with probability at least 1 — §/3. We also assume
6
yll = O(vn), n = O(3%), and m = Q35753).

With probability at least 1— 3 /6 over the random initialization of (W (0), a), the followings hold simultaneously:

the following conditions hold: k = ©(1) for n,

* Optimization succeeds: Suppose that kis any integer satisfying

€

o) 1

k log(1 — %AO) <log (

nXo

where € is arbitrary small constant invariant of n. As —nXo(2—nXo) ™" < log(1—"2

condition implies equation 219.

k> ((nho)/(2 = nXo)) ™" log(lly — u(0)]* /e) (220)

), the following

By using Theorem F.1 with equation 220, and the fact that ||y — w(0)|| = O(%) (which is obtained
from Lemma 15 and the assumption k = O(1)), if k = Q(ﬁ log %), it follows that
NA0\k ~ (T 1
LW (k) < (1-"2%0(%) < 2. @21)
2 é 2
Then,

n

Ls(fww)) = % Z | fw (i (2q) — yal?

q=1
1
= Luwy
“o (%) : (222)
where (a) follows from equation 221.
* From Lemma 21, we get ||w, (k) — w-(0)|| = R’ (vr € {1 : m}) where R’ = O(m), and

7

IW (k) = W (0)]| < B where B = \/(y —u(0) T (H®) 1y — u(0)) + O /255 + %52

2 2
mAg A5

+

3 n3o’ nb/2 ’ n
ﬁ(Q":n‘/g—i—Q\/g’ + e )).NotethathO(JAO).
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W(O),

* Let B; = j (j = 1,2,...). For all 4, the function class Fp, has Rademacher complexity, which

is upper bounded by
2log 20\ 1/4 2./
Rs(Fp 90 < B (1+( g 5) )+M+R’,/2log@. (223)
m K )

Let j* be the smallest integer such that B < Bj-. Then we have Bj= < B + 1 and j* < O(, /x5 ). Note that

Jw(0).a € }'ggi’a. And we get

RS (]_-W(O) )

B+1 2log %\ 1/4 ” ) 20
< 1 Jm) + Ry /210
_m(+( = ) )+O(R W)+ Ry [2log =

< 13‘2%10(1)+0(R’2\/m) +R’,/210g%0

2
=o(m) o) +olum) o)
o) rof ) o[ B L B ) (et
~0( ) +0( ) (| + 5 + g (oD 2 )
@ O(in) +O(in)’ (224)

where A = /(y — u(0)) T (H©)~1(y — u(0)) and (a) follows from the condition equation 225.

’sz ’I’L2 TLS ’I’L3 n2 n4 n3 n3 n4
_0 oY) =a e e ) | =0 e
m (max(xg’nxg’xg’AgD <max(>\g’>\8’)\3’)\3)> <min(A3,Ag)>
, RN TRy min(A3, A})
S"=O<mm(nwnz) =0 min (53, 55) ) =0 (F5)

%:O( A ) (225)

s 2 3
o = o(imm(“’ 20) ): (226)

which are our assumptions.

From the result of Rademacher complexity (Theorem F.3) and the union bound over a finite set {1 : B;~ }, with
probability at least 1 — §/6, the following inequality holds for all j € {1,2,...,5"}.

1 n_
sup  {Lo(f) — Ls(/)} < 20Rs(F )" )+0<5 gz(n)> @2
ferW0
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By using the union bound jointly to consider equation 222, equation 224, and equation 227, we obtain the fact
that with probability at least 1 — 55/6, the followings are satisfied at the same time.

Ls(fw),a) = O(l)

n
fw),a GJ:R/(O)
woa _ [ u0)THO) (y—u0) 01
mo = z +o(z)
1 n_
sup {Lo(f) ~ Ls(f)} < 20Rs(Fp )" >+0<6 gz(n)) 228
fEJ-'W(0>

If the assumption that o and 3 follow O(1) holds with probability at least 1 — ¢ /6, by using the union bound, it
follows that with probability at least 1 — 4,

Lo(fw(k),a)
1 2
= E(m,y)~D§‘y - fwm(m)‘

Wo(l )+O(aRs(FW(O)_a))+O(B 1og2(:;;5)>

o) vofrartye) o {2E)

@O<\/(y—u(0))T(H(o>)1(y—u(0)) +O(%)+ W>7 (229)

2n 2n

where (a) follow from equation 228, (b) follows from the assumption that o and 3 follow O(1) for n, and (c)
follows from equation 228.

Therefore, by using equation 145, we get equation 217 from equation 229.

Now we will prove the assumption that o and 3 follow O(1). From our assumption equation 145, with
probability at least 1 — 0, | fw (&) ()| in equation 229 follows O(1) for every k > 0 and & ~ D. On the other
hand, y follows O(1) for n. This is because y is independent of n, as y is i.i.d. sample of the model D(z, y).

These imply that |y — fu (&) ()| in equation 229 follows O(1) for every k > 0 and (z,y) ~ D. Therefore, o
and S follow O(1). O

G PROOF OF THEOREMS 2.4 AND 2.5 WHEN THE NETWORK HAS A VECTOR
OUTPUT AS [ >1

From Theorem D.1, the original/trained NN fyy () () is equivalent to the set of [ trained subnetworks.

By combining this fact and each result of Theorem F.2 and Theorem F.4, Theorems 2.4 and 2.5 when [ > 1 can
be directly obtained respectively.
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