Appendix for MLLM-ISU

A More VQA evaluation pairs cases in the MLLM-ISU dataset

In this subsection, we provide more VQA Paris cases. In every subtask, we report two different
cases, as shown in Fig.[TT] The VQA pairs contain six subtasks and are designed to evaluate the
comprehensive and in-depth understanding capability of the current MLLMs. Intrusion Behavior
Judgment and Person Intrusion Classification are the choice questions on binary classification. These
two subtasks are used to test the capability of basic understanding and are relatively easy. Intrusion
Summary Analysis, Intrusion Object Localization, and Intrusion Category Identification are used
to test the capability of deeper levels of understanding and are relatively difficult. Intrusion Scene
Descriptions is an open subtask and is designed to test the capability for open scene understanding.
Our subtask is diverse and rich. The design VQA pairs can meet the requirements of the MLLM-ISU
task and provide the foundation for the task.
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Figure 11: More VQA evaluation pairs cases in the MLLM-ISU dataset.

B Detailed prompt template of Intrusion-aware Visual Instruction
Pre-training

In this subsection, we introduce the detailed prompt template for our Intrusion-aware Visual Instruc-
tion Pre-training strategy, as shown in Fig.[T2] We show two different prompt template cases, intrusion
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(Upper) and non-intrusion (LLower) cases, respectively. We use the same system prompt: <Based on
the visual information in the image, please describe any vision-based intrusion and non-intrusion
behaviors in the scene.>. Then, we give the corresponding answers. In this way, we construct the
training dataset and perform Lora supervised fine-tuning to get the initial perception capabilities for
MLLMs.

<user> Based on the visual
information in the image, please
describe any vision-based intrusion
and non-intrusion behaviors in the
scene.

<assistant> There are 9 intrusion objects in the image, including
the following categories: 'bicycle, person, rider'. Besides, there
are also 10 non-intrusion objects, including 'bus, person'. The
object posing the greatest potential risk is a ‘person’, The main
reason is that the category 'person’ is closest to the driver of
the ego vehicle and may pose a potential risk for the driver.
Therefore, caution is advised, and the driver may need to take
some necessary action.

<user> Based on the visual
information in the image, please
describe any vision-based intrusion
and non-intrusion behaviors in the
scene.

<assistant> There is no vision intrusion object in the image. All
15 detected objects are non-intrusions, including the following
categories: car, motorcycle, person. Therefore, the driver can
safely drive.

Figure 12: Two different templates for Supervised Fine-Tuning in I-VIP (stage 1).

C More metrics and experimental results

In subsection 5.2, for the subtask: Intrusion Scene Descriptions (ISD), we mainly adopt the BLEU-
4 to evaluate the performance. In this subsection, to calculate and provide a richer baseline, we
also report some other metrics and performance for this subtask on some MLLMs, i.e., Rouge-1,
Rouge-2, Rouge-L, as shown in Tab. 8] Note that MLLM-ISU-CS and MLLM-ISU-BDD denote the
benchmark datasets that are built based on Cityscape and BDD-100K datasets for our MLLM-ISU
task, respectively.

Table 8: Some other metrics results for the ISD subtask.

M ‘ MLLM-ISU-CS ‘ MLLM-ISU-BDD
odel Source Release
| Rouge-1 Rouge-2 Rouge-L | Rouge-1 Rouge-2 Rouge-L

GPT-40[19] OpenAl 2024-08 15.75 1.80 7.50 14.78 1.62 7.03
LLaVal.5-13B-hf[22] UW-M&Micro  2023-10 19.95 3.33 12.29 20.64 3.39 12.32
MiniCPM-V2.6 [37] OpenBMB 2024-08 19.14 2.21 11.42 19.86 2.48 12.07
InternVL2.5-2B[5] OpenGVLab  2024-12 18.73 2.23 11.54 18.63 2.30 10.84
InternVL2.5-8B[5] OpenGVLab 2024-12 21.49 2.34 13.40 20.10 1.96 12.07
DeepSeek-VL2-tiny[35] DeepSeek 2024-12 22.66 4.31 16.49 23.02 4.43 16.08
DeepSeek-VL2-small[35] DeepSeek 2024-12 20.41 2.32 8.60 19.09 1.65 8.98
Qwen2.5-VL-3B-Instruct[4] Alibaba 2025-01 16.44 1.72 6.94 14.61 1.53 6.19
Qwen2.5-VL-7B-Instruct[4] Alibaba 2025-01 14.74 1.64 5.07 13.75 1.57 4.86
Gemma3-4B-it[29] Google 2025-03 14.56 1.92 5.31 13.82 1.74 5.07
Gemma3-12B-it[29] Google 2025-03 13.77 1.45 5.40 13.73 1.53 5.23
Kimi-VL-A3B-Instruct[31] Moonshot Al 2025-04 21.50 2.90 11.30 24.04 3.16 15.07
Kimi-VL-A3B-Thinking[31] = Moonshot AI ~ 2025-04 13.98 1.61 541 13.43 1.72 5.46
InternVL3-2B[S] OpenGVLab  2025-04 15.75 1.44 6.67 15.42 1.49 6.63
InternVL3-8B[5] OpenGVLab  2025-04 16.53 1.64 6.67 15.42 1.65 6.21
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D More training details

In this appendix, we present more details of the training for the proposed three-stage framework. For
the cutoff_len parameters, we use 2048. For the learning_rate, we adopt the default setting, i.e., Se-5.
All stages adopt the Lora as a supervised fine-tuning method.

Table 9: The detail setting for the training experiments.

Setting ‘ Value ‘ Setting Value
cutoff_len (stagel) 2048 | preprocessing_num_workers 16
cutoff_len (stage2) 2048 | per_device_train_batch_size 1
cutoff_len (stage3) 2048 | per_device_eval_batch_size 1
gradient_accumulation_steps 8 learning_rate 5e-5
num_train_epochs (3B/7B) 2/5 finetuning_type lora

E More metrics and results of three post-training stages

We further verify the effectiveness of the proposed three-Stage Post-Training Framework. Like
the previous experiment, we use the Qwen2.5-VL-7B-Instruct to conduct the experiment in five
different epochs, i.e., Epoch=15, 25, 35, 45, 50, as shown in Tab. [E} We can find that as the different
stages are added, the performance increases and reaches 78.19%, 78.39%, 77.97%, 78.25%, and
77.82%, respectively. Besides, in different subtasks, our framework can also give a performance
gain, which denotes that the three different Supervised Fine-tuning strategies are effective, i.e.,
Perception (Intrusion-aware Visual Instruction Pre-training)—Reasoning (Intrusion Chain of Thought
Tuning)— Understanding (Intrusion-centric VQA Tuning). We also give the training loss in different
epochs, as shown in Fig.[I3] We can find that in different epochs, models can learn the different
capabilities of the three stages. As the training step increases, the loss of the model changes less,
especially after 1500 steps. Therefore, we believe it is important to choose appropriate training steps.

Table 10: More performance results of the proposed three post-training stages on different MLLMs.
[-VIP, I-COT, and I-VQA denote the proposed three different strategies in the training stages.

Model+Method | IBI | PIC | ISA | IOL | ICI | ISD | Average
7B Open-source MLLMs, Epoch=15

Qwen2.5-VL-7B-Instruct [4] 16.00 | 61.40 | 24.00 | 64.80 | 81.40 | 4.68 42.05
Qwen2.5-VL-7B-Instruct+I-VIP 81.00 | 65.60 | 24.40 | 81.80 | 92.00 | 29.93 62.46
Qwen2.5-VL-7B-Instruct+I-VIP+I-COT 95.40 | 68.40 | 22.80 | 81.60 | 96.60 | 34.97 66.63
Qwen2.5-VL-7B-Instruct+I-VIP+I-COT+I-VQA | 97.00 | 79.40 | 48.80 | 93.20 | 99.40 | 51.33 78.19
7B Open-source MLLMs, Epoch=25

Qwen2.5-VL-7B-Instruct [4] 16.00 | 61.40 | 24.00 | 64.80 | 81.40 | 4.68 42.05
Qwen2.5-VL-7B-Instruct+I-VIP 80.80 | 65.80 | 27.40 | 83.00 | 94.00 | 29.84 63.47
Qwen2.5-VL-7B-Instruct+I-VIP+I-COT 92.60 | 72.40 | 29.40 | 84.00 | 95.40 | 39.35 68.86

Qwen2.5-VL-7B-Instruct+I-VIP+I-COT+I-VQA | 95.20 | 77.80 | 54.00 | 93.40 | 99.20 | 50.73 78.39
7B Open-source MLLMs, Epoch=35

Qwen2.5-VL-7B-Instruct [4] 16.00 | 61.40 | 24.00 | 64.80 | 81.40 | 4.68 42.05
Qwen2.5-VL-7B-Instruct+I-VIP 87.60 | 67.40 | 29.80 | 82.40 | 94.20 | 29.79 | 65.20
Qwen2.5-VL-7B-Instruct+I-VIP+I-COT 94.20 | 69.20 | 31.80 | 83.80 | 96.40 | 38.58 | 69.00
Qwen2.5-VL-7B-Instruct+I-VIP+I-COT+I-VQA | 96.40 | 77.60 | 52.00 | 92.00 | 99.20 | 50.61 77.97
7B Open-source MLLMs, Epoch=45

Qwen2.5-VL-7B-Instruct [4] 16.00 | 61.40 | 24.00 | 64.80 | 81.40 | 4.68 42.05
Qwen2.5-VL-7B-Instruct+I-VIP 84.40 | 66.60 | 27.60 | 85.80 | 95.00 | 29.90 | 64.88
Qwen2.5-VL-7B-Instruct+I-VIP+I-COT 94.00 | 66.60 | 27.60 | 84.60 | 96.80 | 35.89 | 67.58

Qwen2.5-VL-7B-Instruct+I-VIP+I-COT+I-VQA | 96.20 | 78.40 | 51.00 | 93.40 | 99.20 | 51.28 78.25
7B Open-source MLLMs, Epoch=50

Qwen2.5-VL-7B-Instruct [4] 16.00 | 61.40 | 24.00 | 64.80 | 81.40 | 4.68 42.05
Qwen2.5-VL-7B-Instruct+I-VIP 84.80 | 66.40 | 27.60 | 81.80 | 94.00 | 29.94 | 64.09
Qwen2.5-VL-7B-Instruct+I-VIP+I-COT 93.80 | 66.20 | 31.80 | 83.60 | 95.40 | 40.89 | 68.62

Qwen2.5-VL-7B-Instruct+I-VIP+I-COT+I-VQA | 95.60 | 78.00 | 52.60 | 91.60 | 98.80 | 50.29 | 77.82

22



Epoch=15 Epoch=25 Epoch=35

—e— LVIP (Stagel)
—=— LCOT (Stage2)
—— 1-VQA (Stage3)

—e— LVIP (Stagel)
—=— LCOT (Stage2)
—+— L-VQA (Stage3)

—e— LVIP (Stagel)
—=— LCOT (Stage2)
—+— L-VQA (Stage3)

20 3000

600 800 2500 3000

Training Step

(a) Epoch 15

1000 1200 1400 0 500 1000 1500

Training Step

(b) Epoch 25

2000 0 500 1000 1500 2000

Training Step
(c) Epoch 35

Figure 13: The training loss in three different epochs.

F More generalization verification experiments

In this appendix, we further conduct more generalization verification experiments and report more
experimental results for the three-stage training framework. Specifically, we use the three different
foggy coefficients to conduct, i.e., «=0.02, a=0.01, and a=0.005, respectively. The Qwen2.5-VL-
3B-Instruct [4] and Qwen2.5-VL-7B-Instruct [4] are chosen as the baseline model, and the result
is shown in Tab. We can find that our three-stage training framework has strong generalization
performance and shows promising performance on several different tasks.

Table 11: More generalization results of the proposed three post-training stages on different tasks.
Note that our strategy is to increase them one by one. « denotes the foggy coefficients in Cityscape [7].

Normal—Foggy, a = 0.02

Model |  Trainstages | IBJ PIC ISA IOL ICI ISD | Avg.
- 47.00 6120 31.00 78.00 81.60 6.51 | 50.88
Qwen2.5-VL w/ stagel 51.60 61.60 28.60 78.80 83.80 6.81 | 51.87
-3B-Instruct [4] w/ stagel&?2 5580 57.60 25.00 81.60 85.60 25.30 | 55.15
w/ stagel&2&3 | 94.40 67.80 37.40 87.40 97.60 48.41 | 72.17

Normal—Foggy, a = 0.01
Model |  Trainstages | IBJ PIC ISA IOL ICI ISD | Avg.
- 45.80 6220 30.60 7820 8240 6.58 | 50.96
Qwen2.5-VL w/ stagel 50.80 61.40 28.00 80.00 84.40 6.67 | 51.88
-3B-Instruct [4] w/ stagel&?2 5520 5820 24.60 81.20 87.40 25.02 | 55.27
w/ stagel &2&3 | 9440 6820 36.60 88.40 97.40 4822 | 72.20

Normal—Foggy, o = 0.005
Model |  Trainstages | IBJ PIC ISA IOL ICI ISD | Avg.
- 45.00 60.80 30.40 7840 8240 6.54 | 50.59
Qwen2.5-VL w/ stagel 50.80 61.80 27.80 81.00 84.00 6.73 | 52.02
-3B-Instruct [4] w/ stagel&2 | 55.00 58.00 24.60 83.80 88.00 25.42 | 55.80
w/ stagel&2&3 | 9440 67.60 3820 88.00 97.60 4834 | 72.36

Normal—Foggy, a = 0.02
Model |  Trainstages | IBJ PIC ISA IOL ICI ISD | Avg.
- 3120 62.60 2420 63.60 8240 4.72 | 44.79
Qwen2.5-VL w/ stagel 76.40 6340 23.80 80.80 92.80 30.41 | 61.27
-7B-Instruct [4] w/ stagel&?2 94.00 63.00 2420 82.60 96.00 54.81 | 69.10
w/ stagel&2&3 | 9520 77.40 49.80 94.00 99.20 50.33 | 77.66

Normal—Foggy, a = 0.01
Model |  Trainstages | IBJ PIC ISA IOL ICI ISD | Avg.
- 26.60 63.00 2440 61.00 82.00 4.75 | 43.63
Qwen2.5-VL w/ stagel 81.00 63.60 23.80 80.60 92.00 3041 | 61.90
-7B-Instruct 4] w/ stagel&?2 9440 6420 2480 81.60 96.00 5524 | 69.37
w/ stagel &2&3 | 95.60 79.20 51.20 9420 99.20 50.34 | 78.29

Normal—Foggy, o = 0.005
Model |  Trainstages | IBJ PIC ISA IOL ICI ISD | Avg.
- 2220 6240 2460 62.00 81.00 4.72 | 42.82
Qwen2.5-VL w/ stagel 85.40 63.60 24.00 79.60 91.40 30.67 | 62.45
-7B-Instruct [4] w/ stagel&2 | 94.60 6540 24.60 8220 96.00 55.79 | 69.77
w/ stagel&2&3 | 96.20 79.60 52.80 93.60 99.20 50.87 | 78.71
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G More model scale results on InternVL3-series models

In addition to InternVL2.5-series models, we also conduct model scale experiments in the latest
InternVL3-series model, as shown in Fig. ['I_Z} We can find that, like the InternVL2.5-series model,
the best average performance can be reached when the model scale is 9B, not the largest 38B model.
We think this phenomenon has something to do with overthinking the model, where overthinking
simple problems instead creates illusions. This is something we need to study further.
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Figure 14: The model scale results on InternVL3-series

H The detailed information for proposed MLLM-ISU-BDD

To verify the universality of the proposed pipeline of VQA-Data Generation and enhance the diversity
of intrusion scene types in real-world environments, we create a new benchmark dataset for the
MLLM-ISU task, namely MLLM-ISU-BDD. The MLLM-ISU-BDD is built based on the BDD-100K
datasets. The detailed method can refer to Fig.[3] Our new MLLM-ISU-BDD datasets contain rich
intrusion scene types, e.g., multiple different weather (Clear, Cloudy, Rainy, Foggy, Night), different
geographic environment (City, Highway, Suburban/Rural), different period of time (Daytime, Dusk,
Night), and Different transportation environments (Heavy Traffic, Empty Road). We clean the original
dataset based on the proposed intrusion detection task features. Finally, our datasets contain 8892
training Pairs and 2694 VQA evaluation Pairs. Our extended benchmark explicitly includes nighttime,
adverse weather, and non-urban roads, enabling more comprehensive evaluation of the intrusion
scene understanding task in real-world environments.

I More discussion and interesting finding

Discussion on model version performance variations. In Tab. 2] and Tab. [6] we observed that
newer versions of multimodal large models (MLLMs) do not always outperform their predecessors
on our proposed intrusion scene understanding task, e.g., in Tab. 2] InternVL3-8B is lower than
InternVL2.5-8B, the interesting phenomenon also occurs in previous work [[18]. We think this is
reasonable. The main reason is that, during the model update process, priority is typically given
to improving abstract reasoning, instruction-following, and general linguistic capabilities rather
than low-level visual perception. Consequently, newer models may excel in complex reasoning and
multi-turn understanding but show reduced sensitivity to small, partially occluded, or contextually
subtle intrusion targets. Besides, stronger reasoning abilities typically imply longer chains of thought.
However, in section 5.4, we find that longer reasoning isn’t always effective for our tasks. These
findings indicate that when applying general MLLMs to visual intrusion understanding, we need
to explore the task-specific adaptation strategies to enhance their perception and recognition of
fine-grained intrusion cues.
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J Limitations

To the best of our knowledge, the MLLM-ISU is proposed for the first time and is the first attempt in
the intrusion detection field. We believe our work will produce positive effects in several application
areas, e.g., autonomous driving, intelligent monitoring, and security. We believe designing more
comprehensive benchmarks, e.g., richer understanding tasks, and exploring more efficient improve-
ment training or training-free strategies, e.g., training-free reasoning method (Retrieving Augmented
Generation), is a worthy research direction in the future.
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