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The challenge of learning robust molecular representations that effectively generalize in real-world
scenarios to novel compounds remains an elusive and unresolved task.

This work examines how atom-level pretraining with quantum mechanics (QM) data can mitigate
violations of assumptions regarding the distributional similarity between training and test data and
therefore improve performance and generalization in downstream tasks.
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Table 1

Performance on the TDC benchmark

(https://tdcommons.ai/)

Figure 1

Distribution of Activations for first 20 features
(out of 256, first model layer)

Dirm 1 Dirm 2 Dirm 4

=]
3
wn
Q
3
=
=]
3
]

Dirm 10

dals
sl
didls
a3} =
=id)=
didls
didls
FEr
il
Sl

Dirm 11 Dirm 12 Dim 13 Dirm 14 Dirm 15 Dim 16 Dim 17 Dirn 18 Dirm 19 Dirm 20

§ 4000

4000

a1 3|3
Siais
FIEF
aials
—Er
dpdid
Flrr

Frlr
i3]
FIEE

22222222222222

network for three different training approaches —scratch, HOMO-LUMO
pretrained and atom-level pretrained— across test split of lipophilicity
dataset.
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Metric Direction  scratch mol-level atom-level
pretrained pretrained
HLgap all (4)
caco2_wang MAE 4 048006 053+0.02 0.41£0.03
lipophilicity_astrazeneca MAE + 0.58+0.02 057002 042+0.01
solubility_aqgsoldb MAE + 0.89+0.04 089x0.02 0.75+£0.01
ppbr_az MAE i 8.38+0.24 822+£0.23 7.79+0.24
1d50_zhu MAE 4 0.61 £0.02 0.60+0.03 0.57 £0.02
hia_hou ROC-AUC ¢ 0.96 £0.03 096 +0.02 0.94+0.05
pgp_broccatelli ROC-AUC ¢ 0.87+0.04 086%0.01 0.89+0.02
bioavailability_ma ROC-AUC ¢ 0.52+0.01 055+0.03 0.64£0.05
bbb_martins ROC-AUC ¢ 0.83+0.01 0.82+0.03 0.88+0.02
cyp3a4_substrate_carbonmangels ROC-AUC 1 0.63+£0.07 0.64£0.03 0.64 +£0.02
ames ROC-AUC ¢ 0.72+0.02 0.73+£0.01 0.80+0.01
dili ROC-AUC ¢t 0.86+0.02 087+0.01 0.88+0.03
herg ROC-AUC ¢ 0.78+0.01 0.76+0.04 0.77£0.06
vdss_lombardo Spearman 7 0.58+0.04 0.59+0.04 0.59+0.03
half life_obach Spearman 0 0.39+0.07 034+007 0.48 £0.06
clearance _microsome_az Spearman T 049+0.03 046=+0.03 0.60%0.01
clearance_hepatocyte_az Spearman 1 0.34+£0.04 031002 0.46£0.03
cyp2d6_veith PR-AUC T 043+003 047+0.02 0.61+£0.02
cyp3a4_veith PR-AUC T 0.73+0.01 0.74+0.03 0.80+£0.03
cyp2¢9_veith PR-AUC T 0.63+£0.02 0.66+0.03 0.69 £0.02
cyp2d6_substrate_carbonmangels  PR-AUC T 0.52+0.01 054+0.04 0.58+0.03
cyp2¢9_substrate_carbonmangels  PR-AUC T 035+£0.02 033+0.03 0.37+0.04

Figure 2

In Table 1, we present the outcomes from benchmarking three distinct training approaches:scratch,
molecule-level QM pretrained, and atom-level QM pretrainedwith all properties for 5 different seeds,
as described in the guidelines provided by the TDC dataset. We have excluded the results for atom-
level pretraining on individual QM properties from this table. These results show that atom-level
pretraining notably enhances model performance compared to training from scratch for 21 of the 22

datasets.
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In this study, we have demonstrated that pretraining of graph-based neural networks with atom-level quantum mechanics
(QM) data significantly enhances performance on downstream tasks related to ADMET properties within the TDC dataset,

as illustrated in Table 1.

« We showed the change in the distributions of activations of the internal model’s features due to specific pretraining.
After atom-level pretraining with QM data, these distributions become more Gaussian-like, which is known to be
conducive to better learning dynamics and thus improved performance (Figure 1).

* Moreover, our findings indicate that pretrained models exhibit smaller distribution shifts from training to testing
datasets, further supporting the efficacy of QM data pretraining in enhancing model robustness (Figure 2).

To our knowledge, this is the first study that elucidates how atom-level pretraining can optimize molecular
representations by analyzing the model's internal representation and robustness to distribution shifts.
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