
Published as a conference paper at ICLR 2024

SOPHIA: A SCALABLE STOCHASTIC SECOND-ORDER
OPTIMIZER FOR LANGUAGE MODEL PRE-TRAINING

Hong Liu Zhiyuan Li David Hall Percy Liang Tengyu Ma

Stanford University
{hliu99, zhiyuanli, dlwh, pliang, tengyuma}@cs.stanford.edu

ABSTRACT

Given the massive cost of language model pre-training, a non-trivial improve-
ment of the optimization algorithm would lead to a material reduction on the
time and cost of training. Adam and its variants have been state-of-the-art for
years, and more sophisticated second-order (Hessian-based) optimizers often in-
cur too much per-step overhead. In this paper, we propose Sophia, Second-order
Clipped Stochastic Optimization, a simple scalable second-order optimizer that
uses a light-weight estimate of the diagonal Hessian as the pre-conditioner. The
update is the moving average of the gradients divided by the moving average of the
estimated Hessian, followed by element-wise clipping. The clipping controls the
worst-case update size and tames the negative impact of non-convexity and rapid
change of Hessian along the trajectory. Sophia only estimates the diagonal Hes-
sian every handful of iterations, which has negligible average per-step time and
memory overhead. On language modeling with GPT models of sizes ranging from
125M to 1.5B, Sophia achieves a 2x speed-up compared to Adam in the number of
steps, total compute, and wall-clock time, achieving the same perplexity with 50%
fewer steps, less total compute, and reduced wall-clock time.

1 INTRODUCTION

Language models (LLMs) have gained phenomenal capabilities as their scale grows (Radford et al.,
2019; Kaplan et al., 2020; Brown et al., 2020; Zhang et al., 2022b; Touvron et al., 2023; OpenAI,
2023). However, pre-training LLMs is incredibly time-consuming due to the massive datasets and
model sizes—hundreds of thousands of updates to parameters are required. For example, PaLM was
trained for two months on 6144 TPUs, which costed 10 million dollars (Chowdhery et al., 2022).

Pre-training efficiency is thus a major bottleneck in scaling up LLMs. This work aims to improve
pre-training efficiency with a faster optimizer, which either reduces the time and cost to achieve the
same pre-training loss, or alternatively achieves better pre-training loss with the same budget.

Adam (Kingma & Ba, 2014) (or its variants (Loshchilov & Hutter, 2017; Shazeer & Stern, 2018; You
et al., 2019)) is the dominantly used optimizer for training LLMs, such as GPT (Radford et al., 2019;
Brown et al., 2020), OPT (Zhang et al., 2022b), Gopher (Rae et al., 2021) and LLAMA (Touvron
et al., 2023). Designing faster optimizers for LLMs is challenging. First, the benefit of the first-
order (gradient-based) pre-conditioner in Adam is not yet well understood (Liu et al., 2020; Zhang
et al., 2020; Kunstner et al., 2023). Second, the choice of pre-conditioners is constrained because
we can only afford light-weight options whose overhead can be offset by the speed-up in the number
of iterations. On the other hand, Chen et al. (2023) automatically search among the light-weight
gradient-based pre-conditioners and identify Lion, which is substantially faster than Adam on vision
Transformers and diffusion models but only achieves limited speed-up on LLMs (Chen et al., 2023).

This paper introduces Sophia, Second-order Clipped Stochastic Optimization, a light-weight second-
order optimizer that uses an inexpensive stochastic estimate of the diagonal of the Hessian as a
pre-conditioner and a clipping mechanism to control the worst-case update size. On pre-training
language models such as GPT-2, Sophia achieves the same validation pre-training loss with 50%
fewer number of steps than Adam. Because Sophia maintains almost the memory and average time
per step, the speedup also translates to 50% less total compute and 50% less wall-clock time (See
Figure 1 (a)&(b)). We also note that comparing the run-time to achieve the same loss is the correct
way to compare the speed of optimizers for LLMs; see Section 3.2 for more details.

1

Published as a conference paper at ICLR 2024

0.0 59.75 119.5 179.25 239.0
Compute / exaFLOPs

2.6

2.8

3.0

3.2

3.4

Va
lid

at
io

n
Lo

ss
2x Speedup

(a) GPT-2 Medium (355M)
AdamW
Sophia-H
Sophia-G

0K 50K 100K 150K 200K
Number of Steps

2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2

Va
lid

at
io

n
Lo

ss

2x Speedup

(c) GPT-2 Large (770M)
AdamW, 100K
AdamW, 200K
Sophia-H, 100K
Sophia-G, 100K

0K 100K 200K 300K 400K
Number of Steps

2.2
2.3
2.4
2.5
2.6
2.7
2.8

Va
lid

at
io

n
Lo

ss

2x Speedup

(c) GPT NeoX, 1.5B
AdamW
Sophia-G

200 400 600
Model Size / M

2.5

2.6

2.7

2.8

2.9

Va
lid

at
io

n
Lo

ss

40% More Parameters

(d) Scaling Laws
AdamW
Sophia-H
Sophia-G

Figure 1: Sophia achieves significant speedup over AdamW in GPT-2 pre-trained on OpenWebText and GPT
NeoX pre-trained on the Pile. (a) (b) (c) Comparison of the number of steps needed to achieve the same
validation loss on (a) GPT-2-medium (355M), (b) GPT-2-large (770M) and (c) GPT NeoX 1.5B. Across all
model sizes, Sophia needs 50% less time to reach the same validation loss as AdamW. (d) Validation losses
of models with different sizes pre-trained. The gap between Sophia and AdamW gets larger as models size
grows. Notably, a 540M-parameter model pre-trained with Sophia for 100K steps has the same loss as a 770M-
parameter model pre-trained with AdamW for 100K steps. See Section 3 for details and more results.

Algorithm 1 Hutchinson(θ)

1: Input: parameter θ.
2: Compute mini-batch loss L(θ).
3: Draw u from N (0, Id).
4: return u�∇(〈∇L(θ), u〉).

Figure 2: The motivating toy example. θ[1]

is the sharp dimension and θ[2] is the flat di-
mension. GD’s learning rate is limited by
the sharpness in θ1. It makes slow progress
along θ[2]. Adam and SignGD bounce along
θ[1] while making slow progress along θ[2].
Newton’s method converges to a saddle point.
Sophia makes fast progress in θ[1] and θ[2] and
converges to the minimum with a few steps.

Algorithm 2 Gauss-Newton-Bartlett (GNB)(θ)
1: Input: parameter θ.
2: Draw a mini-batch of input {xb}Bb=1.
3: Compute logits on a batch: {f(θ, xb)}Bb=1.
4: Sample ŷb ∼ softmax(f(θ, xb)),∀b ∈ [B].
5: Calculate ĝ = ∇(1/B

∑
`(f(θ, xb), ŷb)).

6: return B · ĝ � ĝ.

Algorithm 3 Sophia
1: Input: θ1, learning rate {ηt}Tt=1, hyperpa-

rameters λ, β1, β2, ε, and estimator choice
Estimator ∈ {Hutchinson,GNB}

2: Set m0 = 0, v0 = 0, h1−k = 0
3: for t = 1 to T do
4: Compute minibach loss Lt(θt).
5: Compute gt = ∇Lt(θt).
6: mt = β1mt−1 + (1− β1)gt
7: if t mod k = 1 then
8: Compute ĥt = Estimator(θt).
9: ht = β2ht−k + (1− β2)ĥt

10: else
11: ht = ht−1

12: θt = θt − ηtλθt (weight decay)
13: θt+1 = θt−ηt ·clip(mt/max{γ ·ht, ε}, 1)

Moreover, the scaling law based on model size from 125M to 770M is in favor of Sophia over
Adam—the gap between Sophia and Adam with 100K steps increases as the model size increases
(Figure 1 (c)). In particular, Sophia on a 540M-parameter model with 100K steps gives the same
validation loss as Adam on a 770M-parameter model with 100K steps.

Sophia estimates the diagonal entries of the Hessian of the loss using a mini-batch of examples ev-
ery k step (with k = 10 in practice). We consider two options for diagonal Hessian estimators: (a)
an unbiased estimator that uses a Hessian-vector product, and (b) a biased estimator that uses one
mini-batch gradient calculated with resampled labels. Both the two estimators only introduce 5%
overheads per step (in average). At every step, Sophia updates the parameter with an exponential
moving average (EMA) of the gradient divided by the EMA of the diagonal Hessian estimate, subse-
quently clipped by a scalar. (All operations are element-wise.) See Algorithm 3 for the pseudo-code.

Sophia has a more aggressive pre-conditioner—it applies a stronger penalization to updates in sharp
dimensions (where the Hessian is large) than the flat dimensions (where the Hessian is small), ensur-
ing a uniform loss decrease across all parameter dimensions. In contrast, Adam’s updates are mostly
uniform across all parameter dimensions, leading to a slower loss decrease in flat dimensions. (See
Section 2.1 for more discussions.) These make Sophia converge in fewer iterations. Thanks to the
light-weight diagonal Hessian estimate, the speed-up in the number of steps translates to a speed-up
in total compute or wall-clock time.

Sophia’s clipping mechanism controls the worst-case size of the updates in all directions, safeguard-
ing against the negative impact of inaccurate Hessian estimates, rapid Hessian changes, and non-

2

Published as a conference paper at ICLR 2024

convex landscape (with which Newton’s method may converge to local maxima or saddle points
instead of local minima). The safeguard allows us to estimate Hessian infrequently (every k = 10
steps). In contrast, prior second-order methods often update Hessian estimates every step.

2 METHOD

We instantiate gradient descent and Adam on a simplified 2D problem to motivate the use of second-
order information and per-coordinate clipping in Section 2.1. We present Sophia in Section 2.2, with
pseudo-code in Algorithm 3. We introduce two estimators of diagonal Hessian in Section 2.3.

2.1 MOTIVATIONS

Heterogeneous curvatures. The loss functions in deep learning often have different curvatures
across different parameter dimensions (Sagun et al., 2016; Ghorbani et al., 2019; Zhang et al., 2020;
Yao et al., 2020). We demonstrate the limitations of Adam and GD on heterogeneous landscapes
in a two-dimensional loss function L(θ[1], θ[2]) = L1(θ[1]) + L2(θ[2]) where L1 is much sharper
than L2. We plot the loss landscape of L(θ[1], θ[2]) in Figure 2.1 For simplicity, we discuss GD and
deterministic versions of Adam. GD’s update in this setting is:

θ[1] ← θ[1] − η · L′1(θ[1]) and θ[2] ← θ[2] − η · L′2(θ[2]) . (1)

A common simplification of Adam that is more amenable to analysis (Balles & Hennig, 2018;
Bernstein et al., 2018; Zhuang et al., 2020; Kunstner et al., 2023) is SignGD, which dates back
to RProp (Braun & Riedmiller, 1992) that motivated RMSProp (Hinton et al., 2012) and Adam.
Without using the EMA (for both the gradient and second moments of the gradient), Adam’s update
is simplified to η · ∇L(θ)/|∇L(θ)| = η · sign(∇L(θ)), which is called SignGD:

θ[1] ← θ[1] − η · sign(L′1(θ[1])) and θ[2] ← θ[2] − η · sign(L′2(θ[2])) . (2)

Limitations of GD and SignGD (Adam). The optimal learning rate of GD should be proportional
to the inverse of the curvature. Let h1 and h2 be the curvatures of L1 and L2 at the local minimum
(and thus h1 � h2). The optimal learning rate for θ[1] in (1) is � 1/h1, which is much smaller than
the optimal learning rate that θ[2] needs (� 1/h2). The largest shared learning rate can only be 1/h1;
consequently, the convergence in θ[2] is slow as demonstrated in the brown curve of Figure 2.

The update size of SignGD equals learning rate η in all dimensions. The same update size translates
to less progress in the flat direction than in the sharp direction. As shown in the yellow curve of
Figure 2, the progress of SignGD in θ[2] is slow because each step only decreases the loss L2(θ[2])
slightly. On the other hand, along θ[1], the iterate quickly goes to the valley in the first three steps
and then starts to bounce. To fully converge in the sharp θ[1], the learning rate η needs to decay to 0,
which will exacerbate the slow convergence in the flat θ[2]. The trajectory of Adam in this example
is similar to SignGD, which is plotted as the red curve in Figure 2.

The behavior of SignGD and Adam calls for more aggressive pre-conditioning—sharp dimensions
should have relatively smaller updates than flat dimensions so that the decrease of loss is equalized
in all dimensions. As suggested by literature on second-order optimization (Boyd & Vandenberghe,
2004) for convex functions, the optimal pre-conditioner should be the Hessian, which captures the
curvature of each dimension; the update is the gradient divided by the Hessian of each dimension:

θ[1] ← θ[1] − η · L′1(θ[1])/h1 and θ[2] ← θ[2] − η · L′2(θ[2])/h2 . (3)

Limitations of Newton’s method. For non-convex functions, Newton’s method may not converge
to a minimum. In the blue curve of Figure 2, Newton’s method quickly converges to a saddle point.
The curvature might also change rapidly along the trajectory, making the second-order information
unreliable. To address these limitations, we propose considering only pre-conditioners that capture
positive curvature, and introduce pre-coordinate clipping to mitigate the rapid change of Hessian
(more detail in Section 2.2). Applying our algorithm on the toy case results in the following update:

θ[1] ← θ[1] − η · clip(L
′
1(θ[1])/max{h1,ε}, ρ) and θ[2] ← θ[2] − η · clip(L

′
2(θ[2])/max{h2,ε}, ρ) , (4)

where ρ is a constant to control the update size, ε is a very small constant (e.g., 1e-12), which avoids
dividing by 0. When the curvature of some dimension is changing rapidly or negative and thus the
second-order information is misleading, the clipping mechanism kicks in and the optimizer defaults

1Concretely, in Figure 2, L1(θ[1]) = 8(θ[1] − 1)2(1.3θ2[1] + 2θ[1] + 1) and L2(θ[2]) = 1/2(θ[2] − 4)2.

3

Published as a conference paper at ICLR 2024

to SignGD. Numerous prior methods such as trust region (Conn et al., 2000), backtracking line
search (Boyd & Vandenberghe, 2004), and cubic regularization (Nesterov & Polyak, 2006) tackle
the same issue, but the clipping mechanism is simpler and more efficient.

As shown in the black curve in Fig. 2, the update in equation (4) starts off similarly to SignGD
due to the clipping mechanism in the non-convex region, making descent opposed to converging to
the saddle point. Then, in the convex valley, it converges to the global minimum with a few steps.
Compared with SignGD and Adam, it makes much faster progress in the flat dimension θ[2], while
avoiding boucing in the sharp dimension θ[1].

2.2 SOPHIA: SECOND-oRDER CLIpPED STOChASTIC OPTiMIZaTION

Section 2.1 demonstrates Adam does not sufficiently adapt to the heterogeneous curvatures. On the
other hand, Newton’s method has a pre-conditioner optimal for convex functions, but is vulnera-
ble to negative curvature and rapid change of Hessian. With these insights, we design a new opti-
mizer, Sophia, which is more adaptive to heterogeneous curvatures than Adam, more resistant to non-
convexity and rapid change of Hessian than Newton’s method, and uses a low-cost pre-conditioner.

We use θt to denote the parameter at time step t. At each step, we sample a mini-batch from the data
distribution and calculate the mini-batch loss, denoted by Lt(θt). We denote by gt the gradient of
Lt(θt), gt = ∇Lt(θt). Let mt be the EMA of gradients, mt ← β1mt−1 + (1− β1)gt.

EMA of diagonal Hessian estimates. Sophia uses a diagonal Hessian pre-conditioner, which di-
rectly adjusts the update size of different parameters according to their curvatures. We will present
two efficient estimators of diagonal Hessian in Section 2.3. To mitigate the overhead, we only esti-
mate the Hessian every k steps (k = 10 in practice). At time step t with t mod k = 1, the estimator
returns an estimate ĥt of the diagonal of the Hessian of the mini-batch loss.

Similar to the gradient of the mini-batch loss function, the estimated diagonal Hessian can also have
large noise. Inspired by the EMA of moments of gradients in Adam, we also denoise the diagonal
Hessian estimates with EMA across iterations. We update the EMA every k steps, resulting in the
following update rule for the diagonal Hessian estimate:

ht = β2ht−k + (1− β2)ĥt if t mod k = 1; else ht = ht−1 . (5)

Per-coordinate clipping. As discussed in Section 2.1, on nonconvex functions, vanilla Newton’s
method, which uses Hessian as the pre-conditioner, may converge to local maxima instead of lo-
cal minima. In addition, the inaccuracy of Hessian estimates and the change of Hessian along the
trajectory can make the second-order information unreliable. To this end, we (1) only consider the
positive entries of the diagonal Hessian and (2) introduce per-coordinate clipping to the update. For
a clipping threshold ρ > 0, let the clipping function be clip(z, ρ) = max{min{z, ρ},−ρ} where all
operations are applied coordinate-wise. The update rule is written as:

θt+1 ← θt − ηt · clip(mt/max{γ · ht, ε}, 1), (6)

where ε > 0 is a small constant to avoid dividing by 0, and γ controls the fraction of clipped entries.
We present the pseudo-code of the Sophia in Algorithm 3.

If ht[i] < 0, the corresponding entry in the pre-conditioned gradient mt[i]/max{γ · ht[i], ε} =
mt[i]/ε is large and has the same sign as mt[i], and thus η · clip(mt[i]/max{γ · ht[i], ε}, 1) =
η · sign(mt[i]), which is the same as stochastic momentum SignSGD. In other words, Sophia uses
stochastic Sign Momentum GD as a backup when the Hessian is negative (or mistakenly estimated to
be negative.) Also note that clipping controls the worst-case update size in all parameter dimensions
to be at most ρ, which also improves stability. Moreover, because for many parameter dimensions,
the clipping is not activated and the update is automatically adjusted, our worst-case update size η
can be chosen to be larger than the worst update size η in stochastic Sign Momentum GD.

Several previous works (Becker & Le Cun, 1988; Chapelle et al., 2011; Schaul et al., 2013; Yao et al.,
2021) use diagonal Hessian as a pre-conditioner in optimizers for training neural networks. However,
they use more frequent Hessian estimations, which leads to significant per-step computation over-
head, most likely because of the lack of the clipping mechanism that safeguards against inaccurate
and changing Hessian. In general, to the best of our knowledge, there has not been previous reports
that showed second-order optimizers achieve a speed-up on decoder-only large language models in
wall-clock time or total compute (see more related work and discussions in Section A).

4

Published as a conference paper at ICLR 2024

2.3 DIAGONAL HESSIAN ESTIMATORS

We introduce two diagonal Hessian estimators, both of which have memory and run-time costs sim-
ilar to computing a gradient (up to constant factors).

Option 1: Hutchinson’s unbiased estimator. For any loss function `(θ) on parameters θ ∈ Rd,
the Hutchinson’s estimator (Hutchinson, 1989; Roosta-Khorasani & Ascher, 2015; Yao et al., 2021)
first draws u ∈ Rd from the spherical Gaussian distribution N (0, Id), and then outputs ĥ = u �
(∇2`(θ)u), where � denotes the element-wise product, and ∇2`(θ)u is the product of the Hessian
with the vector u. The Hutchinson’s estimator is an unbiased estimator for the diagonal of the
Hessian, because E[ĥ] = diag(∇2`(θ)) . It only requires a Hessian-vector product (i.e., ∇2`(θ)u),
which have efficient implementations in PyTorch and JAX, instead of the full Hessian matrix.

Option 2: Gauss-Newton-Bartlett (GNB) estimator. Suppose `(θ, (x, y)) is a loss function on an
example (x, y) of the form `(θ, (x, y)) = `ce(f(θ, x), y) where `ce is cross-entropy and f(θ, x) ∈ RV
is the logits, and V is the number of items/classes in a multi-class classification problem (e.g., the
vocabulary size in LLMs). First, the Hessian of `(θ, (x, y)) (w.r.t to variable θ) has the well-known
Gauss-Newton (GN) decomposition (Ortega & Rheinboldt, 2000; Schraudolph, 2002),

∇2
θ `(θ) = Jθf(θ, x) · S · Jθf(θ, x)> + Jθθf(θ, x)[q] (7)

where Jθf(θ, x) is the Jacobian of f w.r.t to θ viewed as a matrix in Rd×V , S =
∂2`ce(t, y)/∂t2

∣∣
t=f(θ,x)

∈ RV×V is the second-order derivatives of the loss w.r.t the logits, q =

∂`ce(t, y)/∂t
∣∣
t=f(θ,x)

∈ RV is the first-order derivatives of the loss w.r.t the logits, and Jθθf(θ, x)

is the second-order derivatives of the multi-variate function f(θ, x) w.r.t θ, viewed as a linear map
from RV to Rd×d. In neural networks, past works found that the second term Jθθf(θ, x)[q] in
(11) is often relative smaller than the first term Jθf(θ, x) · S · Jθf(θ, x)> (Sankar et al., 2021),
which is often referred to as the Gauss-Newton (GN) matrix (Dennis Jr & Schnabel, 1996; Ortega
& Rheinboldt, 2000; Schraudolph, 2002; Chen, 2011) and used as pre-conditioners in second-order
optimizers (Botev et al., 2017; Martens, 2020; Gargiani et al., 2020). Following these works, we
build an unbiased estimator for the diagonal of the GN matrix, as a biased estimator of the Hessian
diagonal.

First note that S only depends f(θ, x) but not y, even though the loss depends on
y.2 Thus, S = ∂2`ce(t, ŷ)/∂t2

∣∣
t=f(θ,x)

for any ŷ ∈ {1, . . . , V }, which implies that

S = Eŷ∼p(θ,x)

[
∂2`ce(t, ŷ)/∂t2

∣∣
t=f(θ,x)

]
. Because `ce(t, y) is the negative log-probability of

the probabilistic model defined by the categorical distribution Cat(t) with parameter t, by
Bartlett’s second identity (Bartlett, 1953), we have that, S = Eŷ∼Cat(t)

[
∂2`ce(t, ŷ)/∂t2

]
=

Eŷ∼Cat(t)
[
∂`ce(t, ŷ)/∂t(∂`ce(t, ŷ)/∂t)

>]
, where the first equality holds for t = f(θ, x) and the

second equality holds for all t by Bartlett’s second identity. Therefore, the GN matrix satisfies

Jθf(θ, x) · S · Jθf(θ, x)> = E
ŷ∼Cat(t)

[
Jθf(θ, x)∂`ce(t, ŷ)/∂t(∂`ce(t, ŷ)/∂t)

>
Jθf(θ, x)>

]
= E
ŷ∼Cat(t)

[
∇θ`ce(f(θ, x), ŷ)∇θ`ce(f(θ, x), ŷ)>

]
, (8)

implying diag(Jθf(θ, x) · S · Jθf(θ, x)>) = Eŷ∼Cat(t) [∇θ`ce(f(θ, x), ŷ)�∇θ`ce(f(θ, x), ŷ)].
Hence, the quantity `ce(f(θ, x), ŷ) � ∇θ`ce(f(θ, x), ŷ) is an unbiased estimator of the GN matrix
for the Hessian of a one-example loss `(f(θ, x), y).

Mini-batch version. Given a mini-batch of inputs {(xb, yb)}Bb=1. The most natural way to build an
estimator for the diagonal of the GN matrix for the Hessian of the mini-batch loss is using

1

B

∑B

b=1
∇`ce(f(θ, xb), ŷb)�∇θ`ce(f(θ, xb), ŷb) , (9)

where ŷb’s are labels sampled from the model on inputs xb’s respectively. However, as noted
by Grosse (2022), implementing this estimator is inconvenient under the current auto-differentiation
frameworks, where the users only have access to the average gradient over a mini-batch (as opposed

2Let p(θ, x) = softmax(f(θ, x)) ∈ RV the probability vector obtained from softmax of logits. S =
diagonal(p(θ, x))− p(θ, x)p(θ, x)>, where diagonal(z) is the matrix with vector z residing on the diagonal.

5

Published as a conference paper at ICLR 2024

to the individual ones). Fortunately, by Bartlett’s first identity (Bartlett, 1953) (which generally holds
for negative log-likelihood loss of probabilistic models), we have: ∀b, Eŷb∇`ce(f(θ, xb), ŷb) = 0 .

Let L̂(θ) = 1
B

∑B
b=1 `ce(f(θ, xb), ŷb) be the mini-batch loss on the sampled labels (as opposed to

the original labels). Observing that ŷb’s are independent with each other, we have

Eŷ′bs
[
B · ∇θL̂(θ)�∇θL̂(θ)

]
= Eŷ′bs

[
1

B

∑B

b=1
∇`ce(f(θ, xb), ŷb)�

∑B

b=1
∇`ce(f(θ, xb), ŷb)

]
= Eŷ′bs

[
1

B

∑B

b=1
∇`ce(f(θ, xb), ŷb)�∇`ce(f(θ, xb), ŷb)

]
(10)

The RHS of (16) is the same as the expectation of (14), which by (13) also equals the diagonal of the
GN matrix for the mini-batch loss. Hence, we use B · ∇θL̂(θ) � ∇θL̂(θ) as the estimator. To the
best of our knowledge, Wei et al. (2020) first used this estimator. Given the use Bartlett’s identities
that are central to the estimator, we call it Gauss-Newton-Bartlett (GNB) estimator.

GNB estimator for exponential family. If y is drawn from an exponential family p(y; η) where the nat-
ural parameter η is set to be f(θ, x) and the loss function `(f(θ, x), y) is the negative log-likelihood
loss for the corresponding probabilistic distribution, then all the derivations still hold because (1) S
still only depends on f(θ, x) but not y, and (2) Bartlett’s identities still hold.

GNB estimator for squared loss. When y, f(θ, x) ∈ R and `(f(θ, x), y) = 1
2 (f(θ, x) − y)2, the S

matrix is identity, and thus one can simply use Jθf(θ, x)Jθf(θ, x)> as the estimator.

Comparisons of Hessian estimators. The Hutchinson’s estimator does not assume any structure
of the loss, but requires Hessian-vector products. The GNB estimator only estimates the GN term
and always gives a positive semi-definite (non-negative) diagonal Hessian estimate. The PSDness
ensures that the pre-conditioned update is always a descent direction (Dennis Jr & Schnabel, 1996).

3 EXPERIMENTS

We name the algorithm using Hutchinson’s and GNB estimator Sophia-H and Sophia-G, respec-
tively. We evaluate Sophia on GPT of sizes ranging from 125M to 6.6B. Results indicate that Sophia
achieves the same or smaller validation loss than AdamW (Loshchilov & Hutter, 2017) in 50% less
number of steps, total compute, and wall-clock time across different model sizes.

3.1 EXPERIMENTAL SETUP

Language modeling. We train autoregressive models on OpenWebText (Gokaslan & Cohen, 2019)
and the Pile (Gao et al., 2020) from scratch. Following standard protocol, we set the context length
of GPT-2 to 1024, and the context length of GPT-2 NeoX (Black et al., 2022) to 2048. We consider
GPT-2 with 125M (small), 355M (medium), and 770M (large) parameters, and GPT NeoX with 1.5B
and 6.6B parameters, respectively. Detailed model configurations are deferred to Section C.2.

Baselines. We compare Sophia with Adam with decoupled weight decay (AdamW) (Loshchilov &
Hutter, 2017), the dominantly used optimizer on language modeling tasks, AdaHessian (Yao et al.,
2021) which uses the EMA of the square of the diagonal Hessian estimate in its denominator, and
Lion (Chen et al., 2023), a first-order adaptive optimizer discovered by symbolic search. For the 30M
model, all hyperparameters are tuned with grid search. For other models, all hyperparmeters but the
peak learning rate are configured as identical to those found on the 30M model. For models with size
125M and 355M, the peak learning rates are obtained through grid search. For larger models, we
search for the largest possible peak learning rate such that the training does not blow up, and ensure
1.25 times the chosen learning rate will lead to a blow-up. For AdamW we found the well-established
practice (β1 = 0.9 and β2 = 0.95) works consistently better than other choices. For Lion, we use
β1 = 0.95 and β2 = 0.98 following Chen et al. (2023). For AdaHessian, we found β1 = 0.92 and
β2 = 0.99 works the best. Details on hyperparameter tuning are deferred to Section C.1.

Implementation. We use batch size 480 for GPT-2 and 2048 for GPT NeoX. We use cosine LR
schedule with the final LR equaling 0.05 times the peak LR with a fixed 2k steps of LR warm-up
following Rae et al. (2021). We use standard gradient clipping (by norm) threshold 1.0. For Sophia,
we use β1 = 0.96, β2 = 0.99, ε =1e-12 and update diagonal Hessian every 10 steps. For Sophia-H,
we use a subset of 32 examples from the minibatch to calculate the diagonal Hessian. For Sophia-G,
we use a subset of 240 examples from the minibatch to calculate the diagonal Gauss-Newton. We

6

Published as a conference paper at ICLR 2024

0K 100K 200K 300K 400K
Number of Steps

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
le

r C
oe

ffi
cie

nt

(a) Learning Rate Schedules
100K steps
200K steps
400K steps

0.0 59.75 119.5 179.25 239.0
Compute / exaFLOPs

2.6

2.8

3.0

3.2

3.4

Va
lid

at
io

n
Lo

ss

2x Speedup

(b) GPT-2 Medium (355M)
AdamW, 100K
AdamW, 200K
Lion, 200K
Sophia-H, 100K
Sophia-G, 100K

0K 50K 100K 150K 200K
Number of Steps

2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2

Va
lid

at
io

n
Lo

ss

2x Speedup

(c) GPT-2 Large (770M)
AdamW, 100K
AdamW, 200K
Sophia-H, 100K
Sophia-G, 100K

0K 100K 200K 300K 400K
Number of Steps

2.2
2.3
2.4
2.5
2.6
2.7
2.8

Va
lid

at
io

n
Lo

ss

2x Speedup

(d) GPT NeoX, 1.5B
AdamW, 200k
AdamW, 400k
Sophia-G, 200k

Figure 3: Comparison of numbers of steps to reach the same validation loss on OpenWebText. (a) Learning
rate schedules. (b) GPT-2 Medium (355M). (c) GPT-2 Large (770M). (d) GPT NeoX 1.5B.

0K 25K 50K 75K 100K
Number of Steps

2.9

3.0

3.1

3.2

3.3

Va
lid

at
io

n
Lo

ss

GPT-2 Small (125M)
AdamW
Lion
Sophia-H
Sophia-G

0K 25K 50K 75K 100K
Number of Steps

2.6
2.7
2.8
2.9
3.0
3.1
3.2

Va
lid

at
io

n
Lo

ss

(b) GPT-2 Medium (355M)
AdamW
Lion
Sophia-H
Sophia-G

0K 25K 50K 75K 100K
Number of Steps

2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2

Va
lid

at
io

n
Lo

ss

GPT-2 Large (770M)
AdamW
Sophia-H
Sophia-G

0K 50K 100K 150K 200K
Number of Steps

2.2
2.3
2.4
2.5
2.6
2.7
2.8

Va
lid

at
io

n
Lo

ss

(d) GPT NeoX, 1.5B
AdamW
Sophia-G

0K 25K 50K 75K 100K
Number of Steps

2.0

2.1

2.2

2.3

2.4

2.5

Va
lid

at
io

n
Lo

ss

(e) GPT NeoX, 6.6B
AdamW
Sophia-G

Figure 4: Validation loss. (a) GPT-2 Small (125M). AdamW: 2.921, Lion: 2.924, Sophia-H: 2.901, Sophia-G:
2.875 (b) GPT-2 Medium (355M). Adam: 2.691, Lion: 2.678, Sophia-H: 2.645, Sophia-G: 2.627. (c) GPT-
2 Large (770M). AdamW: 2.613, Sophia-H: 2.554, Sophia-G: 2.524. (d) GPT NeoX 1.5B. AdamW: 2.250,
Sophia-G: 2.218.(e) GPT NeoX 6.6B. AdamW: 1.992, Sophia-G: 1.969.

implement the algorithms in PyTorch (Paszke et al., 2019) and JAX (Bradbury et al., 2018) and train
all the models in bfloat16. 125M and 355M models are trained on A5000 GPUs, while the 770M
models are trained on A100 GPUs. We use a TPU v3-128 slice to train 1.5B and 6.6B GPT NeoX.

Hyperparamter tuning strategy. We refer to Section C.1 for the details on hyperparameters and
only discuss two key hyperparameters, γ and the peak learning rate η in the main text. Similar to
the protocol of baselines, all other hyperparameters are tuned on a 30M model and remain fixed for
all the model sizes. For the peak learning rate and γ, we found the following strategy general works
well, and delivers almost the same performance as those found by grid search.
• On a small model, tune γ to make the proportion of coordinates where the update is not clipped

(i.e., |mt/max{γ ·ht, ε}| < 1) in the range of 10%−50%. The same γ likely can be transferred to
models with the same architecture and data but different number of parameters. We use γ = 0.01
for Sophia-H and γ = 0.05 for Sophia-G in this paper.

• Suppose we already find a suitable γ following the above procedure. We can then set the learning
rate of Sophia to be either 3-5 times the learning rate that one would have used for Lion, or 0.8
times the learning rate that one would have used for AdamW.

3.2 EVALUATION

Methodology for comparing the optimizers for LLMs. One correct (and preferred) way of claim-
ing optimizer S is 2x faster than optimizer A is comparing the following two experiments (for a
variety of T ’s). (1) running optimizer A (e.g. Adam) with T steps, with the optimal learning rate
and learning rate schedule (tuned for running for T steps) (2) running optimizer S (e.g., Sophia) with
T/2 steps, with any learning rate schedule, If Experiment 2 achieves a loss that is smaller than or
equal to the loss of Experiment 1, then we say optimizer S is 2x faster than optimizer A.

Note that modern learning rate schedulers such as cosine learning rate (Loshchilov & Hutter, 2016)
are highly sensitive to a pre-specific total number of steps. Figure 3 (a) shows that with the same peak
learning rate, the learning rate in a run with T/2 steps decays faster than that with T steps. Moreover,
the loss of the T/2-steps run decays faster initially than the T -steps run but ends up larger. The latter
is also not a continuation of the former. Thus, in the proposed comparison above, we insist that
Experiment 2 has a loss smaller than or equal to Experiment 1 without any approximations, because
even “Adam with T/2 steps” can possibly achieve a loss similar to (but slightly worse than) “Adam
with T steps with the same peak learning rate“. See Figure 3(b)-(d).

Technical details. Following the methodology above, we train baselines and Sophia for 100K,
200K, or 400K. We primarily evaluate the models with their log perplexity and plot the loss curves.
We also report in-context learning results (with 2-shot exemplars and greedy decoding) on Super-
GLUE (Wang et al., 2019). We average the results of 5 prompts (Section C.3).

3.3 RESULTS

Figure 4 illustrates the validation loss curve (log perplexity) on OpenWebText or the Pile with the
same number of steps. Sophia-H and Sophia-G consistently achieve better validation loss than

7

Published as a conference paper at ICLR 2024

BoolQ CB COPA RTE Average45

50

55

60

65

70

Ac
cu

ra
cy

 %

Few-shot Evaluation of GPT-2 Medium (355M)
AdamW, 100K
Lion, 100K
Sophia-H, 100K
Sophia-G, 100K
AdamW, 200K

BoolQ CB COPA RTE Average45

50

55

60

65

70

Ac
cu

ra
cy

 %

Few-shot Evaluation of GPT-2 Large (770M)
AdamW, 100K
Sophia-H, 100K
Sophia-G, 100K
AdamW, 200K

BoolQ CB COPA RTE Average45

50

55

60

65

70

Ac
cu

ra
cy

 %

Few-shot Evaluation of GPT NeoX 1.5B
AdamW, 200K
Sophia-G, 200K
AdamW, 400K

Figure 5: Few-shot evaluation on SuperGLUE. With the same number of steps, models pre-trained with
Sophia outperforms models pre-trained with AdamW and Lion on most tasks. Models pre-trained with
Sophia for 200K steps have comparable performance as models pre-trained with AdamW for 400K steps.

0K 25K 50K 75K 100K
Number of Steps

0
10K
20K
30K
40K
50K
60K
70K

Nu
m

be
r o

f c
lip

pe
d

st
ep

s

(a) GPT-2 Small (125M)
AdamW
Lion
Sophia

0K 25K 50K 75K 100K
Number of Steps

2.7
2.8
2.9
3.0
3.1
3.2

Va
lid

at
io

n
Lo

ss

(b) GPT-2 Medium (355M)
AdamW, w/ tricks, lr = 3e-4
Lion, w/ tricks, lr = 6e-5
Sophia, w/o tricks, lr = 3e-2
AdamW, w/o tricks, lr = 1.5e-4
AdamW, w/o tricks, lr = 3e-4
Lion, w/o tricks, lr = 3e-5

0.9 0.99 0.999
2

0.02

0.01

0.005

3.356 3.349 3.348

3.345 3.341 3.346

3.345 3.341 3.353

(c) Sensitivity to 2 and

Figure 6: (a) AdamW and Lion trigger gradient clipping frequently. With Sophia, gradient clipping rarely
happens. (b) AdamW and Lion require re-parameterizing attention with a temperature (inverse of layer index).
The plot shows the largest LR that AdamW and Lion without the trick allow to be stable, which is much smaller
than with the trick. In contrast, Sophia does not need this trick. (c) Sophia is not sensitive to γ and β2 choice.

AdamW, Lion, and AdaHessian. As the model size grows, the gap between Sophia and baselines
also becomes larger. Sophia-H and Sophia-G both achieve a 0.05 smaller validation loss on the
355M / 770M model (Figure 4 (b) (c)) with the same 100K steps. This is a significant improvement
since according to scaling laws in this regime (Kaplan et al., 2020; Hoffmann et al., 2022) and results
in Figure 3, an improvement in loss of 0.05 is equivalent to 2x improvement in terms of number of
steps or total compute to achieve the same validation loss.

Sophia achieves the same loss in 50% less steps, total compute and wall-clock time. The im-
provement in validation loss brought by Sophia can be translated into reduction of number of steps
or total compute. In Figure 1 and Figure 3, we evaluate the optimizers by comparing the number of
steps or total compute needed to achieve the same or smaller validation loss. Sophia achieve a 2x
speedup compared with AdamW and Lion across different model sizes.

The scaling law is in favor of Sophia over AdamW. In Figure 1 (d), we plot the validation loss
on OpenWebText of models of different sizes pre-trained for 100K steps. On OpenWebText, the gap
between Sophia and Adam with 100K targeted steps is larger on 355M / 770M models than 125M
models. Moreover, the 540M model trained by Sophia-H has smaller loss than the 770M model
trained by AdamW. The 355M model trained by Sophia-H has comparable loss as the 540M model
trained by AdamW.

Few-shot Evaluation on SuperGLUE. As shown in Figure 5, the improvement in validation loss
transfers to downstream tasks. With the same number of steps in pre-training, GPT-2 and GPT NeoX
pre-trained with Sophia have better few-shot accuracy on most subtasks. Models pre-trained with
Sophia have comparable few-shot accuracy as models pre-trained with AdamW for 2x steps.

3.4 ANALYSIS

Table 1: Wall-clock time and compute.
Algorithm Model Size T(step) T(Hessian) Compute

AdamW 770M 3.25s – 2550
Sophia-H 770M 3.40s 0.12s 2708
Sophia-G 770M 3.42s 0.17s 2678
AdamW 355M 1.77s – 1195
Sophia-H 355M 1.88s 0.09s 1249
Sophia-G 355M 1.86s 0.09s 1255

Comparison of wall-clock time and amount of compute.
We compare the total compute (TFlops) per step and the
wall-clock time on A100 GPUs in Table 1. We report aver-
age time per step (T(step)), time spent in Hessian computa-
tion (T(Hessian)) and total compute following Chowdhery
et al. (2022). Since we calculate the diagonal Hessian esti-
mate with a reduced batch size every 10 steps, the compu-
tation of the Hessian accounts for 6% of the total compute,
and the overall wall-clock time overhead is less than 5% compared with AdamW. In terms of memory
usage, our optimizer has two states, m and h, which results in the same memory cost as AdamW.

Sensitivity to ρ and β2, and transferability of hyperparameters. On a 30M model, we perform
a grid search to test the sensitivity of Sophia-H to hyperparamters (Figure 6 (c)). All combinations
have a similar performance, while β2 = 0.99 and γ = 0.01 performs the best. Moreover, this

8

Published as a conference paper at ICLR 2024

10 20 30 40 50 60
Compute / exaFlops

3.31

3.33

3.35

3.37

Va
lid

at
io

n
Lo

ss

(a) Choices of k
AdamW
Sophia-G, k=1
Sophia-G, k=10
Sophia-G, k=100

10 20 30 40 50 60
Compute / exaFlops

3.31

3.33

3.35

3.37

Va
lid

at
io

n
Lo

ss

(b) Diagonal Hessian Preconditioners

AdamW
E-F+clip
AH+clip
Sophia-H
Sophia-G

10 20 30 40 50 60 70 80
Compute / exaFlops

3.31

3.33

3.35

3.37

3.39

Va
lid

at
io

n
Lo

ss

(c) Clipping
AdamW
Clip
Normalize
AdaHessian, k=1
GNB, k=2
Sophia-G

Figure 7: (a) Hessian update frequency. (b) Diagonal Hessian pre-conditioners. (c) Element-wise clipping.

hyperparameter choice is transferable across model sizes. For all the experiments on 125M, 355M
and 770M, we use the hyperparameters searched on the 30M model, which is γ = 0.01, β2 = 0.99.

Training Stability. Sophia-H has better stability in pre-training compared to AdamW and Lion.
Gradient clipping (by norm) is an important technique in language model pre-training as it avoids
messing up the moment of gradients with one mini-batch gradient computed from rare data (Zhang
et al., 2020). In practice, the frequency that gradients clipping is triggered is related to the training
stability—if the gradient is frequently clipped, the iterate can be at a very instable state. We compare
the proportion of steps where gradient clipping is triggered on GPT-2 small (125M) in Figure 6
(a). Although all methods use the same clipping threshold 1.0, Sophia-H seldomly triggers gradient
clipping, while AdamW and Lion trigger gradient clipping in more than 10% of the steps.

One trick of pre-training deep Transformers is scaling the product of keys and values by the inverse
of layer index as implemented by Mistral (Karamcheti et al., 2021) and Huggingface (Wolf et al.,
2020). This stabilizes training and increases the largest possible learning rate. Without this trick, the
maximum learning rate of AdamW and Lion on GPT-2 medium (355M) can only be 1.5e-4, which is
much smaller than 3e-4 with the trick (the loss will blow up with 3e-4 without the trick). Moreover,
the loss decreases much slower without the trick as shown in Figure 6 (b). In all the experiments,
Sophia-H does not require scaling the product of keys and values by the inverse of the layer index.

3.5 ABLATION STUDY

Choices of Hessian update frequency k. We study the effect of Hessian update frequency
k of Sophia-G on computational overhead and validation loss on a 30M GPT-2. We consider
k = 1, 10, 100 and run each method for 100k, 200k, and 400k steps. All other hyperparameters
are fixed, and we tune the peak learning rate with a grid search. We plot the amount of compute and
the validation loss of each run in Figure 7 (a). While k = 1 has better validation loss with the same
number of steps, the computational overhead is 50% and the speed w.r.t amount of compute is worse
than k = 10. The choice of k = 100 still outperforms AdamW, but is not as good as k = 10.

Diagonal Hessian pre-conditioners. We compare different diagonal Hessian pre-conditioners (with
the same k = 10 and γ found by grid search): Empirical Fisher (E-F+clip), AdaHessian (AH+clip),
Hutchinson (Sophia-H), and GNB (Sophia-G). Note that empirical Fisher is the EMA of squared
gradients, which differs from GNB in label sampling. Results in Figure 7 (b) indicate that GNB
is better than Empirical Fisher, which is consistent with Kunstner et al. (2019). Sophia-H is also
consistently better than AdaHessian. We hypothesize that the difference stems from that the EMA of
the diagonal Hessian estimates (used in Sophia-H) has more denoising effect than the EMA of the
second moment of Hessian estimates (used in AdaHessian).

Element-wise Clipping. We compare different update clipping strategies in Figure 7 (c): element-
wise clipping without pre-conditioners (Clip), update normalization without pre-conditioners (Nor-
malize), AdaHessian and Sophia-G without clipping (GNB). The learning rate is found by grid
search. Note that clipping without pre-conditioner is essentially the same as sign momentum, or
Lion with β1 = β2. Without element-wise clipping, we find that AdaHessian will diverge with
k = 2 and GNB will diverge with k = 5, thus we use k = 1 for AdaHessian and k = 2 for GNB.
Results indicate that per-coordinate clipping itself is already better than AdamW. Further adding the
GNB pre-conditioner makes Sophia-G much better than baselines.

4 CONCLUSION

We introduced Sophia, a scalable second-order optimizer for language model pre-training. Sophia
converges in fewer steps than first-order adaptive methods, while maintaining almost the same per-
step cost. On language modeling with GPT models, Sophia achieves a 2x speed-up compared with
AdamW in the number of steps, total compute, and wall-clock time.

9

Published as a conference paper at ICLR 2024

REFERENCES

Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram Singer. Memory efficient adaptive optimization.
Advances in Neural Information Processing Systems, 32, 2019.

Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable second order
optimization for deep learning. arXiv preprint arXiv:2002.09018, 2020.

Jimmy Ba, Roger Grosse, and James Martens. Distributed second-order optimization using
kronecker-factored approximations. In International Conference on Learning Representations,
2017.

Lukas Balles and Philipp Hennig. Dissecting adam: The sign, magnitude and variance of stochastic
gradients. In International Conference on Machine Learning, pp. 404–413. PMLR, 2018.

MS Bartlett. Approximate confidence intervals. Biometrika, 40(1/2):12–19, 1953.

Sue Becker and Yann Le Cun. Improving the convergence of back-propagation learning with. 1988.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signsgd: Compressed optimisation for non-convex problems. In International Conference on
Machine Learning, pp. 560–569. PMLR, 2018.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace
He, Connor Leahy, Kyle McDonell, Jason Phang, et al. Gpt-neox-20b: An open-source autore-
gressive language model. arXiv preprint arXiv:2204.06745, 2022.

Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical gauss-newton optimisation for deep
learning. In International Conference on Machine Learning, pp. 557–565. PMLR, 2017.

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang.
JAX: composable transformations of Python+NumPy programs, 2018. URL http://github.
com/google/jax.

Heinz Braun and Martin Riedmiller. Rprop: a fast adaptive learning algorithm. In Proceedings of
the International Symposium on Computer and Information Science VII, 1992.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Charles George Broyden. The convergence of a class of double-rank minimization algorithms 1.
general considerations. IMA Journal of Applied Mathematics, 6(1):76–90, 1970.

Olivier Chapelle, Dumitru Erhan, et al. Improved preconditioner for hessian free optimization. In
NIPS Workshop on Deep Learning and Unsupervised Feature Learning, volume 201. Citeseer,
2011.

Pei Chen. Hessian matrix vs. gauss–newton hessian matrix. SIAM Journal on Numerical Analysis,
49(4):1417–1435, 2011.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham, Xuanyi
Dong, Thang Luong, Cho-Jui Hsieh, et al. Symbolic discovery of optimization algorithms. arXiv
preprint arXiv:2302.06675, 2023.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Andrew R Conn, N Gould, and Ph L Toint. Trust-region methods, siam. MPS, Philadelphia, 2000.

Michael Crawshaw, Mingrui Liu, Francesco Orabona, Wei Zhang, and Zhenxun Zhuang. Robustness
to unbounded smoothness of generalized signsgd. arXiv preprint arXiv:2208.11195, 2022.

10

http://github.com/google/jax
http://github.com/google/jax

Published as a conference paper at ICLR 2024

John E Dennis Jr and Robert B Schnabel. Numerical methods for unconstrained optimization and
nonlinear equations. SIAM, 1996.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Timothy Dozat. Incorporating nesterov momentum into adam. 2016.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile: An 800gb
dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Matilde Gargiani, Andrea Zanelli, Moritz Diehl, and Frank Hutter. On the promise of the stochastic
generalized gauss-newton method for training dnns. arXiv preprint arXiv:2006.02409, 2020.

Rong Ge and Tengyu Ma. Decomposing overcomplete 3rd order tensors using sum-of-squares algo-
rithms. arXiv preprint arXiv:1504.05287, 2015.

Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vincent. Fast approx-
imate natural gradient descent in a kronecker factored eigenbasis. Advances in Neural Information
Processing Systems, 31, 2018.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization
via hessian eigenvalue density. In International Conference on Machine Learning, pp. 2232–2241.
PMLR, 2019.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus, 2019.

Roger Grosse. Neural Network Training Dynamics. 2022.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization. In International Conference on Machine Learning, pp. 1842–1850. PMLR, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning lec-
ture 6a overview of mini-batch gradient descent. Cited on, 14(8):2, 2012.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian
smoothing splines. Communications in Statistics-Simulation and Computation, 18(3):1059–1076,
1989.

Peter Izsak, Moshe Berchansky, and Omer Levy. How to train bert with an academic budget. arXiv
preprint arXiv:2104.07705, 2021.

Majid Jahani, Sergey Rusakov, Zheng Shi, Peter Richtárik, Michael W Mahoney, and Martin Takáč.
Doubly adaptive scaled algorithm for machine learning using second-order information. arXiv
preprint arXiv:2109.05198, 2021.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How to escape saddle
points efficiently. In International Conference on Machine Learning, pp. 1724–1732. PMLR,
2017.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

11

Published as a conference paper at ICLR 2024

Siddharth Karamcheti, Laurel Orr, Jason Bolton, Tianyi Zhang, Karan Goel, Avanika Narayan, Rishi
Bommasani, Deepak Narayanan, Tatsunori Hashimoto, Dan Jurafsky, Christopher D. Manning,
Christopher Potts, Christopher Ré, and Percy Liang. Mistral – a journey towards reproducible lan-
guage model training. https://crfm.stanford.edu/2021/08/26/mistral.html,
2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Frederik Kunstner, Philipp Hennig, and Lukas Balles. Limitations of the empirical fisher approxima-
tion for natural gradient descent. Advances in neural information processing systems, 32, 2019.

Frederik Kunstner, Jacques Chen, Jonathan Wilder Lavington, and Mark Schmidt. Noise is not the
main factor behind the gap between sgd and adam on transformers, but sign descent might be.
arXiv preprint arXiv:2304.13960, 2023.

Jason D Lee, Max Simchowitz, Michael I Jordan, and Benjamin Recht. Gradient descent converges
to minimizers. arXiv preprint arXiv:1602.04915, 1050:16, 2016.

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Understanding the difficulty
of training transformers. arXiv preprint arXiv:2004.08249, 2020.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Vien V Mai and Mikael Johansson. Stability and convergence of stochastic gradient clipping: Beyond
lipschitz continuity and smoothness. In International Conference on Machine Learning, pp. 7325–
7335. PMLR, 2021.

James Martens. New insights and perspectives on the natural gradient method. The Journal of
Machine Learning Research, 21(1):5776–5851, 2020.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408–2417. PMLR, 2015.

James Martens, Jimmy Ba, and Matt Johnson. Kronecker-factored curvature approximations for
recurrent neural networks. In International Conference on Learning Representations, 2018.

James Martens et al. Deep learning via hessian-free optimization. In ICML, volume 27, pp. 735–742,
2010.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing lstm lan-
guage models. arXiv preprint arXiv:1708.02182, 2017.

Yurii Nesterov and Boris T Polyak. Cubic regularization of newton method and its global perfor-
mance. Mathematical Programming, 108(1):177–205, 2006.

OpenAI. Gpt-4 technical report. arXiv, 2023.

James M Ortega and Werner C Rheinboldt. Iterative solution of nonlinear equations in several
variables. SIAM, 2000.

Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks. arXiv preprint
arXiv:1301.3584, 2013.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

12

https://crfm.stanford.edu/2021/08/26/mistral.html
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Published as a conference paper at ICLR 2024

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21:1–67, 2020.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. arXiv
preprint arXiv:1904.09237, 2019.

Farbod Roosta-Khorasani and Uri Ascher. Improved bounds on sample size for implicit matrix trace
estimators. Foundations of Computational Mathematics, 15(5):1187–1212, 2015.

Levent Sagun, Leon Bottou, and Yann LeCun. Eigenvalues of the hessian in deep learning: Singu-
larity and beyond. arXiv preprint arXiv:1611.07476, 2016.

Adepu Ravi Sankar, Yash Khasbage, Rahul Vigneswaran, and Vineeth N Balasubramanian. A deeper
look at the hessian eigenspectrum of deep neural networks and its applications to regularization. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 9481–9488, 2021.

Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates. In International confer-
ence on machine learning, pp. 343–351. PMLR, 2013.

Nicol N Schraudolph. Fast curvature matrix-vector products for second-order gradient descent. Neu-
ral computation, 14(7):1723–1738, 2002.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language un-
derstanding systems. Advances in neural information processing systems, 32, 2019.

Colin Wei, Sham Kakade, and Tengyu Ma. The implicit and explicit regularization effects of dropout.
arXiv preprint arXiv:2002.12915, 2020.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gug-
ger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. As-
sociation for Computational Linguistics. URL https://www.aclweb.org/anthology/
2020.emnlp-demos.6.

Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney. Pyhessian: Neural networks
through the lens of the hessian. In 2020 IEEE international conference on big data (Big data), pp.
581–590. IEEE, 2020.

13

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

Published as a conference paper at ICLR 2024

Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney.
Adahessian: An adaptive second order optimizer for machine learning. In proceedings of the AAAI
conference on artificial intelligence, volume 35, pp. 10665–10673, 2021.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep learn-
ing: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. arXiv preprint arXiv:1905.11881, 2019.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv
Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? Advances in Neural
Information Processing Systems, 33:15383–15393, 2020.

Lin Zhang, Shaohuai Shi, and Bo Li. Eva: Practical second-order optimization with kronecker-
vectorized approximation. In The Eleventh International Conference on Learning Representations,
2022a.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022b.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in observed
gradients. Advances in neural information processing systems, 33:18795–18806, 2020.

14

Published as a conference paper at ICLR 2024

A RELATED WORK

Stochastic Adaptive First-order Optimizers in Deep Learning. The idea of adaptive first-order
optimizers dates back to RProp (Braun & Riedmiller, 1992). AdaGrad (Duchi et al., 2011) adapted
the learning rate of features by estimated geometry and assign larger learning rate to infrequent fea-
tures. RMSProp (Hinton et al., 2012) generalized RProp and is capable to work with smaller batch
sizes. Adam (Kingma & Ba, 2014) improved RMSProp by introducing a running average of gradi-
ents, and has so far become the dominant approach to solve optimization problems in deep learning,
especially for training Transformers (Vaswani et al., 2017). Many follow-up works proposed vari-
ants of Adam (Dozat, 2016; Shazeer & Stern, 2018; Reddi et al., 2019; Loshchilov & Hutter, 2017;
Zhuang et al., 2020; You et al., 2019). Chen et al. (2023) performed a search over adaptive first-order
algorithms and discovered Lion, which is a improved version of sign momentum SGD.

Second-order Optimizers in Deep Learning. Second-order optimizers are believed to have the po-
tential to outperform adaptive first-order optimizers. Classical second-order optimization algorithms
pre-condition the gradient with curvature information (Broyden, 1970; Nesterov & Polyak, 2006;
Conn et al., 2000). Over the years, people have developed numerous ways to adapt these methods
to deep learning. To the best of our knowledge, Becker & Le Cun (1988) was the first to use diag-
onal Hessian as the pre-conditioner. Martens et al. (2010) approximated the Hessian with conjugate
gradient. Schaul et al. (2013) automatically tuned learning rate of SGD by considering diagonal
Hessian. Pascanu & Bengio (2013) considered Gaussian Newton’s approximation of Hessian and
Fisher information matrix. Martens & Grosse (2015) and follow-up works (Ba et al., 2017; George
et al., 2018; Martens et al., 2018; Zhang et al., 2022a) proposed to approximate the Hessian based on
the structure of neural networks. Yao et al. (2021); Jahani et al. (2021) proposed to use the EMA of
diagonal Hessian estimator as the pre-conditioner.

Despite these progress on deep learning applications, for decoder-only large language models, Adam
still appears to the most popular optimizer. The authors of this paper suspect that many previous
second-order optimizers face the challenge that the computational / memory overhead due to frequent
Hessian computation hinders improvements in wall-clock time (Martens & Grosse, 2015; Gupta
et al., 2018). Some of them also depend on specific model architecture or hardware structures, e.g.,
Anil et al. (2020) offloads hessian computation to CPUs, and George et al. (2018) needs ResNets and
very large batch size to approximate the Fisher information matrix. To the best of our knowledge,
there was no previous report that second-order optimizers can achieve a speed-up on large language
models in total compute.

Gradient Clipping. Global gradient clipping has been a standard practice in pre-training language
models (Merity et al., 2017; Radford et al., 2019; Izsak et al., 2021; Zhang et al., 2022b). It helps
stabilizes training and avoids the effect of rare examples and large gradient noise. Zhang et al.
(2019); Mai & Johansson (2021) showed that global gradient clipping is faster than standard SGD
when global smoothness does not hold. Zhang et al. (2020); Crawshaw et al. (2022) found out per-
coordinate gradient clipping can function as adaptivity. In addition to gradient clipping, Sophia is
the first to clip the update (coordinate-wise) in second-order methods to avoid the effect of Hessian’s
changing along the trajectory and the inaccuracy of Hessian approximation.

Optimization Algorithms in LM Pre-training. Adam (Kingma & Ba, 2014) (with decoupled
weight decay (Loshchilov & Hutter, 2017)) has become the dominant approach for language model
pre-training (Vaswani et al., 2017; Devlin et al., 2018; Radford et al., 2019; Brown et al., 2020;
Zhang et al., 2022b; Touvron et al., 2023). Different from vision tasks with CNNs (He et al., 2016)
where models trained with SGD generalize better than models trained with Adam, Adam outper-
forms SGD by a huge margin on language modeling tasks with Transformers (Anil et al., 2019; Liu
et al., 2020; Kunstner et al., 2023). Raffel et al. (2020); Chowdhery et al. (2022) trained Transform-
ers with AdaFactor (Shazeer & Stern, 2018), which is a low rank version of Adam. You et al. (2019)
proposed to make the update of Adam proportional to per-layer paramter norm to stably train LLMs.

15

Published as a conference paper at ICLR 2024

B ADDITIONAL EXPERIMENT RESULTS

Dynamics of Sophia in training. We measure the `2 norm of the EMA of the diagonal Hessian ht,
and the proportion of parameters where clipping happens (that is, mt/ht is larger than γ) during pre-
training in Figure 8. After the initial stage, the norm of the Hessian steadily grows. The proportion
of parameters where clipping happens approaches 60%, which corroborates the importance of per-
coordinate clipping in the algorithm.

0K 25K 50K 75K 100K
Number of Steps

0.6

0.7

0.8

0.9

1.0
Pr

op
or

tio
n

Proportion of Paramters with Clipped Update
Sophia

0K 25K 50K 75K 100K
Number of Steps

0

20

40

60

80

100

No
rm

Hessian Norm
Sophia

Figure 8: Visualization of training statistics. (a) The proportion of parameters whose update is
clipped. (b) `2 norm of the EMA of Hessian ht.

Results with different number of steps. Due to space limit, runs with different number of steps and
their comparison are provided in Figure 9. Across different total number of steps, Sophia outperforms
AdamW and Lion with a large margin as the main experiments we presented in Section 3.3.

0K 100K 200K 300K 400K
Number of Steps

2.8

2.9

3.0

3.1

3.2

3.3

Va
lid

at
io

n
Lo

ss

2x Speedup

(a) GPT-2 Small (125M)
AdamW
Lion
Sophia

0K 50K 100K 150K 200K
Number of Steps

2.6

2.8

3.0

3.2

3.4

Va
lid

at
io

n
Lo

ss

2x Speedup

(b) GPT-2 Medium (355M)
AdamW, 100K
AdamW, 200K
Sophia, 100K
Sophia, 200K

Figure 9: Results of training for different steps.

0K 25K 50K 75K 100K
Number of Steps

2.0

2.2

2.4

2.6

2.8

Va
lid

at
io

n
Lo

ss

GPT NeoX, 6.6B
AdamW, 1.2e-4
AdamW, 1.5e-4
Sophia-G

Figure 10: Results of 6.6B GPT NeoX tuning. We only carried two runs for AdamW and one run for
Sophia on the 6.6B model. For AdamW, we tried peak learning rate 1.2e-4 (black solid curve) and
1.5e-4 (black dashed curve). The loss of the 1.5e-4 run blew up at about 17K steps. This indicates
that 1.2e-4 is close to the largest peak learning rate for AdamW in that setup. Note that with the
unstable 1.5e-4 learning rate, AdamW is slower than Sophia-G before blowing up.

C ADDITIONAL EXPERIMENT DETAILS

C.1 HYPERPARAMTER TUNING

The hyperparameters we consider for baselines are as follows: peak learning rate, β1, β2 and weight
decay. All hyperparameters except the peak learning rate are tuned with grid search on a 30M GPT-

16

Published as a conference paper at ICLR 2024

Table 2: Model Configurations and Peak Learning Rate.

Acronym Size d_model n_head depth AdamW lr Lion lr Sophia-H lr Sophia-G lr

– 30M 384 6 6 1.2e-3 4e-4 1e-3 1e-3
Small 125M 768 12 12 6e-4 1.5e-4 6e-4 6e-4
Medium 355M 1024 16 24 3e-4 6e-5 4e-4 4e-4
– 540M 1152 18 30 3e-4 – 4e-4 4e-4
Large 770M 1280 20 36 2e-4 – 3e-4 3e-4
NeoX 1.5B 1.5B 1536 24 48 1.5e-4 – – 1.2e-4
NeoX 6.6B 6.6B 4096 32 32 1.2e-4 – – 6e-5

2 trained for 50K steps. The peak learning rate is tuned on models of different sizes with grid
search separately. We search β1 in [0.8, 0.9, 0.95, 0.96, 0.99] and β2 in [0.9, 0.95, 0.98, 0.99, 0.995].
Weight decay is chosen from 0.05, 0.1, 0.2, 0.5. For Lion, we also include β1 = 0.95, β2 = 0.98 as
suggested by Chen et al. (2023). On 30M models, we found AdamW is sensitive to the choice of
β1 but not β2. β1 = 0.9 works the best for AdamW while β1 = 0.95 works the best for Lion. We
use β2 = 0.95 for AdamW since this is the dominantly used configuration in the LLM pre-training
literature, and β2 = 0.98 for Lion as it is recommended by Chen et al. (2023). We found that weight
decay 0.1 works the best for AdamW, while 0.2 works the best for Lion and Sophia.

For peak learning rate on 125M and 355M, we perform a grid search. For larger models, we search
for the largest possible learning rate with which training does not blow up for each model in the
following list: [6e-4, 4e-4, 3e-4, 2e-4, 1.5e-4, 1.2e-4, 1e-4, 8e-5, 6e-5, 4e-5]. For example, a 6.6B
GPT NeoX model work with 1.2e-4 peak learning rate, but the loss will blow up if we increase the
learning rate to 1.5e-4 as shown in Figure 10. The result of grid search of peak learning rate is
provided in Table 2.

We use β1 = 0.96, β2 = 0.99, ε =1e-12 and k = 10 for Sophia. We adopt the following procedure
to obtain these hyper parameters. We first fix γ = 0.01, k = 10, and tune β1 and β2 with grid search
on a 30M model, and directly use β1 and β2 from the 30M model on models of larger sizes. Similar
to AdamW, we find that Sophia is not sensitive to β2. We then fix β1 = 0.96, β2 = 0.99 and tuning
k = 10. As shown in in Figure 7 (a), k = 10 is better than k = 1 or k = 100 in terms of the balance
between convergence speed and the computation overhead.

After finding out β1 = 0.96, β2 = 0.99, ε = 1e− 12 and k = 10 with the method above, we tune γ
and peak learning rate jointly. We first tune γ to make the proportion of coordinates where the update
is not clipped (i.e., |mt/max{γ · ht, ε}| < 1) in the range of 10% − 50%. We search for γ in the
list of [0.005,0.01,0.02,0.05,0.1,0.2]. As a result we find out γ = 0.01 works the best for Sophia-H
while γ = 0.05 works the best for Sophia-G. We then fix β1, β2 = 0.99, ε, γ, k for all larger models.

To tune the peak learning rate, we adopt the same procedure as we use for baseline methods. The
result of grid search of peak learning rate is also provided in Table 2.

C.2 MODEL AND IMPLEMENTATION DETAILS

We consider three sizes of GPT-2 corresponding to small, medium, and large in Radford et al.
(2019). We also introduce a 30M model for efficient hyperparameter grid search and a 540M
model for scaling law visualization. We provide the model specifications in Table 2. We use the
nanoGPT (https://github.com/karpathy/nanoGPT/) code base. Following nanoGPT,
we use GELU activations and disable bias and Dropout Srivastava et al. (2014) during pre-training.

GPT-2 models are trained on OpenWebText (Gokaslan & Cohen, 2019). The text is tokenized with
the GPT-2 tokenizer (Radford et al., 2019). We use the train and validation split from nanoGPT. The
training set contains 9B tokens, and the validation set contains 4.4M tokens.

We use distributed data parallel with gradient accumulation to enable a batch size of 480. All models
are trained with bfloat16. The 125M and 355M models are trained on machines with 10 A5000
GPUs, while the 770M models are trained on an AWS p4d.24xlarge instance with 8 A100 GPUs.

We consider 1.5B and 6.6B GPT NeoX (Black et al., 2022) models trained on the Pile (Gao et al.,
2020). The models use GPT NeoX tokenizers. We use levanter (https://github.com/
stanford-crfm/levanter/tree/main) for GPT NeoX. We use fully sharded data paral-
lel with gradient accumulation to enable a batch size of 512 for the 1.5B model and 1024 for the
6.6B model. These models are trained on a TPU v3-128 slice.

17

https://github.com/karpathy/nanoGPT/
https://github.com/stanford-crfm/levanter/tree/main
https://github.com/stanford-crfm/levanter/tree/main

Published as a conference paper at ICLR 2024

The context is a passages containing some information. Given a question about the context, use the information to
answer the question with either 'Yes' or 'No’.

Context: 3-way lamp -- The center contact of the bulb typically connects to the medium-power filament, and the
ring connects to the low-power filament. Thus, if a 3-way bulb is screwed into a standard light socket that has only
a center contact, only the medium-power filament operates. In the case of the 50 W / 100 W / 150 W bulb, putting
this bulb in a regular lamp socket will result in it behaving like a normal 100W bulb. Question: do 3-way light bulbs
work in any lamp
Answer: Yes

Context: Perfume: The Story of a Murderer (film) -- Perfume: The Story of a Murderer is a 2006 German period
psychological crime thriller film directed by Tom Tykwer and starring Ben Whishaw, Alan Rickman, Rachel Hurd-
Wood, and Dustin Hoffman. Tykwer, with Johnny Klimek and Reinhold Heil, also composed the music. The
screenplay by Tykwer, Andrew Birkin, and Bernd Eichinger is based on Patrick Süskind's 1985 novel Perfume. Set in
18th century France, the film tells the story of Jean-Baptiste Grenouille (Whishaw), an olfactory genius, and his
homicidal quest for the perfect scent. Question: is the film perfume based on a true story
Answer: No

Given a premise and a hypothesis, answer whether the
hypothesis logically follows from the premise with 'True' or
'False' or 'Neither’.

Context: B: She says that when her husband died oh, that my
uncle had said that he would never put her in a rest home. So
it's kind of, uh, I don't know. I mean, I don't think my parents
would but she is getting pretty bad like she has to have like a
little toilet right by her bed and, it's, A: Uh-huh. B: and my mom
has to take care of her pretty much so it gets, I don't know. it's a
hard decision, but I don't think I would do it to my parents
personally. Question: she would do it to her parents
Answer: No

Context: B: No, it was, I didn't like the way it ended. A: I know,
well the only reason I know whxy it ended is on Arsenio Hall
one night, Christopher Reeves told, that, you know, B: Uh-huh.
A: I can't believe they killed them. Question: they killed them
Answer: Yes

Choose the correct ending for the context.

Choice1: the woman kissed him.
Choice2: the woman made him blush.
Context: The man had lipstick on his cheek because
Answer: Choice1

Choice1: i attended a yoga class.
Choice2: i bought fruits and vegetables.
Context: I made a resolution to eat a healthy diet so
Answer: Choice2

Given a premise and a hypothesis, answer whether the hypothesis follows from the premise with 'Yes' or ‘No’.

Context: The Bank of Italy, the ultimate arbiter of Italian banking mergers, has been engulfed by scandal since
police wire taps revealed Fazio and his wife advised a local banker in a bid for Bank Antonveneta against Dutch bank
ABN AMRO.
Question: A local banker bids for Bank Antonveneta.
Answer: Yes

Context: The Statue of Liberty was reopened to the public on July 5 after its extensive refurbishing. 1986 is a
common year starting on Wednesday of the Gregorian calendar.
Question: The Statute of Liberty was built in 1986.
Answer: None

BoolQ CB

COPARTE

Figure 11: Prompts for SuperGLUE downstream evaluation.

0.0 59.75 119.5 179.25 239.0
Compute / exaFLOPs

2.6

2.8

3.0

3.2

3.4

Va
lid

at
io

n
Lo

ss

2x Speedup

(a) GPT-2 Medium (355M)
AdamW
Sophia-H
Sophia-G

0K 50K 100K 150K 200K
Number of Steps

2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2

Va
lid

at
io

n
Lo

ss

2x Speedup

(c) GPT-2 Large (770M)
AdamW, 100K
AdamW, 200K
Sophia-H, 100K
Sophia-G, 100K

0K 100K 200K 300K 400K
Number of Steps

2.2
2.3
2.4
2.5
2.6
2.7
2.8

Va
lid

at
io

n
Lo

ss

2x Speedup

(c) GPT NeoX, 1.5B
AdamW
Sophia-G

200 400 600
Model Size / M

2.5

2.6

2.7

2.8

2.9

Va
lid

at
io

n
Lo

ss

40% More Parameters

(d) Scaling Laws
AdamW
Sophia-H
Sophia-G

Figure 12: An enlarged version of Figure 1.

We observed AdamW and Lion does not perform well on standard transformers which are larger
than 355M. The iterates become unstable when the learning rate is close to the choice of Radford
et al. (2019). We introduce scaling attention by the inverse of layer index to address this issue
following Karamcheti et al. (2021); Wolf et al. (2020). Note that Sophia does not need this trick as
mentioned in Section 3.4.

C.3 DOWNTREAM EVALUATION

We perform few-shot evaluation of the models on 4 subtasks of SuperGLUE. We use 2-shot prompt-
ing and greedy decoding. The prompt consists of an instruction followed by two examples. The
examples are sampled from the train split while we report the accuracy on validation split averaged
over 5 selection of exemplars. Prompts for each subtask are illustrated in Figure 11.

18

Published as a conference paper at ICLR 2024

D A DETAILED EXPLANATION OF GNB ESTIMATOR

We leverage the structure of the loss to design a biased stochastic estimator for the diagonal Hessian,
following Schraudolph (2002); Martens (2020); Wei et al. (2020). Suppose `(θ, (x, y)) is a loss func-
tion on an example (x, y) of the form `(θ, (x, y)) = `ce(f(θ, x), y) where `ce is the cross-entropy loss
and f(θ, x) ∈ RV is the logits, and V is the number of items/classes in a multi-class classification
problem (e.g., the vocabulary size in LLMs). First, the Hessian of `(θ, (x, y)) (w.r.t to variable θ)
has the well-known Gauss-Newton decomposition (Ortega & Rheinboldt, 2000; Schraudolph, 2002)
(which is a simple consequence of the chain rule),

∇2
θ `(θ) = Jθf(θ, x) · S · Jθf(θ, x)> + Jθθf(θ, x)[q] (11)

where Jθf(θ, x) is the Jacobian of f w.r.t to θ viewed as a matrix in Rd×V , S = ∂2`ce(t,y)
∂t2

∣∣∣
t=f(θ,x)

∈

RV×V is the second-order derivatives of the loss w.r.t to the logits, q = ∂`ce(t,y)
∂t

∣∣∣
t=f(θ,x)

∈ RV is

the first-order derivatives of the loss w.r.t to the logits, and Jθθf(θ, x) is the second-order derivatives
of the multi-variate function f(θ, x) w.r.t θ, viewed as a linear map from RV to Rd×d, where d is the
dimension of the parameter θ.

In the context of neural networks, past works have found that the second term Jθθf(θ, x)[q] in Equa-
tion 11 is often relative smaller than the first term Jθf(θ, x) · S · Jθf(θ, x)> (Sankar et al., 2021),
which is often referred to as the Gauss-Newton matrix (Dennis Jr & Schnabel, 1996; Ortega &
Rheinboldt, 2000; Schraudolph, 2002; Chen, 2011) and used as pre-conditioners in second-order op-
timizers (Botev et al., 2017; Martens, 2020; Gargiani et al., 2020). Following this line of work, we
build an unbiased estimator for the diagonal of the Gauss-Newton matrix, which is a biased estimator
for the diagonal of the Hessian.

We first claim that S only depends f(θ, x) but not y, even though the loss depends on y.3 Thus, S =

∂2`ce(t,ŷ)
∂t2

∣∣∣
t=f(θ,x)

for any ŷ ∈ {1, . . . , V }, which implies that S = Eŷ∼p(θ,x)

[
∂2`ce(t,ŷ)

∂t2

∣∣∣
t=f(θ,x)

]
.

Because `ce(t, y) is the negative log-probability of the probabilistic model defined by the categorical
distribution Cat(t) with parameter t, by Bartlett’s second identity (Bartlett, 1953), we have that,

S = E
ŷ∼Cat(t)

[
∂2`ce(t, ŷ)

∂t2

]
= E
ŷ∼Cat(t)

[
∂`ce(t, ŷ)

∂t

∂`ce(t, ŷ)

∂t

>
]
, (12)

where the first equality holds for t = f(θ, x) and the second equality holds for all t by Bartlett’s
second identity. Therefore, the Gauss-Newton matrix satisfies

Jθf(θ, x) · S · Jθf(θ, x)> = E
ŷ∼Cat(t)

[
Jθf(θ, x)

∂`ce(t, ŷ)

∂t

∂`ce(t, ŷ)

∂t

>
Jθf(θ, x)>

]
= E
ŷ∼Cat(t)

[
∇θ`ce(f(θ, x), ŷ)∇θ`ce(f(θ, x), ŷ)>

]
, (13)

which implies that diag(Jθf(θ, x)·S·Jθf(θ, x)>) = Eŷ∼Cat(t) [∇θ`ce(f(θ, x), ŷ)�∇θ`ce(f(θ, x), ŷ)].
Hence, the quantity `ce(f(θ, x), ŷ)�∇θ`ce(f(θ, x), ŷ) is an unbiased estimator of the Gauss-Newton
matrix for the Hessian of a one-example loss `(f(θ, x), y).

Mini-batch version. Given a mini-batch of inputs {(xb, yb)}Bb=1. The most natural way to build an
estimator for the diagonal of the Gauss-Newton matrix for the Hessian of the mini-batch loss is using

1

B

B∑
b=1

∇`ce(f(θ, xb), ŷb)�∇θ`ce(f(θ, xb), ŷb) , (14)

3Denote by p(θ, x) = softmax(f(θ, x)) ∈ RV the probability vector obtained by applying softmax
on the logits. Indeed, a simple derivation shows that S = diagonal(p(θ, x)) − p(θ, x)p(θ, x)>, where
diagonal(p(θ, x)) is the matrix with the vector p(θ, x) residing on the diagonal. In fact, this is a general prop-
erty of exponential families—the Hessian of the negative log-likelihood of any exponential family distribution
only depends on the parameters of that exponential family, but not on the example on which the likelihood is
evaluated.

19

Published as a conference paper at ICLR 2024

where ŷb’s are labels sampled from the model on inputs xb’s respectively. However, as noted
by Grosse (2022), implementing this estimator is inconvenient under the current auto-differentiation
frameworks, where the users only have access to the average gradient over a mini-batch (as opposed
to the individual ones). Fortunately, by the Bartlett’s first identity (Bartlett, 1953) (which generally
holds for the negative log-likelihood loss of any probabilistic model), we have:

∀b, Eŷb∇`ce(f(θ, xb), ŷb) = 0 . (15)

Let L̂(θ) = 1
B

∑B
b=1 `ce(f(θ, xb), ŷb) be the mini-batch loss on the sampled labels (as opposed to

the original labels). Observing that ŷb’s are independent with each other, we have

Eŷ′bs
[
B · ∇θL̂(θ)�∇θL̂(θ)

]
= Eŷ′bs

[
1

B

B∑
b=1

∇`ce(f(θ, xb), ŷb)�
B∑
b=1

∇`ce(f(θ, xb), ŷb)

]

= Eŷ′bs

[
1

B

B∑
b=1

∇`ce(f(θ, xb), ŷb)�∇`ce(f(θ, xb), ŷb)

]
. (16)

Note that the RHS of Equation 16 is the same as the expectation of Equation 14, which, by Equa-
tion 13, also equals to the diagonal of the Gauss-Newton matrix for the mini-batch loss. Hence, we
use B · ∇θL̂(θ)�∇θL̂(θ) as the estimator.

To the best of our knowledge, this estimator of Gauss-Newton matrix was first used in Wei et al.
(2020). Given the use Bartlett’s first and second identities that are central to the estimator, we call it
Gauss-Newton-Bartlett (GNB) estimator.

E LIMITATIONS

Scaling up to larger models and datasets. Although Sophia demonstrates scalability up to 770M
models and OpenWebText, and there is no essential constraints from further scaling up, we do not
compare with AdamW and Lion on larger models and datasets due to limited resources. We believe
Sophia is faster than AdamW and Lion on larger models given the improvement in scaling laws and
better pre-training stability.

Holistic downstream evaluation. We evaluate pre-trained checkpoints on 4 SuperGLUE subtasks,
which only demonstrates the improvement in downstream performance several datasets. While a
holistic evaluation of language models itself is an open research topic, better downstream evaluation
is still important. The limitation in downstream evaluation is also due to the limited model size,
because language models at this scale do not have enough capabilities such as in-context learning,
and mathematical reasoning.

Evaluation on other domains. While this paper focuses on optimizers for large language modeling,
a more general optimizer should also be evaluated in other domains such as computer vision, rein-
forcement learning, and multimodel tasks. Due to the limitation of computation resources, we leave
the application to other domains and models to future works.

F THEORETICAL ANALYSIS

This section provides runtime bounds for the deterministic version of Sophia that does not depend on
the local condition number (the ratio between maximum and minimum curvature at the local mini-
mum) and the worst-case curvature (that is, the smoothness parameter), demonstrating the advantage
of Sophia in adapting to heterogeneous curvatures across parameter dimensions.

We start with standard assumptions on the differentiability and uniqueness of the minimizer.
Assumption F.1. L : Rd → R is a twice continuously differentiable, strictly convex function with θ∗
being its minimizer. For convenience, we denote λmin(∇2L(θ∗)) by µ.

The following assumptions state that the Hessian has a certain form of continuity—within a neigh-
borhood of size R, the ratio between the Hessians,∇2L(θ′)−1∇2L(θ), is assumed to be bounded by
a constant 2.
Assumption F.2. There exists a constant R > 0, such that

∀θ, θ′ ∈ Rd, ‖θ − θ′‖2 ≤ R =⇒
∥∥∇2L(θ′)−1∇2L(θ)

∥∥
2
≤ 2 (17)

20

Published as a conference paper at ICLR 2024

We analyze the convergence rate of the deterministic version of the Sophia on convex functions,

θt+1 = θt − ηV >t clip(Vt(∇2L(θt))
−1∇L(θt), ρ), (18)

where ∇2L(θt) = V >t ΣtVt is an eigendecomposition of ∇2L(θt). Here, we use the full Hessian
as the pre-conditioner because the diagonal Hessian pre-conditioner cannot always work for gen-
eral functions which may not have any alignment with the natural coordinate system. Moreover,
the matrix Vt transforms (∇2L(θt))

−1∇L(θt) into eigenspace and thus the clipping can be done
element-wise in the eigenspace. We do not need the max between Hessian and ε in the original
version of Sophia because the Hessian is always PSD for convex functions. Finally, the matrix V >t
transforms the update back to the original coordinate system for the parameter update.

Theorem F.3. Under Assumption F.1 and Assumption F.2, let η = 1/2, ρ = R
2
√
d

, the update in Equa-

tion 18 reaches a loss at most ε in T . d · L(θ0)−minL
µR2 + ln µR2

32dε steps.

The first term in the runtime bound is a burn-in time before reaching a local region, where the error
decays exponentially fast so that the runtime bound is logarithmic in 1/ε as the second term in the
runtime bound shows. We remark that the bound does not depend on the condition number (the ratio
between the maximum and minimum eigenvalue of Hessian), as opposed to the typical dependency
on the maximum eigenvalue of the Hessian (or the smoothness parameter) in standard analysis of
gradient descent in convex optimization (Boyd & Vandenberghe, 2004). Moreover, even on simple
quadratic functions, the convergence rate of simplified Adam (SignGD) depends on the condition
number (Appendix G.1). This demonstrates the advantage of Sophia in adapting to heterogeneous
curvatures across parameter dimensions.

G THEORETICAL ANALYSES: DETAILS OF SECTION F

Theorem F.3 is a direct combination of the Lemma G.10 (Descent Lemma), Lemma G.9 and
Lemma G.11. In the analysis, there will be two phases. In the first phase decrease loss to µρ2

8 in
8L(θ(0))−minL

ηµρ2 steps. In the second phase, there will be an exponential decay of error.

Lemma G.1. Under Assumption F.1, we have that L(θ)→∞ whenever ‖θ‖2 →∞.

Proof of Lemma G.1. By convexity of L, we have ∀θ ∈ Rd with ‖θ − θ∗‖2 ≥ 1,

1

‖θ − θ∗‖2
L(θ) +

‖θ − θ∗‖2 − 1

‖θ − θ∗‖2
L(θ∗) ≥ L(θ∗ +

θ − θ∗

‖θ − θ∗‖2
) ≥ min
‖θ̄‖

2
=1
L(θ∗ + θ̄). (19)

Since L is strictly convex, ∆ , min‖θ̄‖
2
=1 L(θ∗ + θ̄)− L(θ∗) > 0. Thus we conclude that

L(θ) ≥ ‖θ − θ∗‖2 ∆ + L(θ∗) ≥ (‖θ‖2 − ‖θ
∗‖2)∆ + L(θ∗). (20)

Therefore when ‖θ‖2 →∞, L(θ)→∞ as well.

Note that we don’t assume the Hessian of loss is Lipschitz. Assumption F.2 only assumes the Hessian
in a neighborhood of constant radius only differs by a constant in the multiplicative sense.

Lemma G.2. For any θ ∈ Rd satisfying L(θ) − minL ≤ µR2

4 , it holds that ‖θ − θ∗‖2 ≤
2
√

L(θ)−minL
µ ≤ R.

Proof of Lemma G.2. We will prove by contradiction. Suppose there exists such θ with L(θ) ≤ µR2

4

but ‖θ − θ∗‖2 > 2
√

L(θ)−minL
µ . We consider θ′ , θ∗ +

√
2L(θ)
µ · θ−θ∗

‖θ−θ∗‖2
. Since θ′ is between θ

and θ∗ and that L is strictly convex, we know that L(θ′) < L(θ). However, by Taylor expansion on
function f(t) , L(θ∗ + t(θ′ − θ∗)), we have that

f(1) = f(0) + f ′(0) +
f ′′(t)

2
, for some t ∈ [0, 1]. (21)

21

Published as a conference paper at ICLR 2024

Note that ‖θ′ − θ∗‖2 ≤ ‖θ − θ∗‖2 ≤ R, by Assumption F.2 and Assumption F.1, we have f ′′(t) =

(θ′ − θ∗)>∇2L(tθ′ + (1 − t)θ∗)(θ′ − θ∗) ≥ 1
2 (θ′ − θ∗)>∇2L(θ∗)(θ′ − θ∗) ≥ µ

2 ‖θ
′ − θ∗‖22 =

2(L(θ) − minL)). Also note that f(1) = L(θ′), f(0) = L(θ∗) and f ′(0) = 0, we conclude that
L(θ′)− L(θ∗) ≥ L(θ)− L(θ∗), namely (θ′) ≥ L(θ). Contradiction!

Lemma G.3. For any θ ∈ Rd satisfying that ‖∇L(θ)‖2 ≤
Rµ
2 , it holds that ‖θ − θ∗‖2 ≤

2‖∇L(θ)‖
µ ≤ R.

Proof of Lemma G.3. We will prove by contradiction. We consider function f(t) ,〈
θ−θ∗
‖θ−θ∗‖2

,∇L(θ∗ + t · θ−θ∗
‖θ−θ∗‖2

)
〉

. Because of the strict convexity of L, f is a strict monotone

increasing function. If ‖θ − θ∗‖ > 2‖∇L(θ)‖
µ but ‖∇L(θ)‖2 ≤

Rµ
2 , then we have f(R) <

f(‖θ − θ∗‖2) ≤ ‖∇L(θ)‖2. On the other hand, by Assumption F.2 and Assumption F.1, f ′(t) ≥ µ
2

for t ∈ [0, R]. Thus f(R) ≥ f(0) +
∫ 2‖∇L(θ)‖

µ

t=0 f ′(t)dt = ‖∇L(θ)‖. Contradiction!

Lemma G.4. For any θ ∈ Rd, the following differential equation has at least one solution on interval
[0, 1]:

dθ(t)

dt
= −(∇2L(θ(t)))−1∇L(θ), θ(0) = θ, (22)

and the solution satisfies that∇L(θ(t)) = (1− t)∇L(θ) for all t ∈ [0, 1] and θ(0) = θ∗.

Proof of Lemma G.4. Since ∇2L is continuous and positive definite by Assumption F.1 , (∇2L)−1

is continuous and thus the above ODE (47) has a solution over interval [0, T) for some positive T
and we let Tmax be the largest positive number such that the solution exists (or Tmax = ∞). Now
we claim Tmax ≥ 1, otherwise ‖θ(t)− θ∗‖2 must diverge to infinity when t→ Tmax. However, for
any t ≤ 1, we have

d∇L(θ(t))

dt
= −∇L(θ), (23)

which implies that∇L(θ(t)) = (1− t)∇L(θ) for all t ∈ [0, 1]. Therefore,
dL(θ(t))

dt
= −(∇L(θ(t)))>(∇2L(θ(t)))−1∇L(θ) = (1− t)(∇L(θ))>(∇2L(θ(t)))−1∇L(θ) ≤ 0.

(24)
Thus L(θ(t)) ≤ L(θ(0)). By Lemma G.1, we know that ‖θ(t)‖ remains bounded for all t ∈
[0, Tmax], thus Tmax ≥ 1. Note that θ(1) has zero gradient, θ(1) must be θ∗. This completes
the proof.

Lemma G.5. For any θ ∈ Rd satisfying (1) L(θ)−minL ≤ µR2

16 or (2) ‖∇L(θ)‖2 ≤
Rµ
4 , it holds

that
L(θ)−minL ≤ ∇L(θ)>(∇2L(θ))−1∇L(θ) ≤ 4(L(θ)−minL). (25)

Proof of Lemma G.5. Let {θ(t)}1t=0 be the solution of Equation 47. We know that ∇L(θ(t)) =
(1 − t)∇L(θ) for all t ∈ [0, 1] and that θ(1) = θ∗ by Lemma G.4. For case (1), by Lemma G.2,
we know that for any t ∈ [0, 1], ‖θ(t)− θ∗‖2 ≤ R/2. For case (2), by Lemma G.3, we know that
for any t ∈ [0, 1], ‖θ(t)− θ∗‖2 ≤ R/2. Thus in both two cases, ‖θ(t)− θ‖2 = ‖θ(t)− θ(0)‖2 =≤
‖θ(t)− θ∗‖+ ‖θ(0)− θ∗‖ ≤ R. By Assumption F.2, it holds that

2(∇2L(θ))−1 � (∇2L(θ(t)))−1 � 1

2
(∇2L(θ))−1. (26)

for all t ∈ [0, 1]. Therefore, we have that

L(θ)−minL = L(θ(0))− L(θ(1)) =

∫ 1

t=0

(∇L(θ(t)))>(∇2L(θ(t)))−1∇L(θ)

=

∫ 1

t=0

(1− t)(∇L(θ))>(∇2L(θ(t)))−1∇L(θ). (27)

The proof is completed by plugging Equation 26 into Equation 27 and noting that
∫ 1

t=0
(1 − t) =

1/2.

22

Published as a conference paper at ICLR 2024

Lemma G.6. For any θ ∈ Rd satisfying (1) L(θ)−minL ≤ µR2

4 or (2) ‖∇L(θ)‖2 ≤
Rµ
2 , it holds

that

L(θ)−minL ≤ µ−1 ‖∇L(θ)‖22 (28)

Proof of Lemma G.6. The proof of Lemma G.6 is almost the same as that of Lemma G.5 and thus
omitted.

Lemma G.7. For any θ ∈ Rd satisfying L(θ)−minL ≤ µR2

16 , it holds that

∥∥(∇2L(θ))−1∇L(θ)
∥∥

2
≤

√
8(L(θ)−minL)

µ
. (29)

Proof of Lemma G.7. By Lemma G.2, we have that ‖θ − θ∗‖2 ≤ R. By Assumption F.2, we have
∇2L(θ) � 1

2∇
2L(θ∗) � µ

2 Id. By Lemma G.5, we have that

4(L(θ)−minL) ≥∇L(θ)>(∇2L(θ))−1∇L(θ) (30)

≥∇L(θ)>(∇2L(θ))−1∇2L(θ)(∇2L(θ))−1∇L(θ) (31)

≥µ
2

∥∥∇L(θ)>(∇2L(θ))−1
∥∥2

2
. (32)

This completes the proof.

Lemma G.8. For any θ ∈ Rd satisfying that
∥∥((∇2L(θ))−1∇L(θ)

∥∥
2
≤ R

2 , it holds that

L(θ)−minL ≤ ∇L(θ)>(∇2L(θ))−1∇L(θ) ≤ 4(L(θ)−minL). (33)

Proof of Lemma G.8. Let {θ(t)}1t=0 be the solution of Equation 47 and we claim that for all t ∈
[0, 1], ‖θ(t)− θ‖2 ≤ R. Otherwise, let T be the smallest positive number such that ‖θ(T)− θ‖2 =
R. Such T exists because ‖θ(t)− θ‖2 is continuous in t and ‖θ(0)− θ‖2 = 0. We have that

R = ‖θ(T)− θ(0)‖2 ≤
∫ T

t=0

∥∥∥∥dθ(t)

dt

∥∥∥∥
2

dt (34)

=

∫ T

t=0

∥∥((∇2L(θ(t)))−1∇L(θ)
∥∥

2
dt (35)

≤
∫ T

t=0

∥∥(∇2L(θ(t)))−1∇2L(θ)
∥∥

2

∥∥((∇2L(θ))−1∇L(θ)
∥∥

2
dt (36)

≤2

∫ T

t=0

∥∥((∇2L(θ))−1∇L(θ)
∥∥

2
dt (37)

≤2T
R

2
= RT, (38)

which implies T = 1. Here in Equation 37, we use Assumption F.2. Thus we conclude that for all
t ∈ [0, 1], ‖θ(t)− θ‖2 ≤ R. By Assumption F.2, it holds that

2(∇2L(θ))−1 � (∇2L(θ(t)))−1 � 1

2
(∇2L(θ))−1. (39)

Therefore, we have that

L(θ)−minL = L(θ(0))− L(θ(1)) =

∫ 1

t=0

(∇L(θ(t)))>(∇2L(θ(t)))−1∇L(θ)

=

∫ 1

t=0

(1− t)(∇L(θ))>(∇2L(θ(t)))−1∇L(θ). (40)

The proof is completed by plugging Equation 39 into Equation 40 and noting that
∫ 1

t=0
(1 − t) =

1/2.

23

Published as a conference paper at ICLR 2024

Lemma G.9. If ρ ≤ R
2
√
d

, then for any ∆ ≤ Rρµ
10 and any θ ∈ Rd satisfying

d∑
i=1

min{ρ
∣∣v>i ∇L(θ)

∣∣ , σ−1
i

∣∣v>i ∇L(θ)
∣∣2} ≤ ∆, (41)

where ∇2L(θ) = V >ΣV is the eigendecomposition of ∇2L(θ), vi is the ith row of V and Σ =
diag(σ1, . . . , σd), it holds that

L(θ)−minL ≤ ∆ +
25∆2

ρ2µ
(42)

In particular, if we set ∆ , µρ2

20 , we have L(θ)−minL ≤ µρ2

8 .

Proof of Lemma G.9. Let Iθ , {i ∈ [d] |
∣∣v>i ∇L(θ)

∣∣σ−1
i ≤ ρ} be the set of indices where clipping

does not happen. Then we have that∑
i∈Iθ

σ−1
i

∣∣v>i ∇L(θ)
∣∣2 ≤ ∆ (43)

∑
i/∈Iθ

ρ
∣∣v>i ∇L(θ)

∣∣ ≤ ∆ (44)

Now we consider a new strictly convex loss function in R|Iθ|, which is L restricted on the space of
{θ +

∑
i∈Iθ w[i]vi | w ∈ R|Iθ|}, that is, Lθ(w) = L(θ +

∑
i∈Iθ w[i]vi). This new loss function Lθ

clearly satisfy Assumption F.2 since it is a restriction of L into some subspace of Rd. By Lemma G.1,
we know that infw Lθ(w) can be attained and we denote it by w∗. By Assumption F.1, we know that
Lθ is strictly convex and thus∇2Lθ(w) � 0, which means Assumption F.1 also holds for Lθ.

Next we will apply Lemma G.8 on Lθ at w = 0. We use VIθ ∈ R|I|×d to denote the submatrix of V
containing rows in I for any I ⊂ [d]. One can verify by chain rule that∇Lθ(w) = VIθ∇L(θ+V >Iθw)

and that∇2Lθ(w) = VIθ∇2L(θ + V >Iθw)V >Iθ . Thus we have that

(∇2Lθ(0))−1∇Lθ(0) = VIθ (∇2L(θ))−1∇L(θ). (45)

By the definition of Iθ, we know that
∥∥VIθ (∇2L(θ))−1∇L(θ)

∥∥∞ ≤ ρ. Thus∥∥(∇2Lθ(0))−1∇Lθ(0)
∥∥

2
≤
√
d
∥∥VIθ (∇2L(θ))−1∇L(θ)

∥∥
∞ =

√
d · ρ ≤ R

2 . Thus we can apply
Lemma G.8 on Lθ at w = 0 and conclude that

Lθ(0)− Lθ(w∗) ≤ ∇Lθ(0)>(∇2Lθ(0))−1∇Lθ(0) =
∑
i∈Iθ

σ−1
i

∣∣v>i ∇L(θ)
∣∣2 ≤ ∆ (46)

Thus L(θ)− L(θ + V >Iθw
∗) = Lθ(0)− Lθ(w∗) ≤ ∆.

It remains to show that L(θ + V >Iθw
∗) − L(θ∗) ≤ 25∆2

ρ2µ . To do so, our strategy is to first show that∥∥∇L(θ + V >Iθw
∗)
∥∥

2
is small and then to use Lemma G.6. We will use Icθ to denote the complement

of Iθ in [d] and VIcθ ∈ R(d−|Iθ|)×d to denote the submatrix of V which contains all the rows that do
not belong to Iθ. Note that w∗ is the minimizer of Lθ, we know that VIθ∇L(θ + V >Iθw

∗) = 0 and
that

∥∥∇L(θ + V >Iθw
∗)
∥∥

2
=
∥∥VIcθ∇L(θ + V >Iθw

∗)
∥∥

2
.

Now we consider the following ODE

dw(t)

dt
= −(∇2Lθ(w(t)))−1∇Lθ(0), w(0) = 0. (47)

By Lemma G.4, we know this ODE has solution w(t) over interval [0, 1] with w(1) = w∗. With the
same argument in the proof of Lemma G.8, we know that ‖w(t)‖2 ≤ R for all t ∈ [0, 1]. Thus we

24

Published as a conference paper at ICLR 2024

have for any t ∈ [0, 1],∥∥∥∥VIcθ d∇L(θ + VIθw(t))

dt

∥∥∥∥
2

(48)

=
∥∥VIcθ∇2L(θ + VIθw(t))VIθ (∇2Lθ(w(t)))−1∇Lθ(0)

∥∥
2

(49)

=
∥∥VIcθ∇2L(θ + VIθw(t))VIθV

>
Iθ

(∇2L(θ + VIθw(t)))−1∇L(θ)
∥∥

2
(50)

≤
∥∥∥VIcθ√∇2L(θ + VIθw(t))

∥∥∥
F

(51)

·
∥∥∥√∇2L(θ + VIθw(t))VIθV

>
Iθ

(∇2L(θ + VIθw(t)))−1∇L(θ)
∥∥∥

2
(52)

For the first term (Equation 51), by Assumption F.2, we have that∥∥∥VIcθ√∇2L(θ + VIθw(t))
∥∥∥2

F
≤ 2VIcθ∇

2L(θ)VIcθ = 2
∑
i/∈Iθ

σi ≤ 2
∑
i/∈Iθ

v>i ∇L(θ)

ρ
≤ 2∆

ρ2
. (53)

For the second term (Equation 52), by Assumption F.2, we have that∥∥∥√∇2L(θ + VIθw(t))VIθV
>
Iθ

(∇2L(θ + VIθw(t)))−1∇L(θ)
∥∥∥2

2
(54)

≤8
∥∥∥√∇2L(θ)VIθV

>
Iθ

(∇2L(θ))−1∇L(θ)
∥∥∥2

2
(55)

=8∇L(θ)>VIθV
>
Iθ

(∇2L(θ))−1VIθV
>
Iθ
∇L(θ) (56)

=8
∑
i∈Iθ

σ−1
i

∣∣v>i ∇L(θ)
∣∣2 ≤ 8∆. (57)

Thus we conclude that
∥∥∥VIcθ d∇L(θ+VIθw(t))

dt

∥∥∥
2
≤ 4∆

ρ , which implies that∥∥∇L(θ + V >Iθw
∗)
∥∥

2
=
∥∥VIcθ∇L(θ + V >Iθw

∗)
∥∥

2
(58)

=

∥∥∥∥VIcθ∇L(θ) +

∫ 1

t=0

VIcθ
d∇L(θ + VIθw(t))

dt
dt

∥∥∥∥
2

(59)

≤
∥∥VIcθ∇L(θ)

∥∥
2

+

∫ 1

t=0

∥∥∥∥VIcθ d∇L(θ + VIθw(t))

dt

∥∥∥∥
2

dt (60)

≤∆

ρ
+

4∆

ρ
=

5∆

ρ
. (61)

Applying Lemma G.6, we have that

L(θ + V >Iθw
∗)−minL ≤ µ−1

∥∥∇L(θ + V >Iθw
∗)
∥∥2

2
=

25∆2

ρ2µ
. (62)

This completes the proof.

Lemma G.10 (Descent Lemma). For any η, ρ > 0 with ηρ ≤ R/
√
d, θ ∈ Rd and any eigendecom-

position of∇2L(θ), where VtV >t = Id, σt is diagonal ∇2L(θ) = V >ΣV , define

θ+ , θ − ηV >clip(V (∇2L(θ))−1∇L(θ), ρ), (63)

it holds that

L(θ+)− L(θ) ≤ −(η − η2)
d∑
i=1

min{ρ
∣∣v>i ∇L(θ)

∣∣ , σ−1
i

∣∣v>i ∇L(θ)
∣∣2}, (64)

where vi is the ith row of matrix V .

Proof of Lemma G.10. Let u , clip(V (∇2L(θ))−1∇L(θ), ρ). By the definition of clip operation,
we know that

∥∥V >u∥∥
2

= ‖u‖2 ≤
√
dρ. Thus we have ‖θ+ − θ‖ = η

∥∥V >u∥∥
2
≤ ηρ

√
d. Define

25

Published as a conference paper at ICLR 2024

f(t) = L(tθ+ + (1− t)θ). By Assumption F.2, we know that f ′′(t) ≤ 2f ′′(0) for all t ∈ [0, 1] and
thus

f(1) = f(0) + f ′(0) +

∫ 1

s=0

∫ s

t=0

f ′′(s)dsdt ≤ f(0) + f ′(0) + f ′′(0). (65)

It remains to show that

1. f ′(0) = −η
∑d
i=1 min{ρ

∣∣v>i ∇L(θ)
∣∣ , σ−1

i

∣∣v>i ∇L(θ)
∣∣2};

2. f ′′(0) ≤ η2
∑d
i=1 min{ρ

∣∣v>i ∇L(θ)
∣∣ , σ−1

i

∣∣v>i ∇L(θ)
∣∣2};

First, by chain rule, we have f ′(0) =
〈
∇L(θ),−ηV >u

〉
= 〈V∇L(θ),−ηu〉 =

−η
〈
V∇L(θ), clip(Σ−1V∇L(θ), ρ)

〉
= −η

∑d
i=1 min{ρ

∣∣v>i ∇L(θ)
∣∣ , σ−1

i

∣∣v>i ∇L(θ)
∣∣2}.

Second, again by chain rule, we have f ′′(0) = η2
〈
V >u,∇2L(θ)V >u

〉
= η2 〈u,Σu〉 =∑d

i=1 |ui|
2
σi. Note that by definition |ui| = min{

∣∣v>i ∇L(θ)
∣∣ /σi, ρ}, we have |ui|2 σi ≤

min{
∣∣v>i ∇L(θ)

∣∣ /σi, ρ} · ∣∣v>i ∇L(θ)
∣∣ /σi · σi = min{

∣∣v>i ∇L(θ)
∣∣2 /σi, ρ ∣∣v>i ∇L(θ)

∣∣}, which com-
pletes the proof.

Lemma G.11. If ηρ ≤ R/
√
d and for some T ∈ N, L(θT)−minL ≤ µρ2

8 , then if holds that for all
t ≥ T ,

1. θt+1 = θt − η(∇2L(θt))
−1∇L(θt);

2. L(θt)−minL ≤ (1− η(1− η))t−T (L(θT)−minL).

Proof of Lemma G.11. First by Lemma G.10, we have for all t ≥ T , (θt) − minL ≤ L(θT) −
minL ≤ µρ2

8 , therefore by Lemma G.7, we have
∥∥(∇2L(θt))

−1∇L(θt)
∥∥

2
≤ ρ for all t ≥ T , which

implies clipping will not happen. This completes the proof of the first claim.

For the second claim, by Lemmas G.5 and G.10, we have that

L(θt+1)− L(θt) ≤− (η − η2)

d∑
i=1

σ−1
i

∣∣v>i ∇L(θt)
∣∣2 (66)

=− (η − η2)∇L(θt)(∇2L(θt))
−1∇L(θt) (67)

≤− η(1− η)(L(θt)−minL), (68)
which completes the proof.

G.1 LOWER BOUND FOR SIGNGD ON 2-DIMENSIONAL QUADRATIC LOSS

Define Lµ,β : R2 → R as a quadratic function with parameter µ, β as Lµ,β(θ) , µ
2 θ

2
[1] + β

2 θ
2
[2].

We have the following lower bound, which shows signGD’s convergence rate has to depend on the
condition number β/µ.
Theorem G.12. For any µ, β,∆, ε > 0, suppose there exist a learning rate η and a time T such that
for all θ0 satisfying that Lµ,β(θ0) ≤ ∆, signGD reaches loss at most ε at step T − 1 and T (in the

sense that Lµ,β(θT) ≤ ε and Lµ,β(θT−1) ≤ ε). Then, T must satisfy T ≥ 1
2 (
√

∆
ε −
√

2)
√

β
µ .

Proof of Theorem G.12. We consider two initialization: θ0 = (0,
√

2∆
β) and θ′0 = (

√
2∆
µ , 0), and

let θt and θ′t be the iterates under the two initializations. For each coordinate i ∈ {1, 2}, because
|(θt)[i]−(θt+1)[i]| = η, we have that |(θt)[i]|+|(θt+1)[i]| ≥ η. Thus 2ε ≥ Lµ,β(θT)+Lµ,β(θT−1) ≥
β
2 ((θT)2

[2] + (θT−1)2
[2]) ≥

βη2

4 , which implies η ≤
√

8ε
β .

The fact that Lµ,β(θ′T)+Lµ,β(θ′T−1) ≤ 2ε implies (θ′T)[1] ≤
√

4ε
µ . Because SignGD can only move

each coordinate by η at most, we have (T − 1)η ≥
√

2∆/µ −
√

4ε
µ . Using the fact that η ≤

√
8ε
β ,

we have that 2(T − 1) ≥ (
√

∆
ε −
√

2)
√

β
µ , which completes the proof.

26

Published as a conference paper at ICLR 2024

G.2 1D NON-CONVEX FUNCTION

In this subsection, we consider non-convex case. We start with an 1D non-convex function L(θ)
where θ ∈ R.

For simplicity, we take ε = 0 and consider the deterministic version of Sophia,

θ ← θ − η · clip(max{L′′(θ), 0}−1 · L′(θ), ρ) . (69)

where we use the convention that for any x ∈ R, x 6= 0, x/0 = sign(x) · ∞ and 0/0 = 0.

For simplicity, we first assume that L has a single minimizer (When there are more than one local
minima, the algorithm will simplify converges to the closest local minima.)
Assumption G.13. We assume that L is a three times differentiable function with only one minimizer,
θ∗, where µ , L′′(θ∗) > 0.

The key challenges for second-order methods are two-fold as described below.

1. When the Hessian is much bigger than the gradient, then the update made by the second
order algorithm L′′(θ)−1L′(θ) is too small. For example, when L(θ) = exp(exp(θ)),
second-oder algorithm cannot work. This oftentimes happens when the third-order deriva-
tives is much larger than the second-order derivative, and as a consequence the second-order
derivative is larger than the first-order derivative.

2. When there exists a saddle point where the gradient is zero, and but the Hessian is very
close to zero. Such saddle points are often called non-strict saddle points Ge & Ma (2015).

The first situation is a pathological situation and past works on Newton’s method oftentime assume
that it does not occur. Situation 2 is also a common challenging situation that most prior works on
non-convex optimization excludes Ge & Ma (2015); Lee et al. (2016); Jin et al. (2017) because SGD
and many first order methods cannot escape such saddle points. Our assumptions below assume that
these two cases do not occur.
Definition G.14. For any γ,G, α ∈ R+, we say that function L : R → R satisfies the (γ,G, α)
strict-saddle-and-bounded-third-order-derivative condition iff

G ≤ sup
ε>0

inf
{
|L′(θ)|

∣∣∣ − ε ≤ L′′(θ) ≤ α} (70)

γ ≥ sup

{
2
|L′′′(θ)|
L′′(θ)

∣∣∣ L′′(θ) ≥ α/2} (71)

Note that γ > 0 means that any stationary point has a decent Hessian, that is, is either a local
minimum or local maximum with a reasonably strong curvature. This condition will matter more
for the high-dimensional cases. Our bounds will depend on G and γ (though G and γ depends on
α implicitly.) We also note that the bound (71) cannot hold over all θ ∈ R (as opposed to over all
θ such that |L′′(θ)| ≥ α/2) for non-convex function, because when L′′(θ) changes sign, i.e., from

positive to negative, |L
′′′(θ)|
L′′(θ) has to be unbounded (or even undefined when L′′(θ) = 0.)

Theorem G.15 (Main, 1D Non-convex). Assume one-dimensional function L satisfies Assump-
tion G.13 and (γ,G, α) strict-saddle-and-bounded-third-order-derivative property (defined in Defi-
nition G.14). Then, picking η = 1

2 and ρ = 1
2γ , we have that the algorithm with in update Equa-

tion 69 reaches a loss at most ε in at most O(T) steps where

T =
L(θ0)−minL

min{4α/γ2, G2/α}
+ ln

L(θ0)−minL

ε
(72)

G.3 DECOMPOSABLE NON-CONVEX FUNCTIONS

Because our algorithm uses only element operations, it makes sense to consider a non-convex func-
tion L(θ) that can be decomposed into a sum of non-convex 1-D functions on each individual pa-
rameter:

L(θ) =

d∑
i=1

Li(θ[i]) (73)

27

Published as a conference paper at ICLR 2024

As have been done in Equation 69, for simplicity, we take ε = 0 and consider the deterministic
version of Sophia,

∀i ∈ [d], θ[i] ← θ[i] − η · clip(max{L′′i (θ[i]), 0}−1 · L′i(θ[i]), ρ) . (74)

Theorem G.16 (Non-convex, Decomposable). Assume function L is decomposable as in Equa-
tion 73. Suppose each Li satisfies Assumption G.13 with minimizer θ∗[i] and L′′i (θ∗[i]) = µi, has
(γ,G, α) strict-saddle-and-bounded-third-order-derivative property (defined in Definition G.14).
Then, picking η = 1

2 and ρ = 1
2α , we have that the algorithm with in update Equation 74 reaches a

loss at most ε in at most O(T) steps where

T =
L(θ0)−minL

min{4α/γ2, G2/α}
+ ln

L(θ0)−minL

ε
(75)

We note that Theorem G.16 is a direct corollary of Theorem G.15. The Theorem does not depend
on the condition number (the ratio between the largest and smallest curvatures among all dimen-
sions). Instead, we assume that all dimension satisfy the same strict-saddle and bounded third-order
derivative properties as stated in Definition G.14.

A strong theoretical analysis of any second-order optimizers’ convergence for non-convex cases is
of its own interest and we hope that our work can motivate more theoretical work on second-order
algorithms in the future.

G.4 PROOFS OF THEOREM G.15

We state a slightly more general version of Theorem G.15 for generality.
Theorem G.17. Assume one-dimensional function L satisfies Assumption G.13 and (γ,G, α) strict-
saddle-and-bounded-third-order-derivative property (defined in Definition G.14). Then, for any η <
1, ρ ≤ 1

2γ , θ0 ∈ R and ε > 0, it holds that

∀T ∈ N, T ≥ 1

η(1− η)

(
L(θ0)−minL

min{αρ2, G2/α}
+ ln

L(θ0)−minL

ε

)
=⇒ L(θT) ≤ ε.

(76)

In particular, if we pick η = 1
2 and ρ = 1

2γ , we have that

∀T ∈ N, T ≥ 4

(
L(θ0)−minL

min{4α/γ2, G2/α}
+ ln

L(θ0)−minL

ε

)
=⇒ L(θT) ≤ ε. (77)

Lemma G.18. Under Assumption G.13, for all θ ∈ R, 〈θ − θ∗, L′(θ)〉 ≥ 0, and the equality is only
attained at θ = θ∗.

Proof. Lemma G.18 It suffices to show that there is only one stationary point, which is θ∗. Suppose
there is another stationary point which is larger than θ, let θ′ be the smallest stationary point larger
than θ∗. We have that L′(θ′)− L′(θ∗) =

∫ θ′
θ=θ∗

L′′(θ) = 0 and for any θ ∈ (θ∗, θ′),
∫ θ
s=θ∗

L′′(s)ds
has the same sign. The sign must be positive because L′′(θ) is continuous and positive at θ∗ by As-
sumption G.13. Thus we conclude that L′′(θ′) < 0. However, this implies θ′ is a local maximizer,
which contradicts with Assumption G.13.

Lemma G.19. Under Assumption G.13, for any θ′ ∈ R such that L′′(θ′) < 0, it holds that

|L′(θ′)| ≥ sup
ε>0

inf
{
|L′(θ)|

∣∣∣ − ε ≤ L′′(θ) < 0
}
. (78)

Proof of Lemma G.19. Since L′′ is continuous, and L′′(θ′) < 0, L′′(θ∗) > 0, we know for any
ε > 0, the set

{
|L′(θ)|

∣∣∣ − ε ≤ L′′(θ) < 0
}

is not empty. Now we claim that for any ε > 0, there
is a θε such that |L′(θε)| ≤ |L′(θ′)| and −ε ≤ L′′(θε) < 0, which would imply that |L′(θ′)| ≥
supε>0 |L′(θε)| ≥ supε>0 inf

{
|L′(θ)|

∣∣∣ − ε ≤ L′′(θ) < 0
}

.

Now we prove the above claim. Without loss of generality, we assume θ′ > θ∗. By Lemma G.18,
we know L′(θ) is positive on (θ∗,∞). Now let ∆ be the infimum of positives number such that

28

Published as a conference paper at ICLR 2024

L′′(θ∗ + ∆) = 0. (if no positive ∆ makes L′′(θ∗ + ∆) = 0, we set ∆ = ∞.) It is evident
that L′(θ) is positive and decreasing on (θ∗, θ∗ + ∆). We proceed in two cases: (1) If ∆ is not
∞, then since L′′ is continuous, we know L′′(θ∗ + ∆) = 0 and ∆ is the smallest number such
that L′′(θ∗ + ∆) = 0. Thus for any ε > 0, there is some point sufficiently close to θ∗ + ∆ which
satisfies the requirement in the claim. (2) If ∆ = ∞, note for any θ > θ′, we have that −L(θ′) ≤
L′(θ) − L′(θ′) =

∫ θ
s=θ′

L′′(s)ds ≤ (θ − θ′) · supθ∈[θ′,∞) L
′′(θ). Taking θ → ∞, we know that

supθ∈[θ′,∞) L
′′(θ) = 0. Thus for any ε > 0, there is some point larger than θ′ but with arbitrarily

small Hessian (in absolute value) which satisfies the claim.

As a direct corollary of Lemma G.19, we have Corollary G.20.

Corollary G.20. Under Assumption G.13, for any γ,G, α ∈ R+, and function L : R → R satisfies
the (γ,G, α) strict-saddle-and-bounded-third-order-derivative condition

G ≤ inf
{
|L′(θ)|

∣∣∣ −∞ < L′′(θ) ≤ α
}

(79)

γ ≥ sup

{
2
|L′′′(θ)|
L′′(θ)

∣∣∣ L′′(θ) ≥ α/2} (80)

Lemma G.21. In the setting of Theorem G.17, for any θ, θ′ ∈ R satisfying |θ − θ′| ≤ 1/γ (1/γ =∞
if γ = 0), it holds that

1. L′′(θ) ≥ α =⇒ L′′(θ′) ≥ L′′(θ)
2 ;

2. L′′(θ) ≥ α/2 =⇒ L′′(θ′) ≤ 2L′′(θ);

Proof of Lemma G.21. We first define f(t) , f(θ+ t sign(θ′− θ)). We will prove the first claim by
contradiction. Suppose the first claim is not true, then there exists t ∈ (0, 1/γ] such that L′′(f(t)) <
L′′(θ)

2 . We let t∗ be the smallest number in (0, 1/γ] that L′′(f(t∗)) = L′′(θ)
2 . Such t∗ always

exists because L′′(θ) is differentiable by Assumption G.13 and thus continuous. By definition of t∗,

we know that for all t ∈ [0, t∗], γ/2 ≥ |L
′′′(f(t)|

L′′(f(t)) ≥ |lnL
′′(f(t))|. Thus ln 2 = lnL′′(f(t∗)) −

lnL′′(f(0)) =
∫ t∗
t=0

d lnL′′(f(t))
dt dt ≥ t∗γ/2 ≥ −1/2. However, − ln 2 < −1/2. Contradiction!

Suppose L′′(f(t)) ≥ α/2 for all t ∈ [0, 1], then we have lnL′′(f(|θ∗ − θ|)) − lnL′′(f(0)) =∫ |θ∗−θ|
t=0

d lnL′′(f(t))
dt dt ≤ |θ∗ − θ| γ/2 ≤ 1/2 < ln 2. Otherwise, let t∗ be the largest number in [0, 1)

such that L′′(f(t∗)) = α/2. Applying the previous argument we have L′′(θ′) ≤ 2L′′(f(t∗)) = α ≤
L′′(θ). This completes the proof.

Lemma G.22. In the setting of Theorem G.17, for any θ ∈ R satisfying that
∣∣((L′′(θ))−1L′(θ)

∣∣
2
≤

1
2γ and that L′′(θ) > α, it holds that

L(θ)−minL ≤ (L′′(θ))−1 |L′(θ)|2 ≤ 4(L(θ)−minL). (81)

Proof of Lemma G.22. By Lemma G.21, we know that L′′(θ′) ≥ 1
2L
′′(θ) for all |θ − θ′| ≤ 1/γ.

Thus we must have
〈
L′(θ), L′(θ − sign(L′(θ)) · 1

γ)
〉
≤ |L′(θ)|2 − |L′(θ)| L

′′(θ)
2γ < 0. Thus

|θ∗ − θ| ≤ 1/γ and L is ∇
2L(θ)
2 -strongly convex between θ and θ∗, which implies that

L(θ∗) ≥ L(θ) + (θ∗ − θ)L′(θ) +
1

4
|θ∗ − θ|2 L′′(θ) ≥ L(θ)− 1

4
|L′(θ)|2 (L′′(θ))−1. (82)

Similarly, by Lemma G.21, we know that L′′(θ′) ≤ 2L′′(θ) for all |θ − θ′| ≤ 1/γ. Thus we have

L(θ∗) ≤ L(θ) + (θ∗ − θ)L′(θ) + |θ∗ − θ|2 L′′(θ) ≤ L(θ)− |L′(θ)|2 (L′′(θ))−1. (83)

The proof is completed by noting that L(θ∗) = minL.

29

Published as a conference paper at ICLR 2024

Lemma G.23 (Descent Lemma for 1D non-convex loss). In the setting of Theorem G.17, for any
η, ρ > 0 with ηρ ≤ 1/γ and θ ∈ R. Define

θ+ , θ − ηclip
(

L′(θ)

max{∇2L(θ), 0}
, ρ

)
, (84)

it holds that

L(θ+)− L(θ) ≤− (η − η2) min

{
ρ |L′(θ)| , |L′(θ)|2

max{L′′(θ), α}

}
(85)

≤− (η − η2) min
{
ρ2α,G2/α, L(θ)−minL

}
(86)

Proof of Lemma G.23. We first prove (85). Let u , clip
(

L′(θ)
max{∇2L(θ),0} , ρ

)
. By the definition of

clip operation, we know that |u| ≤ ρ. Thus we have |θ+ − θ| = η |u| ≤ ηρ. We will proceed by
discussing two cases respectively: L′′(θ) ≥ α and L′′(θ) ≤ α. Define f(t) = L(tθ+ + (1− t)θ).

First, for the case L′′(θ) ≥ α. By Lemma G.21, we know that f ′′(t) ≤ 2f ′′(0) for all t ∈ [0, 1] and
thus

f(1) = f(0) + f ′(0) +

∫ 1

s=0

∫ s

t=0

f ′′(s)dsdt ≤ f(0) + f ′(0) + f ′′(0). (87)

It remains to show that

1. f ′(0) = −ηmin{ρ |L′(θ)| , (L′′(θ))−1 |L′(θ)|2};

2. f ′′(0) ≤ −η2 min{ρ |L′(θ)| , (L′′(θ))−1 |L′(θ)|2};

The first claim is immediate by chain rule. The second claim holds because uL′′(θ) ≤ |L′(θ)| by
definition of u. This completes the proof of the first case.

For the second case, we have L′′(θ) ≤ α, which implies that |u| ≥ |u′| where u′ , min{ |L
′(θ)|
α , ρ}.

We have L(θ+) − L(θ) =
∫ θ−u
θ′=θ

L′(θ′)dθ′ ≤
∫ θ−u′
θ′=θ

L′(θ′)dθ′, due to Lemma G.18. Furthermore,
we have that∫ θ−ηu′

θ′=θ

L′(θ′)dθ′ = −ηu′L′(θ) +

∫ θ−ηu′

t=θ

∫ t

s=θ

L′′(s)dsdt ≤ −ηu′L′(θ) + η2α |u′|2 , (88)

where the last we use L′′(s) ≤ 2α by Lemma G.21. The rest of the proof of the second case is the
immediate and the same as that of the first case.

Now we turn to the proof of the simplified version (86). When ρ |L′(θ)| ≤ |L′(θ)|2
max{L′′(θ),α} , we have

|L′(θ)| ≥ ρα. Thus min

{
ρ |L′(θ)| , |L′(θ)|2

max{L′′(θ),α}

}
≥ min

{
ρα,

|L′(θ)|2
max{L′′(θ),α}

}
. For the term

|L′(θ)|2
max{L′′(θ),α} , if L′′(θ) < α, then by Corollary G.20, we know |L′(θ)| ≥ G and thus |L′(θ)|2

max{L′′(θ),α} ≥
G2

α . Otherwise, if L′′(θ) ≥ α, then by Lemma G.22, we have |L′(θ)|2
max{L′′(θ),α} ≥ L(θ) −minL. This

completes the proof.

Now we are ready to prove Theorem G.17.

Proof of Theorem G.17. The theorem is a direct consequence of Lemma G.23 (Descent Lemma for
1D loss).

30

	Introduction
	Method
	Motivations
	Sophia: Second-order Clipped Stochastic Optimization
	Diagonal Hessian Estimators

	Experiments
	Experimental Setup
	Evaluation
	Results
	Analysis
	Ablation Study

	Conclusion
	Related work
	Additional Experiment Results
	Additional Experiment Details
	Hyperparamter Tuning
	Model and Implementation Details
	Downtream Evaluation

	A Detailed Explanation of GNB Estimator
	Limitations
	Theoretical Analysis
	Theoretical Analyses: Details of Section F
	Lower bound for SignGD on 2-dimensional quadratic loss
	1D non-convex function
	Decomposable non-convex functions
	Proofs of Theorem G.15

