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Abstract

Set representation has become ubiquitous in deep learning for modeling the induc-1

tive bias of neural networks that are insensitive to the input order. DeepSets is the2

most widely used neural network architecture for set representation. It involves3

embedding each set element into a latent space with dimension L, followed by a4

sum pooling to obtain a whole-set embedding, and finally mapping the whole-set5

embedding to the output. In this work, we investigate the impact of the dimension6

L on the expressive power of DeepSets. Previous analyses either oversimplified7

high-dimensional features to be one-dimensional features or were limited to ana-8

lytic activations, thereby diverging from practical use or resulting in L that grows9

exponentially with the set size N and feature dimension D. To investigate the10

minimal value of L that achieves sufficient expressive power, we present two set-11

element embedding layers: (a) linear + power activation (LP) and (b) logarithm +12

linear + exponential activations (LLE). We demonstrate that L being poly(N,D)13

is sufficient for set representation using both embedding layers. We also provide a14

lower bound of L for the LP embedding layer. Furthermore, we extend our results15

to permutation-equivariant set functions and the complex field.16

1 Introduction17

Enforcing invariance into neural network architectures has become a widely-used principle to design18

deep learning models [1–7]. In particular, when a task is to learn a function with a set as the input, the19

architecture enforces permutation invariance that asks the output to be invariant to the permutation20

of the input set elements [8, 9]. Neural networks to learn a set function have found a variety of21

applications in particle physics [10, 11], computer vision [12, 13] and population statistics [14–16],22

and have recently become a fundamental module (the aggregation operation of neighbors’ features in23

a graph [17–19]) in graph neural networks (GNNs) [20, 21] that show even broader applications.24

Previous works have studied the expressive power of neural network architectures to represent set25

functions [8,9,22–26]. Formally, a set with N elements can be represented as S = {x(1), · · · ,x(N)}26

where x(i) is in a feature space X , typically X = RD. To represent a set function that takes S and27

outputs a real value, the most widely used architecture DeepSets [9] follows Eq. (1).28

f(S) = ρ

(
N∑
i=1

ϕ(x(i))

)
,where ϕ : X → RL and ρ : RL → R are continuous functions. (1)

DeepSets encodes each set element individually via ϕ, and then maps the encoded vectors after sum29

pooling to the output via ρ. The continuity of ϕ and ρ ensure that they can be well approximated30

by fully-connected neural networks [27, 28], which has practical implications. DeepSets enforces31

permutation invariance because of the sum pooling, as shuffling the order of x(i) does not change32
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Table 1: A comprehensive comparison among all prior works on expressiveness analysis with L. Our
results achieve the tightest bound on L while being able to analyze high-dimensional set features and
extend to the equivariance case.

Prior Arts L D > 1 Exact Rep. Equivariance
DeepSets [9] D + 1 ✗ ✓ ✓
Wagstaff et al. [23] D ✗ ✓ ✓

Segol et al. [25]
(
N+D
N

)
− 1 ✓ ✗ ✓

Zweig & Bruna [26] exp(min{
√
N,D}) ✓ ✗ ✗

Our results poly(N,D) ✓ ✓ ✓

the output. However, the sum pooling compresses the whole set into an L-dimension vector, which33

places an information bottleneck in the middle of the architecture. Therefore, a core question on34

using DeepSets for set function representation is that given the input feature dimension D and the35

set size N , what the minimal L is needed so that the architecture Eq. (1) can represent/universally36

approximate any continuous set functions. The question has attracted attention in many previous37

works [9, 23–26] and is the focus of the present work.38

An extensive understanding has been achieved for the case with one-dimensional features (D = 1).39

Zaheer et al. [9] proved that this architecture with bottleneck dimension L = N suffices to accurately40

represent any continuous set functions when D = 1. Later, Wagstaff et al. proved that accurate41

representations cannot be achieved when L < N [23] and further strengthened the statement to a42

failure in approximation to arbitrary precision in the infinity norm when L < N [24].43

However, for the case with high-dimensional features (D > 1), the characterization of the minimal44

possible L is still missing. Most of previous works [9, 25, 29] proposed to generate multi-symmetric45

polynomials to approximate permutation invariant functions [30]. As the algebraic basis of multi-46

symmetric polynomials is of size L∗ =
(
N+D
N

)
−1 [31] (exponential in min{D,N}), these works by47

default claim that if L ≥ L∗, f in Eq. 1 can approximate any continuous set functions, while they do48

not check the possibility of using a smaller L. Zweig and Bruna [26] constructed a set function that f49

requires bottleneck dimension L > N−2 exp(O(min{D,
√
N})) (still exponential in min{D,

√
N})50

to approximate while it relies on the condition that ϕ, ρ only adopt analytic activations. This condition51

is overly strict, as most of the practical neural networks allow using non-analytic activations, such as52

ReLU. Zweig and Bruna thus left an open question whether the exponential dependence on N or D53

of L is still necessary if ϕ, ρ allow using non-analytic activations.54

Present work. The main contribution of this work is to confirm a negative response to the above55

question. Specfically, we present the first theoretical justification that L being polynomial in N and56

D is sufficient for DeepSets (Eq. (1)) like architecture to represent any continuous set functions57

with high-dimensional features (D > 1). To mitigate the gap to the practical use, we consider two58

architectures to implement feature embedding ϕ (in Eq. 1) and specify the bounds on L accordingly:59

• ϕ adopts a linear layer with power mapping: The minimal L holds a lower bound and an upper60

bound, which is N(D + 1) ≤ L < N5D2.61

• Constrained on the entry-wise positive input space RN×D
>0 , ϕ adopts two layers with logarithmic62

and exponential activations respectively: The minimal L holds a tighter upper bound L ≤ 2N2D2.63

We prove that if the function ρ could be any continuous function, the above two architectures64

reproduce the precise construction of any set functions for high-dimensional features D > 1, akin65

to the result in [9] for D = 1. This result contrasts with [25, 26] which only present approximating66

representations. If ρ adopts a fully-connected neural network that allows approximation of any67

continuous functions on a bounded input space [27, 28], then the DeepSets architecture f(·) can68

approximate any set functions universally on that bounded input space. Moreover, our theory can be69

easily extended to permutation-equivariant functions and complex set functions, where the minimal70

L shares the same bounds up to some multiplicative constants.71

Another comment on our contributions is that Zweig and Bruna [26] use difference in the needed72

dimensionL to illustrate the gap between DeepSets [9] and Relational Network [32] in their expressive73

powers, where the latter encodes set elements in a pairwise manner rather than in a separate manner.74

The gap well explains the empirical observation that Relational Network achieves better expressive75

power with smaller L [23,33]. Our theory does not violate such an observation while it shows that the76
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gap can be reduced from an exponential order inN andD to a polynomial order. Moreover, many real-77

world applications have computation constraints where only DeepSets instead of Relational Network78

can be used, e.g., the neighbor aggregation operation in GNN being applied to large networks [21],79

and the hypergraph neural diffusion operation in hypergraph neural networks [7]. Our theory points80

out that in this case, it is sufficient to use polynomial L dimension to embed each element, while one81

needs to adopt a function ρ with non-analytic activitions.82

2 Preliminaries83

2.1 Notations and Problem Setup84

We are interested in the approximation and representation of functions defined over sets 1. In85

convention, an N -sized set S = {x(1), · · · ,x(N)}, where x(i) ∈ RD,∀i ∈ [N ](≜ {1, 2, ..., N}),86

can be denoted by a data matrix X =
[
x(1) · · · x(N)

]⊤ ∈ RN×D. Note that we use the87

superscript (i) to denote the i-th set element and the subscript i to denote the i-th column/feature88

channel of X , i.e., xi =
[
x
(1)
i · · · x

(N)
i

]⊤
. Let Π(N) denote the set of all N -by-N permutation89

matrices. To characterize the unorderedness of a set, we define an equivalence class over RN×D:90

Definition 2.1 (Equivalence Class). If matrices X,X′ ∈ RN×D represent the same set X , then they91

are called equivalent up a row permutation, denoted as X ∼ X′. Or equivalently, X ∼ X′ if and92

only if there exists a matrix P ∈ Π(N) such that X = PX′.93

Set functions can be in general considered as permutation-invariant or permutation-equivariant94

functions, which process the input matrices regardless of the order by which rows are organized. The95

formal definitions of permutation-invariant/equivariant functions are presented as below:96

Definition 2.2. (Permutation Invariance) A function f : RN×D → RD′
is called permutation-97

invariant if f(PX) = f(X) for any P ∈ Π(N).98

Definition 2.3. (Permutation Equivariance) A function f : RN×D → RN×D′
is called permutation-99

equivariant if f(PX) = P f(X) for any P ∈ Π(N).100

In this paper, we investigate the approach to design a neural network architecture with permutation in-101

variance/equivariance. Below we will first focus on permutation-invariant functions f : RN×D → R.102

Then, in Sec. 5, we show that we can easily extend the established results to permutation-equivariant103

functions through the results provided in [7, 34] and to the complex field. The obtained results for104

D′ = 1 can also be easily extended to D′ > 1 as otherwise f can be written as [f1 · · · fD′ ]
⊤ and105

each fi has single output feature channel.106

2.2 DeepSets and The Difficulty in the High-Dimensional Case D > 1107

The seminal work [9] establishes the following result which induces a neural network architecture for108

permutation-invariant functions.109

Theorem 2.4 (DeepSets [9], D = 1). A continuous function f : RN → R is permutation-invariant110

(i.e., a set function) if and only if there exists continuous functions ϕ : R → RL and ρ : RL → R111

such that f(X) = ρ
(∑N

i=1 ϕ(x
(i))
)

, where L can be as small as N . Note that, here x(i) ∈ R.112

Remark 2.5. The original result presented in [9] states the latent dimension should be as large as113

N + 1. [23] tighten this dimension to exactly N .114

Theorem 2.4 implies that as long as the latent space dimension L ≥ N , any permutation-invariant115

functions can be implemented by a unified manner as DeepSets (Eq.(1)). Furthermore, DeepSets116

suggests a useful architecture for ϕ at the analysis convenience and empirical utility, which is formally117

defined below (ϕ = ψL):118

Definition 2.6 (Power mapping). A power mapping of degree K is a function ψK : R → RK which119

transforms a scalar to a power series: ψK(z) =
[
z z2 · · · zK

]⊤
.120

1In fact, we allow repeating elements in S, therefore, S should be more precisely called multiset. With a
slight abuse of terminology, we interchangeably use terms multiset and set throughout the whole paper.

3



...

LP
LL

E

... ... ...

... ... Sum

Sum

...

Figure 1: Illustration of the proposed linear + power mapping embedding layer (LP) and logarithm
activation + linear + exponential activation embedding layer (LLE).

However, DeepSets [9] focuses on the case that the feature dimension of each set element is one121

(i.e., D = 1). To demonstrate the difficulty extending Theorem 2.4 to high-dimensional features,122

we reproduce the proof next, which simultaneously reveals its significance and limitation. Some123

intermediate results and mathematical tools will be recalled along the way later in our proof.124

We begin by defining sum-of-power mapping (of degree K) ΨK(X) =
∑N

i=1 ψK(xi), where ψK125

is the power mapping following Definition 2.6. Afterwards, we reveal that sum-of-power mapping126

ΨK(X) has a continuous inverse. Before stating the formal argument, we formally define the127

injectivity of permutation-invariant mappings:128

Definition 2.7 (Injectivity). A set function h : RN×D → RL is injective if there exists a function129

g : RL → RN×D such that for any X ∈ RN×D, we have g ◦ f(X) ∼ X . Then g is an inverse of f .130

And we summarize the existence of continuous inverse of ΨK(x) into the following lemma shown131

by [9] and improved by [23]. This result comes from homeomorphism between roots and coefficients132

of monic polynomials [35].133

Lemma 2.8 (Existence of Continuous Inverse of Sum-of-Power [9,23]). ΨN : RN → RN is injective,134

thus the inverse Ψ−1
N : RN → RN exists. Moreover, Ψ−1

N is continuous.135

Now we are ready to prove necessity in Theorem 2.4 as sufficiency is easy to check. By choosing136

ϕ = ψN : R → RN to be the power mapping (cf. Definition 2.6), and ρ = f ◦Ψ−1
N . For any scalar-137

valued set X =
[
x(1) · · · x(N)

]⊤
, ρ
(∑N

i=1 ϕ(x
(i))
)
= f ◦Ψ−1

N ◦ΨN (x) = f(PX) = f(X)138

for some P ∈ Π(N). The existence and continuity of Ψ−1
N are due to Lemma 2.8.139

Theorem 2.4 gives the exact decomposable form [23] for permutation-invariant functions, which140

is stricter than approximation error based expressiveness analysis. In summary, the key idea is to141

establish a mapping ϕ whose element-wise sum-pooling has a continuous inverse.142

Curse of High-dimensional Features. We argue that the proof of Theorem 2.4 is not applicable143

to high-dimensional set features (D ≥ 2). The main reason is that power mapping defined in144

Definition 2.6 only receives scalar input. It remains elusive how to extend it to a multivariate version145

that admits injectivity and a continuous inverse. A plausible idea seems to be applying power mapping146

for each channel xi independently, and due to the injectivity of sum-of-power mapping ΨN , each147

channel can be uniquely recovered individually via the inverse Ψ−1
N . However, we point out that148

each recovered feature channel x′
i ∼ xi, ∀i ∈ [D], does not imply [x′

1 · · · x′
D] ∼ X , where149

the alignment of features across channels gets lost. Hence, channel-wise power encoding no more150

composes an injective mapping. Zaheer et al. [9] proposed to adopt multivariate polynomials as ϕ for151

high-dimensional case, which leverages the fact that multivariate symmetric polynomials are dense in152

the space of permutation invariant functions (akin to Stone-Wasserstein theorem) [30]. This idea later153

got formalized in [25] by setting ϕ(x(i)) =
[
· · ·

∏
j∈[D](x

(i)
j )αj · · ·

]
where α ∈ ND traverses154

all
∑

j∈[D] αj ≤ n and extended to permutation equivariant functions. Nevertheless, the dimension155

L =
(
N+D
D

)
, i.e., exponential in min{N,D} in this case, and unlike DeepSets [9] which exactly156

recovers f for D = 1, the architecture in [9, 25] can only approximate the desired function.157

3 Main Results158

In this section, we present our main result which extends Theorem 2.4 to high-dimensional features.159

Our conclusion is that to universally represent a set function on sets of lengthN and feature dimension160
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D with the DeepSets architecture [9] (Eq. (1)), a dimension L at most polynomial in N and D is161

needed for expressing the intermediate embedding space.162

Formally, we summarize our main result in the following theorem.163

Theorem 3.1 (The main result). Suppose D ≥ 2. For any continuous permutation-invariant function164

f : KN×D → R, K ⊆ R, there exists two continuous mappings ϕ : RD → RL and ρ : RL → R165

such that for every X ∈ KN×D, f(X) = ρ
(∑N

i=1 ϕ(x
(i))
)

where166

• For some L ∈ [N(D+1), N5D2] when ϕ admits linear layer + power mapping (LP) architecture:167

ϕ(x) =
[
ψN (w1x)

⊤ · · · ψN (wKx)⊤
]

(2)

for some w1, · · · ,wK ∈ RD, and K = L/N .168

• For some L ∈ [ND, 2N2D2] when ϕ admits logarithm activations + linear layer + exponential169

activations (LLE) architecture:170

ϕ(x) = [exp(w1 log(x)) · · · exp(wL log(x))] (3)

for some w1, · · · ,wL ∈ RD and K ⊆ R>0.171

The bounds of L depend on the choice of the architecture of ϕ, which are illustrated in Fig. 1. In172

the LP setting, we adopt a linear layer that maps each set element into K dimension. Then we apply173

a channel-wise power mapping that separately transforms each value in the feature vector into an174

N -order power series, and concatenates all the activations together, resulting in a KN dimension175

feature. The LP architecture is closer to DeepSets [9] as they share the power mapping as the main176

component. Theorem 3.1 guarantees the existence of ρ and ϕ (in the form of Eq. (2)) which satisfy177

Eq. (1) without the need to set K larger than N4D2 while K ≥ D + 1 is necessary. Therefore, the178

total embedding size L = KN is bounded by N5D2 above and N(D + 1) below. Note that this179

lower bound is not trivial as ND is the degree of freedom of the input X . No matter how w1, ...,wK180

are adopted, one cannot achieve an injective mapping by just using ND dimension.181

In the LLE architecture, we investigate the utilization of logarithmic and exponential activations in set182

representation, which are also valid activations to build deep neural networks [36, 37]. Each set entry183

will be squashed by a element-wise logarithm first, then linearly embedded into an L-dimensional184

space via a group of weights, and finally transformed by an element-wise exponential activation.185

Essentially, each exp(wi log(x)), i ∈ [L] gives a monomial of x. The LLE architecture requires the186

feature space constrained on the positive orthant to ensure logarithmic operations are feasible. But187

the advantage is that the upper bound of L is improved to be 2N2D2. The lower bound ND for188

the LLE architecture is a trivial bound due to the degree of freedom of the input X . Note that the189

constraint on the positive orthant R>0 is not essential. If we are able to use monomial activations to190

process a vector x as used in [25, 26], then, the constraint on the positive orthant can be removed.191

Remark 3.2. The bounds in Theorem 3.1 are non-asymptotic. This implies the latent dimensions192

specified by the corresponding architectures are precisely sufficient for expressing the input.193

Remark 3.3. Unlike ϕ, the form of ρ cannot be explicitly specified, as it depends on the desired194

function f . The complexity of ρ remains unexplored in this paper, which may be high in practice.195

Importance of Continuity. We argue that the requirements of continuity on ρ and ϕ are essential196

for our discussion. First, practical neural networks can only provably approximate continuous197

functions [27, 28]. Moreover, set representation without such requirements can be straightforward198

(but likely meaningless in practice). This is due to the following lemma.199

Lemma 3.4 ( [38]). There exists a discontinuous bijective mapping between RD and R if D ≥ 2.200

By Lemma 3.4, we can define a bijective mapping r : RD → R which maps the high-dimensional201

features to scalars, and its inverse exists. Then, the same proof of Theorem 2.4 goes through by202

letting ϕ = ψN ◦ r and ρ = f ◦ r−1 ◦Ψ−1
N . However, we note both ρ and ϕ lose continuity.203

Comparison with Prior Arts. Below we highlight the significance of Theorem 3.1 in contrast204

to the existing literature. A quick overview is listed in Tab. 1 for illustration. The lower bound205

in Theorem 3.1 corrects a natural misconception that the degree of freedom (i.e., L = ND for206
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multi-channel cases) is not enough for representing the embedding space. Fortunately, the upper207

bound in Theorem 3.1 shows the complexity of representing vector-valued sets is still manageable as208

it merely scales polynomially in N and D. Compared with Zweig and Bruna’s finding [26], our result209

significantly improves this bound on L from exponential to polynomial by allowing non-analytic210

functions to amortize the expressiveness. Besides, Zweig and Bruna’s work [26] is hard to be applied211

to the real domain, while ours are extensible to complex numbers and equivariant functions.212

4 Proof Sketch213

In this section, we introduce the proof techniques of Theorem 3.1, while deferring a full version and214

all missing proofs to the supplementary materials.215

The proof of Theorem 3.1 mainly consists of two steps below, which is completely constructive:216

1. For the LP architecture, we construct a group of K linear weights w1 · · · ,wK with K ≤ N4D2217

such that the summation over the associated LP embedding (Eq. (2)): Ψ(X) =
∑N

i=1 ϕ(x
(i)) is218

injective and has a continuous inverse. Moreover, if K ≤ D, such weights do not exist, which219

induces the lower bound.220

2. Similarly, for the LLE architecture, we construct a group of L linear weights w1 · · · ,wL with221

L ≤ 2N2D2 such that the summation over the associated LLE embedding (Eq. (3)) is injective222

and has a continuous inverse. Trivially, if L < ND, such weights do not exist, which induces the223

lower bound.224

3. Then the proof of upper bounds can be concluded for both settings by letting ρ = f ◦Ψ−1 since225

ρ
(∑N

i=1 ϕ(x
(i))
)
= f ◦Ψ−1 ◦Ψ(X) = f(PX) = f(X) for some P ∈ Π(N).226

Next, we elaborate on the construction idea which yields injectivity for both embedding layers in Sec.227

4.1 and 4.2, respectively. To show injectivity, it is equivalent to establish the following statement for228

both Eq. (2) and Eq. (3), respectively:229

∀X,X′ ∈ RN×D,

N∑
i=1

ϕ(x(i)) =

N∑
i=1

ϕ(x′(i)) ⇒ X ∼ X′ (4)

In Sec. 4.3, we prove the continuity of the inverse map for LP and LLE via arguments similar to [35].230

4.1 Injectivity of LP231

In this section, we consider ϕ follows the definition in Eq. (2), which amounts to first linearly232

transforming each set element and then applying channel-wise power mapping. This is, we seek233

a group of linear transformations w1, · · · ,wK such that X ∼ X′ can be induced from Xwi ∼234

X′wi,∀i ∈ [K] for some K larger than N while being polynomial in N and D. The intuition is that235

linear mixing among each channel can encode relative positional information. Only if X ∼ X′, the236

mixing information can be reproduced.237

Formally, the first step accords to the property of power mapping (cf. Lemma 2.8), and we can obtain:238

N∑
i=1

ϕ(x(i)) =

N∑
i=1

ϕ(x′(i)) ⇒ Xwi ∼ X′wi,∀i ∈ [K]. (5)

To induce X ∼ X′ from Xwi ∼ X′wi,∀i ∈ [K], our construction divides the weights {wi, i ∈239

[K]} into three groups: {w(1)
i : i ∈ [D]}, {w(2)

j : j ∈ [K1]}, and {w(3)
i,j,k : i ∈ [D], j ∈ [K1], k ∈240

[K2]}. Each block is outlined as below:241

1. Let the first group of weights w(1)
1 = e1, · · · ,w(1)

D = eD to buffer the original features, where242

ei is the i-th canonical basis.243

2. Design the second group of linear weights, w(2)
1 , · · · ,w(2)

K1
for K1 as large as N(N − 1)(D −244

1)/2 + 1, which, by Lemma 4.4 latter, guarantees at least one of Xw
(2)
j , j ∈ [K1] forms an245

anchor defined below:246
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Definition 4.1 (Anchor). Consider the data matrix X ∈ RN×D, then a ∈ RN is called an anchor247

of X if ai ̸= aj for any i, j ∈ [N ] such that x(i) ̸= x(j).248

And suppose a = Xw
(2)
j∗ is an anchor of X for some j∗ ∈ [K1] and a′ = X′w

(2)
j∗ , then we249

show the following statement is true by Lemma 4.3 latter:250

[a xi] ∼ [a′ x′
i] ,∀i ∈ [D] ⇒ X ∼ X′. (6)

3. Design a group of weights w(3)
i,j,k for i ∈ [D], j ∈ [K1], k ∈ [K2] with K2 = N(N − 1) + 1 that251

mixes each original channel xi with each Xw
(2)
j , j ∈ [K1] by w

(3)
i,j,k = ei − γkw

(2)
j . Then we252

show in Lemma 4.5 that:253

Xwi ∼ X′wi,∀i ∈ [K] ⇒
[
Xw

(2)
j xi

]
∼
[
X′w

(2)
j x′

i

]
,∀i ∈ [D], j ∈ [K1] (7)

With such configuration, injectivity can be concluded by the entailment along Eq. (5), (7), (6): Eq. (5)254

guarantees the RHS of Eq. (7); The existence of the anchor in Lemma 4.4 paired with Eq. (6)255

guarantees X ∼ X′. The total required number of weights K = D +K1 +DK1K2 ≤ N4D2.256

Below we provides a series of lemmas that demonstrate the desirable properties of anchors and257

elaborate on the construction complexity. Detailed proofs are left in Appendix. In plain language, by258

Definition 4.1, two entries in the anchor must be distinctive if the set elements at the corresponding259

indices are not equal. As a consequence, we derive the following property of anchors:260

Lemma 4.2. Consider the data matrix X ∈ RN×D and a ∈ RN an anchor of X . Then if there261

exists P ∈ Π(N) such that Pa = a then Pxi = xi for every i ∈ [D].262

With the above property, anchors defined in Definition 4.1 indeed have the entailment in Eq. (6):263

Lemma 4.3 (Union Alignment based on Anchor Alignment). Consider the data matrix X,X′ ∈264

RN×D, a ∈ RN is an anchor of X and a′ ∈ RN is an arbitrary vector. If [a xi] ∼ [a′ x′
i] for265

every i ∈ [D], then X ∼ X′.266

However, the anchor a is required to be generated from X via a point-wise linear transformation.267

The strategy to generate an anchor is to enumerate as many linear weights as needs, so that for any X ,268

at least one j such that Xw
(2)
j becomes an anchor. We show that at most N(N − 1)(D − 1)/2 + 1269

linear weights are enough to guarantee the existence of an anchor for any X:270

Lemma 4.4 (Anchor Construction). There exists a set of weights w1, · · · ,wK1
where K1 =271

N(N − 1)(D − 1)/2 + 1 such that for every data matrix X ∈ RN×D, there exists j ∈ [K1], Xwj272

is an anchor of X .273

We wrap off the proof by presenting the following lemma which is applied to prove Eq. (7) by fixing274

any i ∈ [D], j ∈ [K1] in Eq. (7) while checking the condition for all k ∈ [K2]:275

Lemma 4.5 (Anchor Matching). There exists a group of coefficients γ1, · · · , γK2
where K2 =276

N(N − 1) + 1 such that the following statement holds: Given any x,x′,y,y′ ∈ RN such that277

x ∼ x′ and y ∼ y′, if (x− γky) ∼ (x′ − γky
′) for every k ∈ [K2], then [x y] ∼ [x′ y′].278

For completeness, we add the following lemma which implies LP-induced sum-pooling cannot be279

injective if K ≤ ND, when D ≥ 2.280

Theorem 4.6 (Lower Bound). Consider data matrices X ∈ RN×D where D ≥ 2. If K ≤ D, then281

for every w1, · · · ,wK , there exists X′ ∈ RN×D such that X ̸∼ X′ but Xwi ∼ X′wi for every282

i ∈ [K].283

Remark 4.7. Theorem 4.6 is significant in that with high-dimensional features, the injectivity is284

provably not satisfied when the embedding space has dimension equal to the degree of freedom.285

4.2 Injectivity of LLE286

In this section, we consider ϕ follows the definition in Eq. (3). First of all, we note that each term in287

the RHS of Eq. (3) can be rewritten as a monomial as shown in Eq. (8). Suppose we are able to use288

monomial activations to process a vector x(i). Then, the constraint on the positive orthant R>0 in our289

main result Theorem 3.1 can be even removed.290

ϕ(x) = [· · · exp(wi log(x)) · · ·] =
[
· · ·

∏D
j=1 x

wi,j

j · · ·
]

(8)
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Then, the assignment of w1, · · · ,wL amounts to specifying the exponents for D power functions291

within the product. Next, we prepare our construction with the following two lemmas:292

Lemma 4.8. For any pair of vectors x1,x2 ∈ RN ,y1,y2 ∈ RN , if
∑

i∈[N ] x
l−k
1,i xk

2,i =293 ∑
i∈[N ] y

l−k
1,i yk

2,i for every l, k ∈ [N ] such that 0 ≤ k ≤ l, then [x1 x2] ∼ [y1 y2].294

The above lemma is to show that we may use summations of monic bivariate monomials to align every295

two feature columns. The next lemma shows that such pairwise alignment yields union alignment.296

Lemma 4.9 (Union Alignment based on Pairwise Alignment). Consider data matrices X,X′ ∈297

RN×D. If [xi xj ] ∼ [x′
i x′

j ] for every i, j ∈ [D], then X ∼ X′.298

Then the construction idea of w1, · · · ,wL can be drawn from Lemma 4.8 and 4.9:299

1. Lemma 4.8 indicates if the weights in Eq. (8) enumerate all the monic bivariate monomials in300

each pair of channels with degrees less or equal to N , i.e., xp
ix

q
j for all i, j ∈ [D] and p+ q ≤ N ,301

then we can yield:302

N∑
i=1

ϕ(x(i)) =

N∑
i=1

ϕ(x′(i)) ⇒ [xi xj ] ∼ [x′
i x′

j ] ,∀i, j ∈ [D]. (9)

2. The next step is to invoke Lemma 4.9 which implies if every pair of feature channels is aligned,303

then we can conclude all the channels are aligned with each other as well.304

[xi xj ] ∼ [x′
i x′

j ] ,∀i, j ∈ [D] ⇒ X ∼ X′. (10)

Based on these motivations, we assign the weights that induce all bivariate monic monomials with305

the degree no more than N . First of all, we reindex {wi, i ∈ [L]} as {wi,j,p,q, i ∈ [D], j ∈ [D], p ∈306

[N ], q ∈ [p+ 1]}. Then weights can be explicitly specified as wi,j,p,q = (q − 1)ei + (p− q + 1)ej ,307

where ei is the i-th canonical basis. With such weights, injectivity can be concluded by entailment308

along Eq. (9) and (10). Moreover, the total number of linear weights is L = D2(N + 3)N/2 ≤309

2N2D2, as desired.310

4.3 Continuous Lemma311

In this section, we show that the LP and LLE induced sum-pooling are both homeomorphic. We312

note that it is intractable to obtain the closed form of their inverse maps. Notably, the following313

remarkable result can get rid of inversing a functions explicitly by merely examining the topological314

relationship between the domain and image space.315

Lemma 4.10. (Theorem 1.2 [35]) Let (X , dX ) and (Y, dY) be two metric spaces and f : X → Y is316

a bijection such that (a) each bounded and closed subset of X is compact, (b) f is continuous, (c)317

f−1 maps each bounded set in Y into a bounded set in X . Then f−1 is continuous.318

Subsequently, we show the continuity in an informal but more intuitive way while deferring a rigorous319

version to the supplementary materials. Denote Ψ(X) =
∑

i∈[N ] ϕ(x
(i)). To begin with, we set320

X = RN×D/ ∼ with metric dX (X,X ′) = minP∈Π(N) ∥X − PX ′∥1 and Y = {Ψ(X)|X ∈321

X} ⊆ RL with metric dY(y,y′) = ∥y − y′∥∞. It is easy to show that X satisfies the conditions322

(a) and Ψ(X) satisfies (b) for both LP and LLE embedding layers. Then it remains to conclude the323

proof by verifying the condition (c) for the mapping Y → X , i.e., the inverse of Ψ(X). We visualize324

this mapping following our arguments on injectivity:325

(LP ) Ψ(X)
Eq. (5)−−−→ [· · · P iXwi · · ·] , i ∈ [K]

Eqs. (6) + (7)−−−−−−−→ PX

(LLE) Ψ(X)︸ ︷︷ ︸
Y

Eq. (9)−−−→
[
· · · Qi,jxi Qi,jxj · · ·

]
, i, j ∈ [D]︸ ︷︷ ︸

Z

Eq. (10)−−−−→ QX︸︷︷︸
X

,

for some X dependent P , Q. Here, P i, i ∈ [K] and Qi,j , i, j ∈ [D] ∈ Π(N). According to326

homeomorphism between polynomial coefficients and roots (Corollary 3.2 in [35]), any bounded327

set in Y will induce a bound set in Z . Moreover, since elements in Z contains all the columns of X328

(up to some changes of the entry orders), a bounded set in Z also corresponds to a bounded set in X .329

Through this line of arguments, we conclude the proof.330
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5 Extensions331

In this section, we discuss two extensions to Theorem 3.1, which strengthen our main result.332

Permutation Equivariance. Permutation-equivariant functions (cf. Definition 2.3) are considered333

as a more general family of set functions. Our main result does not lose generality to this class of334

functions. By Lemma 2 of [7], Theorem 3.1 can be directly extended to permutation-equivariant335

functions with the same lower and upper bounds, stated as follows:336

Theorem 5.1 (Extension to Equivariance). For any permutation-equivariant function f : KN×D →337

RN , K ⊆ R, there exists continuous functions ϕ : RD → RL and ρ : RD × RL → R such that338

f(X)j = ρ
(
x(j),

∑
i∈[N ] ϕ(x

(i))
)

for every j ∈ [N ], where L ∈ [N(D + 1), N5D2] when ϕ339

admits LP architecture, and L ∈ [ND, 2N2D2] when ϕ admits LLE architecture (K ∈ R>0).340

Complex Domain. The upper bounds in Theorem 3.1 is also true to complex features up to a341

constant scale (i.e., K ⊆ C). When features are defined over CN×D, our primary idea is to divide342

each channel into two real feature vectors, and recall Theorem 3.1 to conclude the arguments on an343

RN×2D input. All of our proof strategies are still applied. This result directly contrasts to Zweig344

and Bruna’s work [26] whose main arguments were established on complex numbers. We show345

that even moving to the complex domain, polynomial length of L is still sufficient for the DeepSets346

architecture [9]. We state a formal version of the theorem in the supplementary material.347

6 Related Work348

Works on neural networks to represent set functions have been discussed extensively in the Sec. 1.349

Here, we review other related works on the expressive power analysis of neural networks.350

Early works studied the expressive power of feed-forward neural networks with different activa-351

tions [27, 28]. Recent works focused on characterizing the benefits of the expressive power of deep352

architectures to explain their empirical success [39–43]. Modern neural networks often enforce some353

invariance properties into their architectures such as CNNs that capture spatial translation invariance.354

The expressive power of invariant neural networks has been analyzed recently [22, 44, 45].355

The architectures studied in the above works allow universal approximation of continuous func-356

tions defined on their inputs. However, the family of practically useful architectures that enforce357

permutation invariance often fail in achieving universal approximation. Graph Neural Networks358

(GNNs) enforce permutation invariance and can be viewed as an extension of set neural networks359

to encode a set of pair-wise relations instead of a set of individual elements [20, 21, 46, 47]. GNNs360

suffer from limited expressive power [5, 17, 18] unless they adopt exponential-order tensors [48].361

Hence, previous studies often characterized GNNs’ expressive power based on their capability of362

distinguishing non-isomorphic graphs. Only a few works have ever discussed the function approxima-363

tion property of GNNs [49–51] while these works still miss characterizing such dependence on the364

depth and width of the architectures [52]. As practical GNNs commonly adopt the architectures that365

combine feed-forward neural networks with set operations (neighborhood aggregation), we believe366

the characterization of the needed size for set function approximation studied in [26] and this work367

may provide useful tools to study finer-grained characterizations of the expressive power of GNNs.368

7 Conclusion369

This work investigates how many neurons are needed to model the embedding space for set repre-370

sentation learning with the DeepSets architecture [9]. Our paper provides an affirmative answer that371

polynomial many neurons in the set size and feature dimension are sufficient. Compared with prior372

arts, our theory takes high-dimensional features into consideration while significantly advancing the373

state-of-the-art results from exponential to polynomial.374

Limitations. The tightness of our bounds is not examined in this paper, and the complexity of ρ is375

uninvestigated and left for future exploration. Besides, deriving an embedding layer agnostic lower376

bound for the embedding space remains another widely open question.377

9



A Formal Definitions378

In this section, we begin by providing rigorous definitions to specify the topology of the input space379

of permutation-invariant functions.380

Definition A.1. Equipped KN×D with the equivalence relation ∼ (cf. Definition 2.1), we define381

metric space (KN×D/ ∼, dF ), where dF : (KN×D/ ∼) × (KN×D/ ∼) → R≥0 is the optimal382

transport distance:383

dF (X,X′) = min
P∈Π(N)

∥PX −X′∥∞,∞ , (11)

and K can be either R or C.384

Remark A.2. The ∥·∥∞,∞ norm takes the absolute value of the maximal entry: maxi∈[N ],j∈[D] |Xi,j |.385

Other topologically equivalent matrix norms also apply.386

Lemma A.3. The function dF : (KN×D/ ∼) × (KN×D/ ∼) → R≥0 is a distance metric on387

KN×D/ ∼.388

Proof. Identity, positivity, and symmetry trivially hold for dF . It remains to show the triangle389

inequality as below: for arbitrary X,X′,X′′ ∈ (KN×D/ ∼, dF ),390

dF (X,X′′) = min
P∈Π(N)

∥PX −X′′∥∞,∞ ≤ min
P∈Π(N)

(
∥PX −Q∗X′∥∞,∞ + ∥Q∗X′ −X′′∥∞,∞

)
= min

P∈Π(N)
∥PX −Q∗X′∥∞,∞ + ∥Q∗X′ −X′′∥∞,∞

= dF (X,X′) + dF (X,X′′),

where Q∗ = argminQ∈Π(N) ∥QX′ −X′′∥∞,∞.391

Also we reveal a topological property for (KN×D/ ∼, dF ) which is essential to show continuity later.392

Lemma A.4. Each bounded and closed subset of (KN×D/ ∼, dF ) is compact.393

Proof. Without loss of generality, the proof is done by extending Theorem 2.4 in [35] to high-394

dimensional set elements.395

Then we can rephrase the definition of permutation invariant function as a proper function mapping396

between the two metric spaces: f : (KN×D/ ∼, dF ) → (KD′
, d∞), where d∞ : KD′ ×KD′ → R≥0397

is the ℓ∞-norm induced distance metric.398

We also recall the definition of injectivity for permutation-invariant functions:399

Definition A.5 (Injectivity). The following statements are equivalent:400

1. A permutation-invariant function f : (KN×D/ ∼, dF ) → (KD′
, d∞) is injective.401

2. There exists a function g : (KD′
, d∞) → (KN×D/ ∼, dF ) such that for every X ∈ KN×D,402

g ◦ f(X) ∼ X .403

3. For every X,X′ ∈ KN×D such that f(X) = f(X′), then X ∼ X′.404

We give an intuitive definition of continuity for permutation-invariant functions via the epsilon-delta405

statement:406

Definition A.6 (Continuity). A permutation-invariant function f : (KN×D/ ∼, dF ) → (K, d∞) is407

continuous if for arbitrary X ∈ KN×D and ϵ > 0, there exists δ > 0 such that for every X′ ∈ KN×D,408

dF (X,X′) < δ then d∞(f(X)− f(X′)) < ϵ.409

Remark A.7. Since dF is a distance metric, other equivalent definitions of continuity still applies.410
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B Sum-of-Power Mapping411

In this section, we extend Definition 2.6 and Lemma 2.8 to the complex version, which provides the412

mathematical tools for our later proof.413

Definition B.1. Define (complex) power mapping: ψN : C → CN , ψN (z) =
[
z z2 · · · zN

]⊤
414

and (complex) sum-of-power mapping ψN : (CN/ ∼, dF ) → (CN , d∞), ψN (z) =
∑N

i=1 ψN (zi).415

Lemma B.2 (Existence of Continuous Inverse of Complex Sum-of-Power [35]). ψN is injective,416

thus the inverse ψ−1
N : (CN , d∞) → (CN/ ∼, dF ) exists. Moreover, ψ−1

N is continuous.417

Lemma B.3 (Corollary 3.2 [35]). Consider a function ζ : (CN , d∞) → (CN/ ∼, dF ) that maps the418

coefficients of a polynomial to its root multi-set. Then for any bounded subset U ⊂ (CN , d∞), the419

image ζ(U) = {ζ(z) : z ∈ U} is also bounded.420

Remark B.4. Lemma B.3 is also true for real numbers when we constrain the domain of ζ to be real421

coefficients such that the corresponding polynomial can fully split over the real domain.422

Lemma B.5. Consider the N -degree sum-of-power mapping: ψN : (CC,N/ ∼, dF ) → (CN , d∞),423

where ψN (x) =
∑N

i=1 ψN (xi). Denote the range of ψN as Z ⊆ CN and its inverse mapping424

ψ−1
N : (Z, d∞) → (CN/ ∼, dF ) (existence guaranteed by Lemma B.2). Then for every bounded set425

U ⊂ (Z, d∞), the image Ψ−1
N (U) = {Ψ−1

N (z) : z ∈ U} is also bounded.426

Proof. We borrow the proof technique from [9] to reveal a polynomial mapping between (Z, d∞)427

and (CN/ ∼, dF ). For every ξ ∈ (CN/ ∼, dF ), let z = ψN (ξ) and construct a polynomial:428

Pξ(x) =

N∏
i=1

(x− ξi) = xN − a1x
N−1 + · · ·+ (−1)N−1aN−1x+ (−1)NaN , (12)

where ξ are the roots of Pξ(x) and the coefficients can be written as elementary symmetric polyno-429

mials, i.e.,430

an =
∑

1≤j1≤j2≤···≤jn≤N

ξj1ξj2 · · · ξjn ,∀n ∈ [N ]. (13)

On the other hand, the elementary symmetric polynomials can be uniquely expressed as a function of431

z by Newton-Girard formula:432

an =
1

n
det


z1 1 0 0 · · · 0
z2 z1 1 0 · · · 0
...

...
...

...
. . .

...
zn−1 zn−2 zn−3 zn−4 · · · 1
zn zn−1 zn−2 zn−3 · · · 1

 := Q(z),∀n ∈ [N ] (14)

where the determinant Q(z) is also a polynomial in z. Then the proof proceeds by observing433

that for any bounded subset U ⊆ (Z, d∞), the resulting A = Q(U) is also bounded in (CN , d∞).434

Therefore, by Lemma B.3, any bounded coefficient set A will produce a bounded root multi-set in435

(CN/ ∼, dF ).436

Remark B.6. Lemma B.3 is also true for real numbers. By Remark B.4, we can constrain the ambient437

space of A in Lemma B.3 to be real coefficients whose corresponding polynomial can split over real438

numbers, and the same proof proceeds.439

C Proofs of LP Embedding Layer440

In this section, we complete the proofs for the LP embedding layer (Eq. (2)). First we constructively441

show an upper bound that sufficiently achieves injectivity following our discussion in Sec. 4.1,442

and then prove Theorem 4.6 to reveal a lower bound that is necessary for injectivity. Finally, we443

show prove the continuity of the inverse of our constructed LP embedding layer with the techniques444

introduced in Sec. 4.3.445
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C.1 Upper Bound for Injectivity446

To prove the upper bound, we construct an LP embedding layer with L ≤ N5D2 output neurons such447

that its induced summation is injective. The main ingredient of our construction is anchor defined in448

Definition 4.1. Two key properties of anchors are stated in Lemma 4.2 and 4.3 (restated as follows)449

and proved below:450

Lemma C.1. Consider the data matrix X ∈ RN×D and a ∈ RN an anchor of X . Then if there451

exists P ∈ Π(N) such that Pa = a then Pxi = xi for every i ∈ [D].452

Proof of Lemma 4.2. Prove by contradiction. Suppose Pxi ̸= xi for some i ∈ [D], then there exist453

some p, q ∈ [N ] such that x(p)
i ̸= x

(q)
i while ap = aq . However, this contradicts the definition of an454

anchor (cf. Definition 4.1).455

Lemma C.2 (Union Alignment based on Anchor Alignment). Consider the data matrix X,X′ ∈456

RN×D, a ∈ RN is an anchor of X and a′ ∈ RN is an arbitrary vector. If [a xi] ∼ [a′ x′
i] for457

every i ∈ [D], then X ∼ X′.458

Proof of Lemma 4.3. According to definition of equivalence, there exists Qi ∈ Π(N) for every459

i ∈ [D] such that [a xi] = [Qia
′ Qix

′
i]. Moreover, since [a xi] ∼ [a′ x′

i], it must hold460

that a ∼ a′, i.e., there exists P ∈ ΠN such that Pa = a′. Combined together, we have that461

QiPa = a.462

Next, we choose Q′
i = P⊤Q⊤

i so Q′
ia = Q′

iQiPa = a. Due to the property of anchors (Lemma463

4.2), we have Q′
ixi = xi. Notice that xi = Q′

ixi = P⊤Q⊤
i Qix

′
i = Px′

i. Therefore, we can464

conclude the proof as we have found a permutation matrix P that simultaneously aligns xi and x′
i465

for every i ∈ [D], i.e., X = [x1 · · · xD] = [Px1 · · · PxD] = PX′.466

Next, we need to examine how many weights are needed to construct an anchor via linear combining467

all the existing channels. We restate Lemma 4.4 with more specifications as well as a mathematical468

device to prove it as below:469

Lemma C.3. Consider D linearly independent weight vectors {w1, · · · ,wD ∈ RD}. Then for470

every p, q ∈ [N ] such that x(p) ̸= x(q), there exists wj , j ∈ [D], such that x(p)⊤wj ̸= x(q)⊤wj .471

Proof. This is the simple fact of full-rank linear systems. Prove by contradiction. Suppose for472

∀j ∈ [D] we have x(p)⊤wj = x(q)⊤wj . Then we form a linear system: x(p)⊤ [w1 · · · wD] =473

x(q)⊤ [w1 · · · wD]. Since w1, · · · ,wD are linearly independent, it yields x(p) = x(q), which474

reaches the contradiction.475

Lemma C.4 (Anchor Construction). Consider a set of weight vectors {w1, · · · ,wK1 ∈ RD} with476

K1 = N(N − 1)(D − 1)/2 + 1, of which every D-length subset, i.e., {wj : ∀j ∈ J },∀J ⊆477

[K1], |J | = D, is linearly independent, then for every data matrix X ∈ RN×D, there exists478

j∗ ∈ [K1], Xwj∗ is an anchor of X .479

Proof. Define a set of pairs which an anchor needs to distinguish: I = {(p, q) : x(p) ̸= x(q)} ⊆ [N ]2480

Consider a D-length subset J ⊆ [K] with |J | = D. Since {wj : ∀j ∈ J } are linear independent,481

we assert by Lemma C.3 that for every pair (p, q) ∈ I, there exists j ∈ J , x(p)⊤wj ̸= x(q)⊤wj .482

It is equivalent to claim: for every pair (p, q) ∈ I, at most D − 1 many wj , j ∈ [K1] satisfy483

x(p)⊤wj = x(q)⊤wj . Based on pigeon-hold principle, as long as K1 ≥ N(N − 1)(D− 1)/2+1 =484

(D− 1)
(
N
2

)
+ 1 ≥ (D− 1)|I|+ 1, there must exist j∗ ∈ [K1] such that x(p)⊤wj∗ ̸= x(q)⊤wj∗ for485

∀(p, q) ∈ I. By Definition 4.1, Xwj∗ generates an anchor.486

Proposition C.5. The linear independence condition in Lemma C.4 can be satisfied with probability487

one by drawing i.i.d. Gaussian random vectors w1, · · · ,wK1

i.i.d.∼ N (0, I).488

Proof. We first note that generating a D × K1 Gaussian random matrix (D ≤ K1) is equiv-489

alent to drawing a matrix with respect to a probability measure defined over M = {X ∈490

RD×K : rank(X) ≤ D}. Since rank-D matrices are dense in M [53, 54], we can conclude491
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that for ∀J ⊆ [K1], |J | = D, P({wj : j ∈ J } are linearly independent) = 1. By union bound,492

P({wj : j ∈ J } for all J ∈ [K], |J | = D are linearly independent) = 1.493

We also restate Lemma 4.5 in the following lemma to demonstrate the weight construction for anchor494

matching:495

Lemma C.6 (Anchor Matching). Consider a group of coefficients Γ = {γ1, · · · , γK2
∈ R} with496

γi ̸= 0,∀i ∈ [K2], γi ̸= γj ,∀i, j ∈ [K2], and K2 = N(N − 1) + 1 such that for all 4-tuples497

(γi, γj , γk, γl) ⊂ Γ, if γi ̸= γj , γi ̸= γk then γi/γj ̸= γk/γl. It must hold that: Given any498

x,x′,y,y′ ∈ RN such that x ∼ x′ and y ∼ y′, if (x − γky) ∼ (x′ − γky
′) for every k ∈ [K2],499

then [x y] ∼ [x′ y′].500

Proof. We note that x ∼ x′ and y ∼ y′ imply that there exist P x,P y ∈ Π(N) such that P xx = x′501

and P yy = y′. Also (x− γky) ∼ (x′ − γky
′),∀k ∈ [K2] implies there exists Qk ∈ Π(N),∀k ∈502

[K2] such that Qk(x− γky) = x′ − γky
′. Substituting the former to the latter, we can obtain:503 (

I −Q⊤
k P x

)
x = γk

(
I −Q⊤

k P x

)
y, ∀k ∈ [K2], (15)

where for each k ∈ [K2], Eq. (15) corresponds to N equalities as follows. Here, we let (Z)i denote504

the ith column of the matrix Z.505

(I −Q⊤
k P x)

⊤
1 x = γk(I −Q⊤

k P x)
⊤
1 y

... (16)

(I −Q⊤
k P x)

⊤
Nx = γk(I −Q⊤

k P x)
⊤
Ny

We compare and entries in x = [· · ·xp · · · ]⊤ and for each entry index p ∈ [N ], we define a set of non-506

zero pairwise differences between xp and other entries in x: D(p)
x = {xp − xq : q ∈ [N ], xp ̸= xq}.507

Similarly, for y, we define D(p)
y = {yp − yq : q ∈ [N ], yp ̸= yq}. We note that for every n ∈ [N ],508

either (I −Q⊤
k P x)

⊤
nx = 0 or (I −Q⊤

k P x)
⊤
nx ∈ D(p)

x for some p ∈ [N ] as (Q⊤
k P x)

⊤
nx is some509

xq . Then it is sufficient to show there must exist k ∈ [K2] such that none of equations in Eq. (16) can510

be induced by some elements in D(p)
x , i.e.,511

∃k∗ ∈ [K2],∀p, n ∈ [N ] such that (I −Q⊤
k∗P x)

⊤
nx ̸∈ D(p)

x . (17)

This is because Eq. (17) implies:512

(I −Qk∗P x)
⊤x = 0 ⇒ x = Q⊤

k∗P xx = Q⊤
k∗x′,

(Since γk ̸= 0,∀k ∈ [K2]) (I −Qk∗P y)
⊤y = 0 ⇒ y = Q⊤

k∗P yy = Q⊤
k∗y′,

which is [x y] = Q⊤
k∗ [x′ y′].513

To show Eq. (17), we construct N bipartite graphs G(p) = (D(p)
x ,D(p)

y , E(p)) for p ∈ [N ] where each514

α ∈ D(p)
x or each β ∈ D(p)

y is viewed as a node and (α, β) ∈ E(p) gives an edge if α = γkβ for515

some k ∈ [K2]. Then we prove the existence of k∗ via seeing a contradiction that does counting the516

number of connected pairs (α, β) from two perspectives.517

Perspective of D(p)
x . We argue that for ∀p ∈ [N ] and arbitrary α1, α2 ∈ D(p)

x , α1 ̸= α2, there518

exists at most one β ∈ D(p)
y such that (α1, β) ∈ E(p) and (α2, β) ∈ E(p). Otherwise, suppose there519

exists β′ ∈ D(p)
y , β′ ̸= β such that (α1, β

′) ∈ E(p) and (α2, β
′) ∈ E(p). Then we have α1 = γiβ,520

α2 = γjβ, α1 = γkβ
′, and α2 = γlβ

′ for some γi, γj , γk, γl ∈ Γ, which is γi/γk = γk/γl. As521

α1 ̸= α2, it is obvious that γi ̸= γj . Similarly, we have γi ̸= γk. Altogether, it contradicts our522

assumption on Γ. Therefore, |E(p)| ≤ 2max{|D(p)
x |, |D(p)

y |} ≤ 2(N−1). And the total edge number523

of all bipartite graphs should be less than 2N(N − 1).524
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Perspective of Γ. We note that if for some k ∈ [K2] that makes (I −Q⊤
k P x)

⊤
nx ∈ D(p)

x for some525

p, n ∈ [N ], i.e., (I−Q⊤
k P x)

⊤
nx = γk(I−Q⊤

k P y)
⊤
n y ̸= 0, this γk contributes at least two edges in526

the entire bipartite graph, i.e., there being another n′ ∈ [N ], (I−Q⊤
k P x)

⊤
n′x = γk(I−Q⊤

k P y)
⊤
n′y ̸=527

0. Otherwise, there exists a unique n∗ ∈ [N ] such that (I − Q⊤
k P x)

⊤
n∗x ∈ D(p)

x (̸= 0) and528

(I −Q⊤
k P x)

⊤
nx = 0 for all n ̸= n∗. This cannot be true because 1⊤(I −Q⊤

k P x)x = 0. By which,529

if ∀k ∈ [K2], ∃p, n ∈ [N ] such that (I −Q⊤
k P x)

⊤
nx ∈ D(p)

x (i.e., Eq. (17) is always false), then the530

total number of edges is at least 2K2 = 2N(N − 1) + 2.531

Hereby, we conclude the proof by the contradiction, in which the minimal count of edges 2K2 by532

Perspective of Γ already surpasses the maximal number 2N(N − 1) by Perspective of D(p)
x .533

Remark C.7. A handy choice of Γ in Lemma C.6 are prime numbers, which are provably positive,534

infinitely many, and not divisible by each other.535

We wrap off this section by formally stating and proving the injectivity statement of the LP embedding536

layer.537

Theorem C.8. Suppose ϕ : RD → RL admits the form of Eq. (2) where L = KN ≤ N5D2,538

K = D +K1 + DK1K2 and W =
[
w

(1)
1 · · · w

(1)
D w

(2)
1 · · · w

(2)
K1

· · · w
(3)
i,j,k · · ·

]
539

is constructed as follows:540

1. Let the first group of weights w(1)
1 = e1, · · · ,w(1)

D = eD to buffer the original features, where ei541

is the i-th canonical basis.542

2. Choose the second group of linear weights, w(2)
1 , · · · ,w(2)

K1
for K1 as large as N(N − 1)(D −543

1)/2 + 1, such that the conditions in Lemma C.4 are satisfied.544

3. Design the third group of weights w
(3)
i,j,k for i ∈ [D], j ∈ [K1], k ∈ [K2] where w

(3)
i,j,k =545

ei − γkw
(2)
j , K2 = N(N − 1) + 1, and γk, k ∈ [K2] are chosen such that conditions in Lemma546

C.6 are satisfied.547

Then
∑N

i=1 ϕ(x
(i)) is injective (cf. Definition A.5).548

Proof. Suppose
∑N

i=1 ϕ(x
(i)) =

∑N
i=1 ϕ(x

′(i)) for some X,X′ ∈ RN×D. Due to the property of549

power mapping (cf. Lemma 2.8):550

N∑
i=1

ϕ(x(i)) =

N∑
i=1

ϕ(x′(i)) ⇒Xw
(1)
i ∼ X′w

(1)
i ,∀i ∈ [D],Xw

(2)
i ∼ X′w

(2)
i ,∀i ∈ [K1], (18)

Xw
(3)
i,j,k ∼ X′w

(3)
i,j,k,∀i ∈ [D], j ∈ [K1], k ∈ [K2].

By Lemma C.4, it is guaranteed that there exists j∗ ∈ [K1] such that Xw
(2)
j∗ is an anchor, and551

according to Eq. (18), we have Xw
(2)
j∗ ∼ X′w

(2)
j∗ . By Lemma C.6, we induce:552

Xw
(1)
i ∼ X′w

(1)
i ,∀i ∈ [D],Xw

(2)
j∗ ∼ X′w

(2)
j∗ ,Xw

(3)
i,j,k ∼ X′w

(3)
i,j,k,∀i ∈ [D], j ∈ [K1], k ∈ [K2]

⇒
[
Xw

(2)
j∗ xi

]
∼
[
X′w

(2)
j∗ x′

i

]
,∀i ∈ [D]. (19)

Since Xw
(2)
j∗ is an anchor, by union alignment (Lemma 4.3), we have:553 [

Xw
(2)
j∗ xi

]
∼
[
X′w

(2)
j∗ x′

i

]
,∀i ∈ [D] ⇒ X ∼ X′. (20)

Here K = D +K1 +DK1K2 ≤ N4D2, thus L = KN ≤ N5D2, which concludes the proof.554

C.2 Continuity555

Next, we show that under the construction of Theorem C.8, the inverse of
∑N

i=1 ϕ(x
(i)) is continuous.556

The main idea is to check the three conditions provided in Lemma 4.10:557
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Corollary C.9. Consider channel-wise high-dimensional sum-of-power Ψ̂N (X) : (RN×K/ ∼558

, dF ) → (RNK , d∞) defined as below:559

Ψ̂N (X) =
[
ΨN (x1)

⊤ · · · ΨN (xK)⊤
]⊤ ∈ (RNK , d∞), (21)

and an associated mapping Φ̂N : (RNK , d∞) → (RN/ ∼, dF )K:560

Φ̂N (Z) =
[
Ψ−1

N (z1) · · · Ψ−1
N (zK)

]
, (22)

where Z =
[
z⊤
1 · · · z⊤

K

]⊤
, zi ∈ RN ,∀i ∈ [K]. We denote the induced product metric over561

(RN/ ∼, dF )K as dKF : (RN/ ∼)K × (RN/ ∼)K → R≥0:562

dKF (Z,Z′) = max
i∈[K]

dF (zi, z
′
i). (23)

Then the mapping Φ̂N maps any bounded set in (RNK , d∞) to a bounded set in (RN/ ∼, dF )K .563

Proof. Proved by noting that if d∞(zi, z
′
i) ≤ C1 for some zi, z

′
i ∈ (RN , d∞),∀i ∈ [K] and564

a constant C1 ≥ 0, then dF (Ψ−1
N (zi),Ψ

−1
N (z′

i)) ≤ C2,∀i ∈ [K] for some constant C2 ≥ 0 by565

Lemma B.5 and Remark B.6. Finally, we have:566

dKF (Φ̂N (Z) , Φ̂N (Z′) = max
i∈[K]

dF (Ψ
−1
N (zi),Ψ

−1
N (z′

i)) ≤ C2,

which is also bounded above.567

Now we are ready to present and prove the continuity of the LP embedding layer.568

Theorem C.10. Suppose ϕ admits the form of Eq. (2) and follows the construction in Theorem C.8,569

then the inverse of LP-induced sum-pooling
∑N

i=1 ϕ(x
(i)) is continuous.570

Proof. The proof is done by invoking Lemma 4.10. First of all, the inverse of Ψ(X) =
∑N

i=1 ϕ(x
(i)),571

denoted as Ψ−1 : (RNK , d∞) → (RN×D/ ∼, dF ), exists due to Theorem C.8. By Lemma A.4, any572

closed and bounded subset of (RN×D/ ∼, dF ) is compact. Trivially, Ψ(X) is continuous. Then it573

remains to show the condition (c) in Lemma 4.10. We decompose Ψ−1 into two mappings following574

the similar idea of proving its existence:575

(RNK , d∞)
Φ̂N−−→ (RN/ ∼, dF )K

π−→ (RN×D/ ∼, dF ) ,

where Φ̂N is defined in Eq. (22) and π exists due to Eqs. (19) and (20) in Theorem C.8. Also according576

to our construction in Theorem C.8, the first identity block induces that: for any Z ∈ (RN/ ∼, dF )K ,577

zi ∼ π(Z)i for every i ∈ [D]. Therefore, ∀Z,Z′ ∈ (RN/ ∼, dF )K such that dKF (Z,Z′) ≤ C for578

some constant C > 0, we have:579

dF (π(Z), π(Z′)) ≤ max
i∈[D]

dF (zi, z
′
i) ≤ dKF (Z,Z′) ≤ C, (24)

which implies π maps every bounded set in (RN/ ∼, dF )K to a bounded set in (RN×D/ ∼, dF ).580

Now we conclude the proof by the following chain of argument:581

Z ⊆ (RNK , d∞) is bounded
Corollary C.9
=======⇒ Φ̂N (Z) is bounded

Eq. (24)
====⇒ π ◦ Φ̂N (Z) is bounded.

582

C.3 Lower Bound for Injectivity583

In this section, we prove Theorem 4.6 which shows that K ≥ D + 1 is necessary for injectivity584

of LP-induced sum-pooling when D ≥ 2. Our argument mainly generalizes Lemma 2 of [55] to585

our equivalence class. To proceed our argument, we define the linear subspace V by vectorizing586

[Xw1 · · · XwK ] as below:587

V :=


Xw1

...
XwK

 : X ∈ RN×D

 = R


 (w1 ⊗ IN )

...
(wK ⊗ IN )


 , (25)
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where R(Z) denotes the column space of Z and ⊗ is the Kronecker product. V is a linear subspace588

of RNK with dimension at most RND, characterized by w1, · · · ,wK ∈ RD. For the sake of589

notation simplicity, we denote Π(N)⊗K = {diag(Q1, · · · ,QK) : ∀Q1, · · · ,QK ∈ Π(N)}, and590

IK ⊗Π(N) = {IK ⊗Q : ∀Q ∈ Π(N)}. Next, we define the notion of unique recoverability [55]591

as below:592

Definition C.11 (Unique Recoverability). The subspace V is called uniquely recoverable under593

Q ∈ Π(N)⊗K if whenever x,x′ ∈ V satisfy Qx = x′, there exists P ∈ IK ⊗Π(N), Px = x′.594

Subsequently, we derive a necessary condition for the unqiue recoverability:595

Lemma C.12. A linear subspace V ⊆ RNK is uniquely recoverable under Q ∈ Π(N)⊗K only596

if there exists P ∈ IK ⊗ Π(N), Q(V) ∩ V ⊂ EQP⊤,λ=1, where EQP⊤,λ denotes the eigenspace597

corresponding to the eigenvalue λ.598

Proof. We first show that Q(V)∩V ⊆
⋃

P∈IK⊗Π(K) EQP⊤,λ=1. Since the LHS is a subspace, while599

the RHS is a union of subspaces, there exists P ∈ IK ⊗ Π(K) such that Q(V) ∩ V ⊆ EQP⊤,λ=1.600

Then it remains to show Q(V) ∩ V ⊆
⋃

P∈IK⊗Π(K) EQP⊤,λ=1.601

Proved by contradiction. Suppose there exists x ∈ Q(V) ∩ V but x /∈
⋃

P∈IK⊗Π(K) EQP⊤,λ=1. Or602

equivalently, there exists x′ ∈ V and x = Qx′, while for ∀P ∈ IK ⊗ Π(N), x ̸= QP⊤x. This603

implies Q⊤x = x′ ̸= Px for ∀P ∈ IK ⊗Π(N). However, this contradicts the fact that V ⊆ RNK604

is uniquely recoverable (cf. Definition C.11).605

We also introduce a useful Lemma C.13 that gets rid of the discussion on Q in the inclusion:606

Lemma C.13. Suppose V ⊆ RN is a linear subspace, and A is a linear mapping. A(V)∩V∩EA,λ =607

0 if and only if V ∩ EA,λ = 0.608

Proof. The sufficiency is straightforward. The necessity is shown by contradiction: Suppose V ∩609

EA,λ ̸= 0, then there exists x ∈ V ∩ EA,λ such that x ̸= 0. Then Ax = λx implies x ∈ A(V).610

Hence, x ∈ A(V) ∩ V ∩ EA,λ which reaches the contradiction.611

Now we are ready to present the proof of Theorem 4.6:612

Proof of Theorem 4.6. Proved by contrapositive. First notice that, ∀X,X′ ∈ RN×D,Xwi ∼613

X′wi,∀i ∈ [K] ⇒ X ∼ X′ holds if and only if dimV = ND and V is uniquely recoverable under614

all possible Q ∈ Π(N)⊗K . By Lemma C.12, for every Q ∈ Π(N)⊗K , there exists P ∈ IK ⊗Π(N)615

such that Q(V) ∩ V ⊂ EQP⊤,λ=1. This is Q(V) ∩ V ∩ EQP⊤,λ = 0 for all λ ̸= 1. By Lemma C.13,616

we have V ∩ EQP⊤,λ = 0 for all λ ̸= 1. Then proof is concluded by discussing the dimension of617

ambient space RNK such that anND-dimensional subspace V can reside. To ensure V∩EQP⊤,λ = 0618

for all λ ̸= 1, it is necessary that dimV ≤ minλ ̸=1 codim EQP⊤,λ for every Q ∈ Π(N)⊗K and its619

associated P ∈ IK ⊗Π(N). Relaxing the dependence between Q and P , we derive the inequality:620

ND = dimV ≤ min
Q∈Π(N)⊗K

max
P∈IK⊗Π(N)

min
λ ̸=1

codim EQP⊤,λ ≤ NK − 1, (26)

where the last inequality considers the scenario where every non-one eigenspace is one-dimensional,621

which is achievable when K ≥ 2. Hence, we can bound K ≥ D + 1/K, i.e., K ≥ D + 1.622

D Proofs for LLE Embedding Layer623

In this section, we present the complete proof for the LLE embedding layer (Eq. (3)). Similar to624

the LP embedding layer, we construct an LLE whose induced sum-pooling is injective following625

arguments in Sec. 4.2 and has continuous inverse with the techniques introduced in Sec. 4.3.626
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D.1 Upper Bound for Injectivity627

To prove the upper bound, we construct an LLE embedding layer with L ≤ 2N2D2 output neurons628

such that its induced sum-pooling is injective. The main proof technique is to bind every pair of629

channel with complex numbers and invoke the injectiviy of sum-of-power mapping over the complex630

domain.631

With Lemma B.2, we can prove Lemma 4.8 as below:632

Proof of Lemma 4.8. If for any pair of vectors x1,x2 ∈ RN ,y1,y2 ∈ RN such that633 ∑
i∈[N ] x

l−k
1,i xk

2,i =
∑

i∈[N ] y
l−k
1,i yk

2,i for every l, k ∈ [N ], 0 ≤ k ≤ l, then for ∀l ∈ [N ],634

N∑
i=1

(x1,i + x2,i

√
−1)l =

N∑
i=1

l∑
k=0

(
√
−1)kxl−k

1,i xk
2,i =

l∑
k=0

(
√
−1)k

(
N∑
i=1

xl−k
1,i xk

2,i

)
(27)

=

l∑
k=0

(
√
−1)k

(
N∑
i=1

yl−k
1,i yk

2,i

)

=
N∑
i=1

(y1,i + y2,i

√
−1)l

= ψN (y1 + y2

√
−1)

Then by Lemma B.2, we have (x1 + x2

√
−1) ∼ (y1 + y2

√
−1), which is essentially [x1 x2] ∼635

[y1 y2].636

Now we are ready to prove the injectiviy of the LLE layer.637

Theorem D.1. Suppose ϕ : RD → RL admits the form of Eq. (3) and W = [· · · wi,j,p,q · · ·] ∈638

RD×L, i ∈ [D], j ∈ [D], p ∈ [N ], q ∈ [p+ 1] is constructed as follows:639

wi,j,p,q = (q − 1)ei + (p− q + 1)ej , (28)

where ei is the i-th canonical basis. Then
∑N

i=1 ϕ(x
(i)) is injective (cf. Definition A.5).640

Proof. First of all, notice that L = D2
∑N

p=1(p+ 1) = D2(N + 3)N/2 ≤ 2N2D2. According to641

Eq. 8, we can rewrite for ∀i ∈ [D], j ∈ [D], p ∈ [N ], q ∈ [p+ 1]642

ϕ(x)i,j,p,q = exp(w⊤
i,j,p,q log(x)) =

D∏
k=1

x
wi,j,p,q,k

k = xq−1
i xp−q+1

j , (29)

Then for X,X′ ∈ RN×D,
∑

i∈[N ] ϕ(x
(i) =

∑
i∈[N ] ϕ(x

′(i)) implies
∑

i∈[N ] x
q−1
i xp−q+1

j =643 ∑
i∈[N ] x

′q−1
i x′p−q+1

j for ∀i ∈ [D], j ∈ [D], p ∈ [N ], q ∈ [p + 1]. By Lemma 4.8, we have644

[xi xj ] ∼ [x′
i x′

j ] for ∀i ∈ [D], j ∈ [D]. Finally, Lemma 4.9 directly yields X ∼ X′.645

D.2 Continuity646

The proof idea of continuity for LLE layer shares the same outline with the LP layer.647

Corollary D.2. Consider the mapping Φ̃N = ψ−1
N ◦ τ : (RN(N+3)/2, d∞) → (CN/ ∼, dF ),648

where τ : (RN(N+3)/2, d∞) → (CN , d∞) is a linear mapping that combines sum of monomials to649

polynomials following Eq. (27). Construct the mapping Φ̂N : (RL, d∞) → (CN/ ∼, dF )D
2

based650

on Φ̃N :651

Φ̂N (Z) =
[
Φ̃N (z1) · · · Φ̃N (zD2)

]
, (30)

where Z =
[
z⊤
1 · · · z⊤

D2

]⊤ ∈ RL, zi ∈ R(N(N+3)/2),∀i ∈ [D2]. We denote the induced652

product metric over (CN/ ∼, dF )D
2

as dD
2

F : (CN/ ∼)D
2 × (CN/ ∼)D

2 → R≥0:653

dD
2

F (Z,Z′) = max
i∈[D2]

dF (zi, z
′
i). (31)

Then the mapping Φ̂N maps any bounded set in (RL, d∞) to a bounded set in (CN/ ∼, dF )D
2

.654
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Proof. Since τ is a linear mapping, any Z,Z′ ∈ RL such that d∞(zi, z
′
i) ≤ C1,∀i ∈ [D2] for some655

constantC1 ≥ 0, then dF (τ(zi), τ(z
′
i)) ≤ C2 for some constantC2 ≥ 0. By Lemma B.3, ψ−1

N maps656

any bounded set in (CN , d∞) to a bounded set in (CN/ ∼, dF ). This is dF (Φ̃N (zi), Φ̃N (z′
i)) ≤657

C2,∀i ∈ [D2] for some constant C2 ≥ 0. Finally, we have:658

dD
2

F (Φ̂N (Z) , Φ̂N (Z′) = max
i∈[D2]

dF (Φ̃N (zi,j), Φ̃N (z′
i,j)) ≤ C2,

which is also bounded above.659

Theorem D.3. Suppose ϕ admits the form of Eq. (3) and follows the construction in Theorem D.1,660

then the inverse of LLE-induced sum-pooling
∑N

i=1 ϕ(x
(i)) is continuous.661

Proof. It is sufficient to verify three conditions in Lemma 4.10. First of all, we denote the inverse662

of Ψ(X) =
∑N

i=1 ϕ(x
(i)), denoted as Ψ−1 : (RL, d∞) → (RN×D/ ∼, dF ), which exists thanks663

to Theorem D.1. By Lemma A.4, any closed and bounded subset of (RN×D/ ∼, dF ) is compact.664

Obviously, Ψ(X) is continuous. Then it remains to show the condition (c) in Lemma 4.10. Similar665

to Theorem C.10, we decompose Ψ−1 into two mappings following the clue of proving its existence:666

(RNK , d∞)
Φ̂N−−→ (CN/ ∼, dF )D

2 π−→ (RN×D/ ∼, dF ) ,

where Φ̂N is defined in Eq. (30) and π exists due to Theorem D.1. Also according to our construction667

in Theorem D.1, for any Z ⊂ (CN/ ∼, dF )D
2

and ∀i, j ∈ [D], there exists k ∈ [D2] such that668

(π(z)i + π(z)j
√
−1) ∼ zk. Therefore, ∀Z,Z′ ∈ (CN/ ∼, dF )D

2

such that dD
2

F (Z,Z′) ≤ C for669

some constant C > 0, we have:670

dF (π(Z), π(Z′)) ≤ max
i∈[D2]

dF (zi, z
′
i) ≤ dD

2

F (Z,Z′) ≤ C, (32)

which implies π maps every bounded set in (CN/ ∼, dF )K to a bounded set in (RN×D/ ∼, dF ).671

Now we conclude the proof by the following chain of argument:672

Z ⊆ (RNK , d∞) is bounded
Corollary D.2
=======⇒ Φ̂N (Z) is bounded

Eq. (32)
====⇒ π ◦ Φ̂N (Z) is bounded.

673

E Extension to Permutation Equivariance674

In this section, we prove Theorem 5.1, the extension of Theorem 3.1 to equivariant functions,675

following the similar arguments with [7]:676

Lemma E.1 ( [7, 34]). f : RN×D → RN is a permutation-equivariant function if and only if there677

is a function ρ : RN×D → R that is permutation invariant to the last N − 1 entries, such that678

f(Z)i = ρ(z(i), z(i+1), · · · , z(N), · · · , z(i−1)︸ ︷︷ ︸
N−1

) for any i ∈ [N ].679

Proof. (Sufficiency) Define π : [N ] → [N ] be an index mapping associated with the permutation680

matrix P ∈ Π(N) such that PZ =
[
z(π(1)), · · · , z(π(N))

]⊤
. Then we have:681

f
(
z(π(1)), · · · , z(π(N))

)
i
= ρ

(
z(π(i)), z(π(i+1)), · · · , z(π(N)), · · · , z(π(i−1))

)
.

Since ρ(·) is invariant to the last N − 1 entries, it can shown that:682

f(PZ)i = ρ
(
z(π(i)), z(π(i+1)), · · · , z(π(N)), · · · , z(π(i−1))

)
= f(Z)π(i).

(Necessity) Given a permutation-equivariant function f : RN×D → RN , we first expand683

it to the following form: f(Z)i = ρi(z
(1), · · · , z(N)). Permutation-equivariance means684
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ρπ(i)(z
(1), · · · , z(N)) = ρi(z

π(1), · · · , zπ(N)) for any permutation mapping π. Suppose given685

an index i ∈ [N ], consider any permutation π : [N ] → [N ] such that π(i) = i. Then, we have:686

ρi

(
z(1), · · · , z(i), · · · , z(N)

)
= ρπ(i)

(
z(1), · · · , z(i), · · · , z(N)

)
= ρi

(
z(π(1)), · · · , zi, · · · , z(π(N))

)
,

which implies ρi : RN×D → R must be invariant to the N − 1 elements other than the i-th element.687

Now, consider a permutation π where π(1) = i. Then we have:688

ρi

(
z(1), z(2), · · · , z(N)

)
= ρπ(1)

(
z(1), z(2), · · · , z(N)

)
= ρ1

(
z(π(1)), z(π(2)), · · · , z(π(N))

)
= ρ1

(
z(i), z(i+1), · · · , z(N), · · · , z(i−1)

)
,

where the last equality is due to the invariance to N − 1 elements, stated beforehand. This implies689

two results. First, for all i, ρi(z(1), z(2), · · · , z(i), · · · , z(N)),∀i ∈ [N ] should be written in terms690

of ρ1(z(i), z(i+1), · · · , z(N), · · · , z(i−1)). Moreover, ρ1 is permutation invariant to its last N − 1691

entries. Therefore, we just need to set ρ = ρ1 and broadcast it accordingly to all entries. We conclude692

the proof.693

Proof of Theorem 5.1 [7]. Sufficiency can be shown by verifying the equivariance. We conclude694

the proof by showing the necessity with Lemma E.1. First we rewrite any permutation equivariant695

function f(x(1), · · · ,x(N)) : RN×D → RN as:696

f
(
x(1), · · · ,x(N)

)
i
= τ

(
x(i),x(i+1), · · · ,x(N), · · · ,x(i−1)

)
, (33)

where π is invariant to the lask N − 1 elements, according to Lemma E.1. Given ϕ with either LP or697

LLE architectures, Ψ(X) =
∑N

i=1 ϕ(x
(i)) is injective and has continuous inverse if:698

• L ∈ [N(D + 1), N5D2] when ϕ admits LP architecture. (By Theorem C.8 and C.10).699

• L ∈ [ND, 2N2D2] when ϕ admits LLE architecture. (By Theorem D.1 and D.3).700

The proof proceeds by letting ρ : RD × RL → R take the form ρ(x, z) = τ(x,Φ−1(z − ϕ(x))),701

and observe that:702

τ
(
x(i),x(i+1), · · · ,x(N), · · · ,x(i−1)

)
= τ

(
x(i),Φ−1 ◦ Φ(x(i+1), · · · ,x(N), · · · ,x(i−1))

)
= τ

(
x(i),Φ−1

(
Φ
(
x(1), · · · ,x(N)

)
− ϕ(x(i))

))
= ρ

(
x(i),

N∑
i=1

ϕ(x(i))

)
703

F Extension to Complex Numbers704

In this section, we formally introduce the nature extension of our Theorem 3.1 to the complex705

numbers:706

Corollary F.1 (Extension to Complex Domain). For any permutation-invariant function f :707

KN×D → R, K ⊆ C, there exists continuous functions ϕ : CD → RL and ρ : RL → C such708

that f(X) = ρ
(∑

i∈[N ] ϕ(x
(i))
)

for every j ∈ [N ], where L ∈ [2N(D + 1), 4N5D2] when ϕ709

admits LP architecture, and L ∈ [2ND, 8N2D2] when ϕ admits LLE architecture (K ∈ C>0).710

Proof. We let ϕ first map complex features x(i) ∈ CD,∀i ∈ [N ] to real features x̃(i) =711 [
ℜ(x(i))⊤ ℑ(x(i))⊤

]
∈ R2D,∀i ∈ [N ] by divide the real and imaginary parts into separate712

channels, then utilize either LP or LLE embedding layer to map x̃(i) to the latent space. The upper713

bounds of desired latent space dimension are scaled by 4 for both architectures due to the quadratic714

dependence on D. Then the same proof of Theorems C.8, C.10, D.1, and D.3 applies.715
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G Connection to Unlabled Sensing716

Unlabeled sensing [56], also known as linear regression without correspondence [55, 57–59], solves717

the linear system y = PAx with a given measurement matrix A ∈ RM×N and an unknown718

permutation P ∈ Π(M). [55, 56] show that as long as A is over-determinant (M ≥ 2N ), such719

problem is well-posed (i.e., has a unique solution) for almost all cases. Unlabeled sensing shares720

the similar structure with our LP embedding layer in which a linear layer lifts the feature space721

to a higher-dimensional ambient space, ensuring the solvability of alignment across each channel.722

However, our invertibility is defined between the set and embedding spaces, which differs from723

exact recovery of unknown variables desired in unlabeled sensing [55]. In fact, the well-posedness724

of unlabeled PCA [54], studying matrix completion with shuffle perturbations, shares the identical725

definition with our injectivity. But it is noteworthy that the results in [54] are only drawn over a726

dense subset of the input space, while ours are stronger in considering all possible inputs. Hence, our727

theory could potentially bring new insights into the field of unlabeled sensing, which may be of an728

independent interest.729
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