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A APPENDIX

A.1 ADDITIONAL DETAILS ON THE BRAIN MODULE ARCHITECTURE

We provide additional details on the brain module f✓ described in Section 2.3.

The brain module first applies two successive linear transformations in the spatial dimension to an
input MEG window. The first linear transformation is the output of an attention layer conditioned
on the MEG sensor positions. The second linear transformation is learned subject-wise, such that
each subject ends up with their own linear projection matrix W subj

s 2 RC⇥C , with C the number
of input MEG channels and s 2 [[1, S]] where S is the number of subjects. The module then applies
a succession of 1D convolutional blocks that operate in the temporal dimension and treat the spatial
dimension as features. These blocks each contain three convolutional layers (dilated kernel size
of 3, stride of 1) with residual skip connections. The first two layers of each block use GELU
activations while the last one use a GLU activation. The output of the last convolutional block is
passed through a learned linear projection to yield a different number of features F 0 (fixed to 2048
in our experiments).

The resulting features are then fed to a temporal aggregation layer which reduces the remaining
temporal dimension. Given the output of the brain module backbone Ŷbackbone 2 RF 0⇥T , we
compare three approaches to reduce the temporal dimension of size T : (1) Global average pooling,
i.e., the features are averaged across time steps; (2) Learned affine projection in which the temporal
dimension is projected from RT to R using a learned weight vector wagg 2 RT and bias bagg 2 R;
(3) Bahdanau attention layer (Bahdanau et al., 2014) which predicts an affine projection from RT to
R conditioned on the input Ŷbackbone itself. Following the hyperparameter search of Appendix A.2,
we selected the learned affine projection approach for our experiments. Finally, the resulting output
is fed to CLIP and MSE head-specific MLP projection heads where a head consists of repeated
LayerNorm-GELU-Linear blocks, to project from F 0 to the F dimensions of the target latent.

We refer the interested reader to Défossez et al. (2022) for a description of the original architecture,
and to the code available at https://github.com/facebookresearch/brainmagick.

A.2 HYPERPARAMETER SEARCH

We run a hyperparameter grid search to find an appropriate configuration (MEG preprocessing, opti-
mizer, brain module architecture and CLIP loss) for the MEG-to-image retrieval task. We randomly
split the 79,392 (MEG, image) pairs of the adapted training set (Section 2.8) into 60%-20%-20%
train, valid and test splits such that all presentations of a given image are contained in the same split.
We use the validation split to perform early stopping and the test split to evaluate the performance
of a configuration.

For the purpose of this search we pick CLIP-Vision (CLS) latent as a representative latent, since
it achieved good retrieval performance in preliminary experiments. We focus the search on the
retrieval task, i.e., by setting � = 1 in Eq. 3, and leave the selection of an optimal � to a model-
specific sweep using a held-out set (see Section 2.3). We run the search six times using two different
random seed initializations for the brain module and three different random train/valid/test splits.
Fig. S1 summarizes the results of this hyperparameter search.

Based on this search, we use the following configuration: MEG window (tmin, tmax) of
[�0.5, 1.0] s, learning rate of 3 ⇥ 10�4, batch size of 128, brain module with two convolutional
blocks and both the spatial attention and subject layers of Défossez et al. (2022), affine projection
temporal aggregation layer with a single block in the CLIP projection head, and adapted CLIP loss
from Défossez et al. (2022) i.e., with normalization along the image axis only, the brain-to-image
term only (first term of Eq. 1) and a fixed temperature parameter ⌧ = 1. The final architecture
configuration is presented in Table S1.

A.3 IMAGE EMBEDDINGS

We evaluate the performance of linear baselines and of a deep convolutional neural network on the
MEG-to-image retrieval task using a set of classic visual embeddings. We grouped these embeddings
by their corresponding paradigm:
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Figure S1: Hyperparameter search results for the MEG-to-image retrieval task, presenting the impact
of (A) optimizer learning rate and batch size, (B) number of convolutional blocks and use of spatial
attention and/or subject-specific layers in the brain module, (C) MEG window parameters, (D) type
of temporal aggregation layer and number of blocks in the CLIP projection head of the brain module,
and (E) CLIP loss configuration (normalization axes, use of learned temperature parameter and use
of symmetric terms). Chance-level performance top-5 accuracy is 0.05%.

Table S1: Brain module configuration adapted from Défossez et al. (2022) for use with a target latent
of size 768 (e.g. CLIP-Vision (CLS), see Section 2.4) in retrieval settings.

Layer Input shape Output shape # parameters
Spatial attention block (272, 181) (270, 181) 552,960
Linear projection (270, 181) (270, 181) 73,170
Subject-specific linear layer (270, 181) (270, 181) 291,600
Residual dilated conv block 1 (270, 181) (320, 181) 1,183,360
Residual dilated conv block 2 (320, 181) (320, 181) 1,231,360
Linear projection (320, 181) (2048, 181) 1,518,208
Temporal aggregation (2048, 181) (2048, 1) 182
MLP projector (2048, 1) (768, 1) 1,573,632

Total 6,424,472

Supervised learning. The last layer, with dimension 1000, of VGG-19.

Text/Image alignment. The last hidden layer of CLIP-Vision (257x768), CLIP-Text (77x768),
and their CLS and MEAN pooling.
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Self-supervised learning. The output layers of DINOv1, DINOv2 and their CLS and MEAN
pooling. The best-performing DINOv2 variation reported in tables and figures is ViT-g/14.

Variational autoencoders. The activations of the 31 first layers of the very deep variational-
autoencoder (VDVAE), and the bottleneck layer (4x64x64) of the Kullback-Leibler variational-
autoencoder (AutoKL) used in the generative module (Section 2.5).

Engineered features. The color histogram of the seen image (8 bins per channels); the local binary
patterns (LBP) using the implementation in OpenCV 2 (Bradski, 2000) with ’uniform’ method,
P = 8 and R = 1; the Histogram of Oriented Gradients (HOG) using the implementation of sk-
image (Van der Walt et al., 2014) with 8 orientations, 8 pixels-per-cell and 2 cells-per-block.

A.4 7T FMRI DATASET

The Natural Scenes Dataset (NSD) (Allen et al., 2022) contains fMRI data from 8 participants
viewing a total of 73,000 RGB images. It has been successfully used for reconstructing seen images
from fMRI in several studies (Takagi & Nishimoto, 2023; Ozcelik & VanRullen, 2023; Scotti et al.,
2023). In particular, these studies use a highly preprocessed, compact version of fMRI data (“betas”)
obtained through generalized linear models fitted across multiple repetitions of the same image.

Each participant saw a total of 10,000 unique images (repeated 3 times each) across 37 sessions.
Each session consisted in 12 runs of 5 minutes each, where each image was seen during 3 s, with
a 1-s blank interval between two successive image presentations. Among the 8 participants, only 4
(namely 1, 2, 5 and 7) completed all sessions.

To compute the three latents used to reconstruct the seen images from fMRI data (as described in
Section 2.5) we follow Ozcelik & VanRullen (2023) and train and evaluate three distinct Ridge
regression models using the exact same split. That is, for each of the four remaining participants,
the 9,000 uniquely-seen-per-participant images (and their three repetitions) are used for training,
and a common set of 1000 images seen by all participant is kept for evaluation (also with their three
repetitions). We report reconstructions and metrics for participant 1.

The ↵ coefficient for the L2-regularization of the regressions are cross-validated with a 5-fold
scheme on the training set of each subject. We follow the same standardization scheme for inputs
and predictions as in Ozcelik & VanRullen (2023).

Fig. S2 presents generated images obtained using the NSD dataset (Allen et al., 2022).

A.5 LINEAR RIDGE REGRESSION SCORES ON PRETRAINED IMAGE REPRESENTATIONS

We provide a (5-fold cross-validated) Ridge regression baseline (Table S2) for comparison with our
brain module results of Section 3, showing considerable improvements for the latter.
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Figure S2: Examples of generated images conditioned on fMRI-based latent predictions. The groups
of three stacked rows represent best, average and worst retrievals, as evaluated by the sum of (minus)
SwAV and SSIM.

Table S2: Image retrieval performance of a linear Ridge regression baseline on pretrained image
representations.

Top-5 acc (%) " Median relative rank #
Latent kind Latent name Small set Large set Small set Large set

Text/Image
alignment

CLIP-Vision (CLS) 10.5 0.50 0.23 0.34
CLIP-Text (mean) 6.0 0.25 0.42 0.43
CLIP-Vision (mean) 5.5 0.46 0.32 0.37

Feature
engineering

Color histogram 7.0 0.33 0.31 0.40
Local binary patterns (LBP) 3.5 0.37 0.34 0.44
FFT 2D (as real) 4.5 0.46 0.40 0.45
HOG 3.0 0.42 0.45 0.46
FFT 2D (log-PSD and angle) 2.0 0.37 0.47 0.46

Variational
autoencoder

AutoKL 7.5 0.54 0.24 0.38
VDVAE 8.0 0.50 0.33 0.43

Self-supervised
learning DINOv2 (CLS) 7.5 0.46 0.25 0.35

Supervised VGG-19 11.5 0.67 0.17 0.31

A.6 IMPACT OF CHOICE OF LAYER IN SUPERVISED MODELS

We replicate the analysis of Fig. 2 on different layers of the supervised model (VGG-19). As shown
in Table S3, some of these layers slightly outperform the last layer. Future work remains necessary
to further probe which layer, or which combination of layers and models may be optimal to retrieve
images from brain activity.

A.7 MEG-BASED IMAGE RETRIEVAL EXAMPLES

Fig. S3 shows examples of retrieved images based on the best performing latents identified in Sec-
tion 3.
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Table S3: Image retrieval performance of intermediate image representations of the VGG-19 super-
vised model.

Top-5 acc (%) ↑ Median relative rank ↓
Latent kind Latent name Small set Large set Small set Large set

Supervised

VGG-19 (last layer) 70.333 12.292 0.005 0.013
VGG-19 (avgpool) 73.833 17.417 0.000 0.006
VGG-19 (classifier dropout 2) 73.833 17.375 0.000 0.005
VGG-19 (classifier dropout 5) 74.500 16.403 0.000 0.007
VGG-19 (maxpool2d 35) 64.333 13.278 0.005 0.014

To get a better sense of what time-resolved retrieval yields in practice, we present the top-1 retrieved
images from an augmented retrieval set built by concatenating the “large” test set with an additional
set of 3,659 images that were not seen by the participants (Fig. S4).

A.8 MEG-BASED IMAGE GENERATION EXAMPLES

Fig. S5 shows representative examples of generated images obtained with our diffusion pipeline3.

Fig. S6 specifically shows examples of failed generations. Overall, they appear to encompass dif-
ferent types of failures. Some generations appear to miss the correct category of the true object
(e.g. bamboo, batteries, bullets and extinguisher in columns 1-4), but generate images with partially
similar textures. Other generations appear to recover some category-level features but generate un-
realistic chimeras (bed: weird furniture, alligator: swamp beast; etc. in columns 5-6). Finally, some
generations seem to be completely wrong, with little-to-no preservation of low- or high-level fea-
tures (columns 7-8). We speculate that these different types of failures may be partially resolved
with different methods, such as better generation modules (for chimeras) and optimization on both
low- and high-level features (for category errors).

A.9 PERFORMANCE OF TEMPORALLY-RESOLVED IMAGE RETRIEVAL WITH GROWING
WINDOWS

To complement the results of Fig. 3 on temporally-resolved retrieval with sliding windows, we
provide a similar analysis in Fig. S7, instead using growing windows. Beginning with the window
spanning -100 to 0 ms around image onset, we grow it by increments of 25 ms until it spans both
stimulus presentation and interstimulus interval regions (i.e., -100 to 1,500 ms). Separate models are
finally trained on each resulting window configuration.

Consistent with the decoding peaks observed after image onset and offset (Fig. 3), the retrieval
performance of all growing-window models considerably improves after the offset of the image.
Together, these results suggest that the brain activity represents both low- and high-level features
even after image offset. This finding clarifies mixed results previously reported in the literature.
Carlson et al. (2011; 2013) reported small but significant decoding performances after image offset.
However, other studies (Cichy et al., 2014; Hebart et al., 2023) did not observe such a phenomenon.
In all these cases, decoders were based on pairwise classification of object categories and on linear
classifiers. The improved sensitivity brought by (1) our deep learning architecture, (2) its retrieval
objective and (3) its use of pretrained latent features may thus help clarify the dynamics of visual
representations in particular at image offset. We speculate that such offset responses could reflect
an intricate interplay between low- and high-level processes that may be difficult to detect with a
pairwise linear classifier. We hope that the present methodological contribution will help shine light
on this understudied phenomenon.

3Images may look slightly different from those in Fig. 4 due to different random seeding.
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Figure S3: Representative examples of retrievals (top-4) using models trained on full windows (from
-0.5 s to 1 s after image onset). Retrieval set: N =6,059 images from 1,196 categories.

A.10 PER-PARTICIPANT IMAGE GENERATION PERFORMANCE

Table S4 provides the image generation metrics at participant-level. For each participant, we com-
pute metrics over the 200 generated images obtained by averaging the outputs of the brain module
for all 12 presentations of the stimulus.

A.11 ANALYSIS OF TEMPORAL AGGREGATION LAYER WEIGHTS

We inspect our decoders to better understand how they use information in the time domain. To do so,
we leverage the fact that our architecture preserves the temporal dimension of the input up until the
output of its convolutional blocks. This output is then reduced by an affine transformation learned
by the temporal aggregation layer (see Section 2.3 and Appendix A.1). Consequently, the weights
wagg 2 RT can reveal on which time steps the models learned to focus. To facilitate inspection, we
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Figure S4: Representative examples of dynamic retrievals using CLIP-Vision (CLS) and models
trained on 250-ms non-overlapping sliding windows (Image onset: t = 0, retrieval set: N =6,059
from 1,196 categories). The groups of three stacked rows represent best, average and worst re-
trievals, obtained by sampling examples from the <10%, 45-55% and >90% percentile groups
based on top-5 accuracy.

Table S4: Quantitative evaluation of reconstruction quality from MEG data on THINGS-MEG for
each participant. We use the same metrics as in Table 1.

Low-level High-level
Participant PixCorr " SSIM " AlexNet(2) " AlexNet(5) " Inception " CLIP " SwAV #
1 0.070 ± 0.009 0.338 ± 0.015 0.741 0.814 0.672 0.768 0.590 ± 0.007
2 0.081 ± 0.010 0.341 ± 0.015 0.788 0.879 0.710 0.799 0.560 ± 0.008
3 0.073 ± 0.010 0.335 ± 0.015 0.725 0.825 0.675 0.770 0.588 ± 0.008
4 0.082 ± 0.009 0.328 ± 0.014 0.701 0.797 0.634 0.744 0.599 ± 0.008

initialize wagg to zeros before training and plot the mean absolute weights of each model (averaged
across seeds).

The results are presented in Fig. S8. While these weights are close to zero before stimulus onset,
they deviate from this baseline after stimulus onset, during the maintenance period and after stimulus
offset. Interestingly, and unlike high-level features (e.g. VGG-19, CLIP-Vision), low-level features
(e.g. color histogram, AutoKL and DINOv2) have close-to-zero weights in the 0.2-0.5 s interval.

This result suggests that low-level representations quickly fade away at that moment. Overall, this
analysis demonstrates that the models rely on these three time periods to maximize decoding perfor-
mance, including the early low-level responses (t =0-0.1 s).
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Figure S5: Representative examples of generated images conditioned on MEG-based latent predic-
tions. The groups of three stacked rows represent best, average and worst generations, as evaluated
by the sum of (minus) SwAV and SSIM.

A.12 TEMPORALLY-RESOLVED IMAGE GENERATION METRICS

Akin to the time-resolved analysis of retrieval performance shown in Fig. 3, we evaluate the image
reconstruction metrics used in Table 1 on models trained on 100-ms sliding windows. Results are
shown in Fig. S9.

Low-level metrics peak in the first 200 ms while high-level metrics reach a performance plateau that
is maintained throughout the image presentation interval. As seen in previous analyses (Fig. 3, S7
and S8), a sharp performance peak is visible for low-level metrics after image offset.
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Figure S6: Examples of failed generations. (A) Generations obtained on growing windows start-
ing at image onset (0 ms) and ending at the specified time. (B) Full-window generations (-500 to
1,000 ms).

22



Published as a conference paper at ICLR 2024

Figure S7: Retrieval performance of models trained on growing windows (from -100 ms up to
1,500 ms relative to stimulus onset) for different image embeddings. The shaded gray area indi-
cates the 500-ms interval during which images were presented to the participants and the horizontal
dashed line indicates chance-level performance. Accuracy plateaus a few hundreds of milliseconds
after both image onset and offset.

Figure S8: Mean absolute weights learned by the temporal aggregation layer of the brain module.
Retrieval models were trained on five different latents. The absolute value of the weights of the
affine transformation learned by the temporal aggregation layer were then averaged across random
seeds and plotted against the corresponding timesteps. The shaded gray area indicates the 500-ms
interval during which images were presented to the participants.
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Figure S9: Temporally-resolved evaluation of reconstruction quality from MEG data. We use the
same metrics as in Table 1 to evaluate generation performance from sliding windows of 100 ms
with no overlap. (A) Normalized metric scores (min-max scaling between 0 and 1, metric-wise)
across the post-stimulus interval. (B) Unnormalized scores comparing, for each metric, the score at
stimulus onset and the maximum score obtained across all windows in the post-stimulus interval.
Dashed lines indicate chance-level performance and error bars indicate the standard error of the
mean for PixCorr, SSIM and SwAV.
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