
Published as a conference paper at ICLR 2024

T-REP: REPRESENTATION LEARNING FOR TIME SE-
RIES USING TIME-EMBEDDINGS

Archibald Fraikin
Let it Care
PariSanté Campus, Paris, France
archibald.fraikin@inria.fr

Adrien Bennetot
Let it Care
PariSanté Campus, Paris, France
adrien.bennetot@letitcare.com

Stéphanie Allassonnière
Université Paris Cité, INRIA, Inserm, SU
Centre de Recherche des Cordeliers, Paris
stephanie.allassonniere@inria.fr

ABSTRACT

Multivariate time series present challenges to standard machine learning tech-
niques, as they are often unlabeled, high dimensional, noisy, and contain miss-
ing data. To address this, we propose T-Rep, a self-supervised method to learn
time series representations at a timestep granularity. T-Rep learns vector embed-
dings of time alongside its feature extractor, to extract temporal features such as
trend, periodicity, or distribution shifts from the signal. These time-embeddings
are leveraged in pretext tasks, to incorporate smooth and fine-grained temporal de-
pendencies in the representations, as well as reinforce robustness to missing data.
We evaluate T-Rep on downstream classification, forecasting, and anomaly detec-
tion tasks. It is compared to existing self-supervised algorithms for time series,
which it outperforms in all three tasks. We test T-Rep in missing data regimes,
where it proves more resilient than its counterparts. Finally, we provide latent
space visualisation experiments, highlighting the interpretability of the learned
representations.

1 INTRODUCTION

Multivariate time series have become ubiquitous in domains such as medicine, climate science, or
finance. Unfortunately, they are high-dimensional and complex objects with little data being labeled
(Yang & Wu, 2006), as it is an expensive and time-consuming process. Leveraging unlabeled data
to build unsupervised representations of multivariate time series has thus become a challenge of
great interest, as these embeddings can significantly improve performance in tasks like forecasting,
classification, or anomaly detection (Deldari et al., 2021; Su et al., 2019). This has motivated the
development of self-supervised learning (SSL) models for time series, first focusing on constructing
instance-level representations for classification and clustering (Tonekaboni et al., 2021; Franceschi
et al., 2019; Wu et al., 2018). More fine-grained representations were then developed to model time
series at the timestep-level (Yue et al., 2022), which is key in domains such as healthcare or sensor
systems. With fine-grained embeddings, one can capture subtle changes, periodic patterns, and
irregularities that are essential for anomaly detection (Keogh et al., 2006) as well as understanding
and forecasting disease progression. These representations can also be more resilient than raw data
in the face of inter-sample variability or missing data (Yue et al., 2022), common issues in Human
Activity Recognition (HAR) and medicine.

A central issue when learning representations of time series is the incorporation of time in the latent
space, especially for timestep-level embeddings. In SSL, the temporal structure is learned thanks to
the pretext tasks. In current state-of-the-art (SOTA) models, these tasks are contrastive (Tonekaboni
et al., 2021; Yue et al., 2022; Banville et al., 2021), which poses important limitations (Zhang et al.,
2023). In contrastive techniques, the learning signal is binary: positive pairs should be similar, while
negative pairs should be very different (Chen et al., 2020). This makes obtaining a continuous or

1

Published as a conference paper at ICLR 2024

fine-grained notion of time in the embeddings unfeasible, as these tasks only express whether two
points should be similar, but not how close or similar they should be. Embedded trajectories are thus
unlikely to accurately reflect the data’s temporal structure.

Further, temporal contrastive tasks are incompatible with finite-state systems, where the signal tran-
sitions between S states through time, regularly (periodic signal) or irregularly. Such tasks define
positive pairs by proximity in time, and negative pairs by points that are distant in time (Banville
et al., 2021; Franceschi et al., 2019), which can incur sampling bias issues. Points of a negative pair
might be far in time but close to a period apart (i.e. very similar) and points of a positive pair might
be close but very different (think of a pulsatile signal for example). This incoherent information
hinders learning and may result in a poor embedding structure. Finite-state systems are extremely
common in real-world scenarios such as sensor systems, medical monitoring, or weather systems,
making the treatment of these cycles crucial.

To address the above issues, we propose T-Rep, a self-supervised method for learning fine-grained
representations of (univariate and multivariate) time series. T-Rep improves the treatment of time
in SSL thanks to the use of time-embeddings, which are integrated in the feature-extracting encoder
and leveraged in the pretext tasks, helping the model learn detailed time-related features. We define
as time-embedding a vector embedding of time, obtained as the output of a learned function hψ ,
which encodes temporal signal features such as trend, periodicity, distribution shifts etc. Time-
embeddings thus enhance our model’s resilience to missing data, and improve its performance when
faced with finite-state systems and non-stationarity. We evaluate T-Rep on a wide variety of datasets
in classification, forecasting and anomaly detection (see section 5), notably on Sepsis (Reyna et al.,
2020a; Goldberger et al., 2000) a real-world dataset containing multivariate time series from 40, 336
patients in intensive care units (ICU), featuring noisy and missing data. Our major contributions are
summarised as follows:

• To the best of our knowledge, we propose the first self-supervised framework for time series
to leverage time-embeddings in its pretext tasks. This helps the model learn fine-grained
temporal dependencies, giving the latent space a more coherent temporal structure than
existing methods. The use of time-embeddings also encourages resilience to missing data,
and produces more information-dense and interpretable embeddings.

• We compare T-Rep to SOTA self-supervised models for time series in classification, fore-
casting and anomaly detection. It consistently outperforms all baselines whilst using a
lower-dimensional latent space, and also shows stronger resilience to missing data than ex-
isting methods. Further, our latent space visualisation experiments show that the learned
embeddings are highly interpretable.

2 RELATED WORK

Representation Learning for time series The first techniques used in the field were encoder-
decoder based, trained to reconstruct the original time series. Such models include Autowarp (Abid
& Zou, 2018), TimeNet (Malhotra et al., 2017) and LSTM-SAE (Sagheer & Kotb, 2019), which
all feature an RNN-based architecture. Variational Auto-Encoders (Kingma & Welling, 2013)
inspired models have also been used, notably Interfusion (Li et al., 2021), SOM-VAE (Fortuin
et al., 2018), and OmniAnomaly (Su et al., 2019) which combines a VAE with normalising flows.
Encoder-only methods have been more popular recently, often based on contrastive approaches
(Zhang et al., 2023). The Contrastive Predictive Coding (CPC) (Oord et al., 2018) framework
tries to maximise the mutual information between future latent states and a context vector, using
the infoNCE loss. This approach has been adapted for anomaly detection (Deldari et al., 2021)
and general representations (Eldele et al., 2021). TS-TCC (Eldele et al., 2021) augments CPC by
applying weak and strong transformations to the raw signal. Also, augmentation-based contrastive
methods in computer vision (Chen et al., 2020) have been adapted to time series by changing
the augmentations (Kiyasseh et al., 2021). Domain-specific transformations were proposed for
wearable sensors (Cheng et al., 2020) and ECGs (Kiyasseh et al., 2021), such as noise injection,
cropping, warping, and jittering (Pöppelbaum et al., 2022). The issue with these methods is they
make transformation-invariance assumptions which may not be satisfied by the signal (Zhang et al.,
2023; Yue et al., 2022). TS2Vec (Yue et al., 2022) addresses this with contextual consistency.

2

Published as a conference paper at ICLR 2024

Time-Embeddings in time series representations have only been used in transformer-based
architectures, which require a positional encoding module (Vaswani et al., 2017). While some
use the original fixed sinusoidal positional encoding (Haresamudram et al., 2020; Zhang et al.,
2022), Zerveas et al. (2021) and Tipirneni & Reddy (2022) chose to learn a time-embedding
using a linear layer and a fully-connected layer respectively. Using or learning more sophisticated
time-embeddings is a largely unexplored avenue that seems promising for dealing with long-term
trends and seasonality (periodicity) in sequential data (Zhang et al., 2023; Wen et al., 2022). The
most elaborate time-embedding for time series is Time2Vec (Kazemi et al., 2019), which was
developed for supervised learning tasks and has not yet been exploited in a self-supervised setting.
In existing self-supervised models, the time-embedding is used by the encoder to provide positional
information (Zerveas et al., 2021; Tipirneni & Reddy, 2022; Haresamudram et al., 2020; Zhang
et al., 2022), but is never exploited in pretext tasks. The best performing models use contrastive
techniques to learn temporal dependencies, which only provide a binary signal (Zhang et al., 2023).
T-Loss (Franceschi et al., 2019) follows the assumption that neighboring windows should be similar,
and builds a triplet loss around this idea. TNC (Tonekaboni et al., 2021) extends this framework,
dividing the signal into stationary windows to construct its positive and negative pairs. In Banville
et al. (2021); Yue et al. (2022); Franceschi et al. (2019), positive and negative pairs are delimited by
a threshold on the number of differing timesteps, which makes these methods unsuited to capturing
periodic or irregularly recurring patterns in the data. Further, all these contrastive methods are quite
coarse, making it hard to learn fine-grained temporal dependencies.

To summarise, existing methods have made tremendous progress in extracting spatial features from
time series, but temporal feature learning is still limited. In particular, they are not suited to handling
recurring patterns (periodic or irregular), and struggle to learn fine-grained temporal dependencies,
because of the binary signal and sampling bias of contrastive tasks.

3 BACKGROUND

The aim of this work is to improve the treatment of time in representation learning for temporal
data. These innovations are combined with state-of-the-art methods for spatial feature-learning and
model training, the contextual consistency and hierarchical loss frameworks (Yue et al., 2022).

3.1 PROBLEM DEFINITION

Given a dataset X “ tx1, ...,xNu P RNˆTˆC of N time series of length T with C channels, the
objective of self-supervised learning is to learn a function fθ, s.t. @i P r0, N s, zi “ fθpxiq. Each
zi P RTˆF is a representation of xi of length T and with F channels, which should preserve as
many features of the original data as possible. fθp¨q is learned by designing artificial supervised
signals, called pretext tasks, from the unlabeled data X .

3.2 CONTEXTUAL CONSISTENCY

The objective of contextual consistency is to learn context-invariant representations of time series.
The idea is to sample two overlapping segments x1 and x2 of the time series x, to which random
timestamp masking is applied, thus creating two different contexts (random choice of window and
masked timesteps) for the overlapping window. Representations in the overlapping timesteps are
then encouraged to be similar, leading to context-invariant representations. Two contrastive tasks
were introduced by Yue et al. (2022) alongside the contextual consistency framework to extract
spatial and temporal features.

Instance-wise contrasting encourages representations of the same time series under different con-
texts to be encoded similarly, and for different instances to be dissimilar (Yue et al., 2022). Let B
be the batch-size, i the time series index and t a timestep. zi,t and z1

i,t denote the corresponding
representation vectors under 2 different contexts. The loss function is given by:

Lpi,tq
inst “ ´ log

exp
`

zi,t ¨ z1
i,t

˘

řB
j“1

`

exp
`

zi,t ¨ z1
j,t

˘

` 1i‰j exp pzi,t ¨ zj,tq
˘
. (1)

3

Published as a conference paper at ICLR 2024

Temporal contrasting encourages representations of time series under different contexts to be en-
coded similarly when their respective timesteps match, and far apart when the timesteps differ (Yue
et al., 2022). The loss function is given in Eq. 2, where Ω is the set of timesteps in the overlap
between the 2 subseries:

Lpi,tq
temp “ ´ log

exp
`

zi,t ¨ z1
i,t

˘

ř

t1PΩ

´

exp
´

zi,t ¨ z1
i,t1

¯

` 1t‰t1 exp pzi,t ¨ zi,t1 q

¯ . (2)

3.3 HIERARCHICAL LOSS

The hierarchical loss framework applies and sums the model’s loss function at different scales,
starting from a per-timestep representation and applying maxpool operations to reduce the time-
dimension between scales (Yue et al., 2022). This gives users control over the granularity of the
representation used for downstream tasks, without sacrificing performance. It also makes the model
more robust to missing data, as it makes use of long-range information in the surrounding represen-
tations to reconstruct missing timesteps (Yue et al., 2022).

4 METHOD

4.1 ENCODER ARCHITECTURE

We present below our convolutional encoder, which contains 3 modules. The overall model structure
is illustrated in Figure 1.

Figure 1: T-Rep architecture and workflow. The left part shows how the different modules interact
(linear projection, time-embedding module, and encoder). The middle part shows the 4 pretext tasks
used to train the model, and the kind of features they extract. The right hand side shows the loss
computation: a linear combination of individual pretext task losses is passed to the hierarchical loss
algorithm (see Appendix A.2.1).

Linear Projection Layer The first layer projects individual points xi,t P RC to vectors ui,t P RF
with a fixed number of channels F . Random timestamp masking is applied to each ui independently
after the linear projection (only during training), as part of the contextual consistency framework
(Yue et al., 2022).

Time-Embedding Module The time-embedding module hψ is responsible for learning time-related
features τt (trend, periodicity, distribution shifts etc.) directly from the time series sample indices
t. The time-embedding function is not fixed like a transformer’s positional encoding module, it is
learned jointly with the rest of the encoder. This makes the time-embeddings flexible, they adapt to
the data at hand. The choice of architecture for the time-embedding module can impact performance
in downstream tasks, and is discussed in Appendix A.4. For general applications, we recommend
using Time2Vec (Kazemi et al., 2019), which captures trend and periodicity. To the best of our
knowledge, T-Rep is the first model to combine a time-embedding module and a convolutional
encoder in self-supervised learning for time series.

The time-embedding module must return vectors which define a probability distribution (positive
components that sum to 1). This is due to the use of statistical divergence measures in a pretext
task, which is detailed in section 4.2.1. We find experimentally that the optimal way to satisfy this

4

Published as a conference paper at ICLR 2024

constraint is by applying a sigmoid activation to the final layer of the module, and then dividing each
element by the vector sum:

pτtqk “
σphψptqqk

řK
j“1 σphψptqqj

, (3)

where τt contains K elements, σp¨q is the sigmoid function and hψ is the time-embedding mod-
ule parameterised by ψ. Time-embeddings τt are concatenated with vectors ui,t after the linear
projection, and the vectors rui,t τts

T are fed to the encoder fθ.

Temporal Convolution Network (TCN) Encoder The main body of the encoder, fθp¨q, is struc-
tured as a sequence of residual blocks, each containing two layers of 1D dilated convolutions inter-
leaved with GeLU activations. The convolution dilation parameter increases with the network depth,
to first focus on local features and then longer-term dependencies: d “ 2i, where i is the block index.
Dilated convolutions have proven to be very effective in both supervised and unsupervised learning
for time series (Zhou et al., 2021; Tonekaboni et al., 2021; Bai et al., 2018).

4.2 PRETEXT TASKS

We present below two novel SSL pretext tasks which leverage time-embeddings, and are designed
to complement each other. The first, ‘Time-embedding Divergence Prediction’, describes how the
information gained through time-embeddings should structure the latent space and be included in
the time series representations. On the other hand, the ‘Time-embedding-conditioned Forecasting’
task focuses on what information the time-embeddings and representations should contain.

4.2.1 TIME-EMBEDDING DIVERGENCE PREDICTION

The first pretext task developed aims to integrate the notion of time in the latent space structure.
It consists in predicting a divergence measure between two time-embeddings τ and τ 1, given the
representations at the corresponding time steps. The purpose of this task is for distances in the
latent space to correlate with temporal distances, resulting in smoother latent trajectories than with
contrastive learning.

Let us define this regression task formally. Take a batch X P RBˆTˆC , from which we sample xi,t
and xj,t1 @i, j P r0, Bs and t, t1 P r0, T s s.t. t ‰ t1. The task input is the difference zi,t ´ z1

j,t1 ,
where zi,t is the representation of xi,t under the context c and z1

j,t1 is the representation of xj,t1 under
the context c1. Taking representations under different contexts further encourages context-invariant
representations, as detailed in section 3.2. The regression target is y “ Dpτ , τ 1q. τ and τ 1 are the
respective time-embeddings of t and t1, and D is a measure of statistical divergence, used to measure
the discrepancy between the time-embedding distributions. We use the Jensen-Shannon divergence
(JSD), a smoothed and symmetric version of the KL divergence (Lin, 1991). The task loss is:

Ldiv “
1

M

ÿM

pi,j,t,t1qPΩ

`

G1

`

zi,t ´ z1
j,t1

˘

´ JSDpτt || τt1 q
˘2
, (4)

where Ω is the set (of size M) of time/instance indices for the randomly sampled pairs of repre-
sentations. Using divergences allows us to capture how two distributions measures differ, whereas
a simple norm could only capture by how much two vectors differ. This nuance is important -
suppose the time-embedding is a 3-dimensional vector that learned a hierarchical representation of
time (equivalent to seconds, minutes, hours). A difference of 1.0 on all time scales (01:01:01)
represents a very different situation to a difference of 3.0 hours and no difference in minutes and
seconds (03:00:00), but could not be captured by a simple vector norm.

4.2.2 TIME-EMBEDDING-CONDITIONED FORECASTING

Our second pretext task aims to incorporate predictive information in the time-embedding vectors,
as well as context-awareness in the representations, to encourage robustness to missing data. The
task takes in the representation of a time series at a specific timestep, and tries to predict the repre-
sentation vector of a nearby point, conditioned on the target’s time-embedding.

5

Published as a conference paper at ICLR 2024

The input used is the concatenation rzi,t τt`∆s
T of the representation zi,t P RF at time t and the

time-embedding of the target τt`∆ P RK . ∆max is a hyperparameter to fix the range in which the
prediction target can be sampled. The target is the encoded representation zi,t`∆ at a uniformly
sampled timestep t ` ∆, ∆ „ Ur´∆max,∆maxs. The input is forwarded through the task head
G2 : RF`K ÞÑ RF , a 2-layer MLP with ReLU activations. The loss is a simple MSE given by:

Lpred “
1

MT

ÿM

jPΩN

ÿT

tPΩT

ˆ

G2

ˆ

”

z
pc1q

i,t τt`∆j

ıT
˙

´ z
pc2q

i,t`∆j

˙2

, (5)

where ∆j „ Ur´∆max,∆maxs, ΩM and ΩT are the sets of randomly sampled instances and
timesteps for each batch, whose respective cardinalities are controlled by hyperparametersM and T .
The contexts c1 and c2 are chosen randomly from tc, c1u, so they may be identical or different, fur-
ther encouraging contextual consistency. Conditioning this prediction task on the time-embedding
of the target forces the model to extract as much information about the signal as possible from its
position in time. This results in more information-dense time-embeddings, which can be leveraged
when working with individual trajectories for forecasting and anomaly detection.

In practice, we choose a short prediction range ∆max ď 20, as the focus is not to build represen-
tations tailored to forecasting but rather ‘context-aware’ representations. This context-awareness
is enforced by making predictions backwards as well as forwards, encouraging representations to
contain information about their surroundings, making them robust to missing timesteps. Longer pre-
diction horizons would push representations to contain more predictive features than spatial features,
biasing the model away from use-cases around classification, clustering and other ‘comparative’ or
instance-level downstream tasks.

A key objective of this pretext task is to build resilience to missing data. This is done by (1) learning
information-dense time-embeddings, which are available even when data is missing, and (2) by
learning context-aware representations, which can predict missing timesteps in their close vicinity.

5 EXPERIMENTS

This sections presents the experiments conducted to evaluate T-Rep’s learned representations. Be-
cause of the variety of downstream tasks, we perform no hyperparameter tuning, and use the same
hyperparameters across tasks. Further, the same architectures and hyperparameters are used across
all evaluated models where possible, to ensure a fair comparison. Experimental details and guide-
lines for reproduction are included in Appendix A.2 and A.3. The code written to produce these
experiments has been made publicly available1.

5.1 TIME SERIES ANOMALY DETECTION

Yahoo (F1) Sepsis (F1)

Baseline 0.110 0.241
TS2Vec 0.733 0.619
T-Rep (Ours) 0.757 0.666

Table 1: Time series anomaly detection F1 scores,
on the Yahoo dataset for point-based anomalies
and Sepsis datasets for segment-based anomalies.
Anomalies include outliers as well as change-
points. TS2Vec results are reproduced using of-
ficial source code (Zhihan Yue, 2021).

We perform two experiments, point-based
anomaly detection on the Yahoo dataset (Niko-
lay Laptev, 2015), and segment-based anomaly
detection on the 2019 PhysioNet Challenge’s
Sepsis dataset (Reyna et al., 2020a; Goldberger
et al., 2000). We chose to include both types
of tasks as segment-based anomaly detection
tasks help avoid the bias associated with
point-adjusted anomaly detection (Kim et al.,
2022). Yahoo contains 367 synthetic and real
univariate time series, featuring outlier and
change point anomalies. Sepsis is a real-world
dataset containing multivariate time series
from 40, 336 patients in intensive care units,
featuring noisy and missing data. The task consists in detecting sepsis, a medical anomaly present
in just 2.2% of patients. On both datasets, we compare T-Rep to the self-supervised model TS2Vec
(Yue et al., 2022), as well as a baseline following the same anomaly detection protocol as TS2Vec

1https://github.com/Let-it-Care/T-Rep

6

https://github.com/Let-it-Care/T-Rep

Published as a conference paper at ICLR 2024

and T-Rep on each dataset, but using the raw data. We follow a streaming anomaly detection
procedure (Ren et al., 2019) on both datasets. Details on the procedures can be found in Appendix
A.2.3, which also details the pre-processing applied to Sepsis.

Table 7 shows the evaluation results (more detailed results are presented in Appendix A.9). T-
Rep achieves the strongest performance in both datasets, with an F1 score of 75.5% on Yahoo and
66.6% on Sepsis. This respectively represents a 2.4% and 4.8% increase on the previous SOTA
TS2Vec (Yue et al., 2022). T-Rep’s performance can be attributed to its detailed understanding of
temporal features, which help it better detect out-of-distribution or anomalous behaviour. It achieves
this performance with a latent space dimension of 200 on Yahoo, which is smaller than the 320
dimensions used by TS2Vec (Yue et al., 2022), further showing that T-Rep learns more information-
dense representations than its predecessors.

5.2 TIME SERIES CLASSIFICATION

30 UEA datasets

Method Avg. Acc. Avg. Difference (%)

T-Loss 0.657 33.6
TS2Vec 0.699 2.1
TNC 0.671 12.3
TS-TCC 0.667 10.0
DTW 0.650 43.6
Minirocket 0.707 4.8
T-Rep (Ours) 0.706 –

Table 2: Multivariate time series classification re-
sults on the UEA archive. DTW, TNC, and TS-
TCC results are taken directly from Yue et al.
(2022), while TS2Vec and Minirocket results are
reproduced using the official code. ‘Avg. Differ-
ence’ measures the relative difference in accuracy
brought by T-Rep compared to a given model.

The classification procedure is similar to that
introduced by Franceschi et al. (2019): a repre-
sentation z is produced by the self-supervised
model, and an SVM classifier with RBF ker-
nel is then trained to classify the represen-
tations (see Appendix A.2 and A.3 for pro-
cedure and reproduction details). We com-
pare T-Rep to SOTA self-supervised models
for time series: TS2Vec (Yue et al., 2022), T-
Loss (Franceschi et al., 2019), TS-TCC (El-
dele et al., 2021), TNC (Tonekaboni et al.,
2021), Minirocket Dempster et al. (2021) and
a DTW-based classifier (Müller, 2007). These
models are evaluated on the UEA classification
archive’s 30 multivariate time series, coming
from diverse domains such as medicine, sensor
systems, speech, and activity recognition Dau
et al. (2019).

Evaluation results are summarised in Table 2,
and full results are shown in Appendix A.7,
along with more details on the chosen evaluation metrics. Table 2 shows that T-Rep has an accuracy
`2.1% higher than TS2Vec and `4.8% higher than Minirocket on average. In terms of average
accuracy, T-Rep’s accuracy outperforms all competitors except Minirocket, which has a 0.001 lead.
TS2Vec’s performance is very close to T-Rep’s, only 0.07 lower. T-Rep has a positive ’Avg. differ-
ence’ to Minirocket despite having a lower ’Avg. Acc.’ because Minirocket often performs slightly
better than T-Rep, but when T-Rep is more accurate, it is so by a larger margin. It is important to
note that Minirocket was developed specifically for time series classification (and is the SOTA as of
this date), while T-Rep is a general representation learning model, highlighting its strengths across
applications. The latent space dimensionality is set to 320 for all baselines, except Minirocket which
uses 9996 dimensions (as per the official code). T-Rep uses only 128 dimensions, but leverages the
temporal dimension of its representations (see Appendix A.2.4 for details).

5.3 TIME SERIES FORECASTING

We perform a multivariate forecasting task on the four public ETT datasets (ETTh1, ETTh2, ETTm1,
ETTm2), which contain electricity and power load data, as well as oil temperature (Zhou et al.,
2021). Forecasting is performed over multiple horizons, using a procedure described in Appendix
A.2.2. We evaluate T-Rep against TS2Vec (Yue et al., 2022), a SOTA self-supervised model for time
series, but also Informer (Zhou et al., 2021), the SOTA in time series forecasting, as well as TCN
(Bai et al., 2018), a supervised model with the same backbone architecture as T-Rep, and a linear
model trained on raw data. Aggregate results, averaged over all datasets and prediction horizons,
are presented in Table 3 (full results are in Appendix A.8).

7

Published as a conference paper at ICLR 2024

Table 3 shows that T-Rep achieves the best average scores, in terms of both MSE and MAE, with
a 24.2% decrease in MSE on the supervised SOTA Informer (Zhou et al., 2021), and a slight im-
provement of 1.80% on the self-supervised SOTA TS2Vec (Yue et al., 2022). It also achieves a
better average rank, ranking first more than any other model. Furthermore, the linear baseline is the
second model that most frequently ranks first, beating TS2Vec in this metric. However, this model
does not perform well in all datasets and therefore ranks 3rd in terms of MAE and MSE. Inter-
estingly, most existing self-supervised methods for time series use high-dimensional latent spaces
(F “ 320 dimensions per timestep) (Franceschi et al., 2019; Tonekaboni et al., 2021), which is thus
used to produce baseline results in Table 3. This can be an issue for downstream applications, which
might face the curse of dimensionality (Verleysen & François, 2005). T-Rep, however, outperforms
all baselines with a latent space that is almost 3 times smaller, using only F “ 128 dimensions.
T-Rep’s superior performance can be attributed to its comprehensive treatment of time, capturing
trend, seasonality, or distribution shifts of more easily with its time-embedding module.

T-Rep (Ours) TS2Vec Informer TCN Linear Baseline

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Avg. Rank 1.90 1.85 2.40 2.45 3.3 3.55 4.35 4.1 3.05 3.05
Ranks 1st 8 8 2 1 3 3 1 1 6 7
Avg. 0.986 0.702 1.004 0.712 1.300 0.820 2.012 1.205 1.017 0.727

Table 3: Multivariate time series forecasting results on the ETT datasets, over 5 different prediction
horizons. The presented results are averaged over all datasets/prediction horizons. The ‘Ranks 1st’
metric counts the number of times a model ranks 1st amongst its competitors. Results for all models
are based on our own reproductions, using the official code for each model (see Appendix A.2).

5.4 ROBUSTNESS TO MISSING DATA

T-Rep was developed with medical and HAR applications in mind, requiring strong resilience to
missing data, which we evaluate in two different experiments. In the first qualitative experiment,
we visualize representations of incomplete time series using the DodgerLoopGame dataset from
the UCR archive Dau et al. (2019), which features a continuous segment of 25 missing timesteps
(see top row of Figure 2.a). We then visualised a heatmap of T-Rep and TS2Vec’s time series rep-
resentations (bottom row), showing the 15 dimensions with highest variance. T-Loss (Franceschi
et al., 2019) is not included as it does not produce timestep-level representations. For TS2Vec, the
representations of missing timesteps very much stand out (they are brighter, reflecting higher val-
ues), illustrating that the model is struggling to interpolate and instead produces out-of-distribution
representations. On the other hand, T-Rep produces much more plausible representations for these
missing timesteps with smoother transitions in and out of the area with missing points, as well as
realistic interpolations, matching the data distribution of the surrounding area.

Figure 2: Illustration of T-Rep’s robustness to missing data on UCR archive datasets. (a) shows
heatmap representations of T-Rep and TS2Vec when faced with missing data, and (b) shows accu-
racy against percentage of missing data in a classification task for T-Rep, TS2Vec (Yue et al., 2022)
and T-Loss (Franceschi et al., 2019). Error bars denote the standard deviation over 6 train-test runs.

8

Published as a conference paper at ICLR 2024

Secondly, we decided to perform a more quantitative experiment, examining classification accu-
racy for different amounts of missing data, on the ArticularyWordRecognition dataset of the UCR
archive (Dau et al., 2019). We compare T-Rep’s performance to TS2Vec (Yue et al., 2022) and
T-Loss, a self-supervised representation learning model for time series, specifically designed for
downstream classification and clustering tasks (Franceschi et al., 2019). The results are unequivo-
qual, T-Rep’s performance is extremely resilient to missing data, starting at 98% accuracy with the
complete dataset, and dropping by only 1.3% when faced with 75% missing data, and finally reach-
ing 86.5% with only 10% of the available data (green curve of Figure 2.b). The performance of
TS2Vec is also very strong (orange curve), following a similar trend to T-Rep with 2% less accuracy
on average, and a more pronounced dip in performance when 90% of the data is missing, dropping
to 82.7%. On the other hand, T-Loss is much more sensitive to any missing data. Its performance
decreases exponentially to reach 2.6% when presented with 90% missing data (red curve).

5.5 ABLATION STUDY

To empirically validate T-Rep’s components and pretext tasks, we conduct ablation studies on
forecasting and anomaly detection tasks using the ETT datasets for forecasting and the Phys-
ioNet Challenge’s Sepsis dataset for anomaly detection. Unless specified, Time2Vec is the chosen
time-embedding method. w/o TE-conditioned forecasting assigns a weight of 0.0 to the ’time-
embedding-conditioned’ forecasting task, redistributing weights evenly. w/o TE divergence pre-
diction behaves similarly, but for the ’time-embedding divergence prediction’ task. w/o New pre-
text tasks retains only the time-embedding module and the two TS2Vec pretext tasks, isolating the
impact on performance of different time-embedding architectures. We explore a fully-connected
two-layer MLP with ReLU activations (w/ MLP TE module) and a vector of RBF features (w/
Radial Basis Features TE module). The original TS2Vec model (w/o TE module) is also included
in the ablation study, lacking any of T-Rep elements.

Forecasting Anomaly Detection

T-Rep 0.986 0.665
Pretext tasks

w/o TE-conditioned forecasting 1.022 (+3.7%) 0.392 (-41%)
w/o TE divergence prediction 1.003 (+1.7%) 0.634 (-4.7%)
w/o New pretext tasks 0.999 (+1.3%) 0.513 (-22.8%)

Architecture
w/ MLP TE module 1.008 (+2.2%) 0.443 (-33.3%)
w/ Radial Basis Features TE module 1.007 (+2.1%) 0.401 (-39.7%)
w/o TE module (=TS2Vec) 1.004 (+1.8%) 0.610 (-8.2%)

Table 4: Ablation study results on ETT forecasting datasets (measured in MSE) and the Sepsis
anomaly detection dataset (measured in F1 score). Percentage changes are calculated as the relative
difference between a modified model’s performance and T-Rep’s.

Results in Table 4 confirm that the proposed pretext tasks and the addition of a time-embedding
module to the encoder contribute to T-Rep’s performance: removing any of these decreases the
scores in both tasks. These results also illustrate the interdependency of both tasks, as in forecasting,
only leaving one of the tasks obtains worse results than removing both pretext tasks. It also justifies
our preferred choice of time-embedding, since Time2Vec (Kazemi et al., 2019) outperforms the
other 2 architectures in both tasks.

6 CONCLUSION

We present T-Rep, a self-supervised method for learning representations of time series at a timestep
granularity. T-Rep learns vector embeddings of time alongside its encoder, to extract temporal fea-
tures such as trend, periodicity, distribution shifts etc. This, alongside pretext tasks which leverage
the time-embeddings, allows our model to learn detailed temporal dependencies and capture any
periodic or irregularly recurring patterns in the data. We evaluate T-Rep on classification, forecast-
ing, and anomaly detection tasks, where it outperforms existing methods. This highlights the ability
of time-embeddings to capture temporal dependencies within time series. Further, we demonstrate
T-Rep’s efficiency in missing data regimes, and provide visualisation experiments of the learned
embedding space, to highlight the interpretability of our method.

9

Published as a conference paper at ICLR 2024

REFERENCES

Abubakar Abid and James Zou. Autowarp: learning a warping distance from unlabeled time series
using sequence autoencoders. arXiv preprint arXiv:1810.10107, 2018.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Hubert Banville, Omar Chehab, Aapo Hyvärinen, Denis-Alexander Engemann, and Alexandre
Gramfort. Uncovering the structure of clinical eeg signals with self-supervised learning. Journal
of Neural Engineering, 18(4):046020, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

Joseph Y Cheng, Hanlin Goh, Kaan Dogrusoz, Oncel Tuzel, and Erdrin Azemi. Subject-aware
contrastive learning for biosignals. arXiv preprint arXiv:2007.04871, 2020.

Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh
Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn Keogh. The ucr time series archive.
IEEE/CAA Journal of Automatica Sinica, 6(6):1293–1305, 2019.

Shohreh Deldari, Daniel V Smith, Hao Xue, and Flora D Salim. Time series change point detection
with self-supervised contrastive predictive coding. In Proceedings of the Web Conference 2021,
pp. 3124–3135, 2021.

Angus Dempster, Daniel F Schmidt, and Geoffrey I Webb. MiniRocket: A very fast (almost) de-
terministic transform for time series classification. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 248–257, New York, 2021. ACM.

David A Dickey and Wayne A Fuller. Distribution of the estimators for autoregressive time series
with a unit root. Journal of the American statistical association, 74(366a):427–431, 1979.

Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li, and
Cuntai Guan. Time-series representation learning via temporal and contextual contrasting. arXiv
preprint arXiv:2106.14112, 2021.

Vincent Fortuin, Matthias Hüser, Francesco Locatello, Heiko Strathmann, and Gunnar Rätsch.
Som-vae: Interpretable discrete representation learning on time series. arXiv preprint
arXiv:1806.02199, 2018.

Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. Unsupervised scalable representation
learning for multivariate time series. Advances in neural information processing systems, 32,
2019.

A L Goldberger, L A Amaral, L Glass, J M Hausdorff, P C Ivanov, R G Mark, J E Mietus, G B
Moody, C K Peng, and H E Stanley. PhysioBank, PhysioToolkit, and PhysioNet: components
of a new research resource for complex physiologic signals. Circulation, 101(23):E215–20, June
2000.

Harish Haresamudram, Apoorva Beedu, Varun Agrawal, Patrick L Grady, Irfan Essa, Judy Hoffman,
and Thomas Plötz. Masked reconstruction based self-supervision for human activity recognition.
In Proceedings of the 2020 ACM International Symposium on Wearable Computers, pp. 45–49,
2020.

Seyed Mehran Kazemi, Rishab Goel, Sepehr Eghbali, Janahan Ramanan, Jaspreet Sahota, Sanjay
Thakur, Stella Wu, Cathal Smyth, Pascal Poupart, and Marcus Brubaker. Time2vec: Learning a
vector representation of time. arXiv preprint arXiv:1907.05321, 2019.

Eamonn Keogh, Jessica Lin, Ada Waichee Fu, and Helga Van Herle. Finding unusual medical time-
series subsequences: Algorithms and applications. IEEE Transactions on Information Technology
in Biomedicine, 10(3):429–439, 2006.

10

Published as a conference paper at ICLR 2024

Siwon Kim, Kukjin Choi, Hyun-Soo Choi, Byunghan Lee, and Sungroh Yoon. Towards a rigorous
evaluation of time-series anomaly detection. Proceedings of the AAAI Conference on Artificial
Intelligence, 36:7194–7201, 06 2022. doi: 10.1609/aaai.v36i7.20680.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Dani Kiyasseh, Tingting Zhu, and David A Clifton. Clocs: Contrastive learning of cardiac signals
across space, time, and patients. In International Conference on Machine Learning, pp. 5606–
5615. PMLR, 2021.

Zhihan Li, Youjian Zhao, Jiaqi Han, Ya Su, Rui Jiao, Xidao Wen, and Dan Pei. Multivariate time se-
ries anomaly detection and interpretation using hierarchical inter-metric and temporal embedding.
In Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining, pp.
3220–3230, 2021.

Jianhua Lin. Divergence measures based on the shannon entropy. IEEE Transactions on Information
theory, 37(1):145–151, 1991.

Pankaj Malhotra, Vishnu TV, Lovekesh Vig, Puneet Agarwal, and Gautam Shroff. Timenet:
Pre-trained deep recurrent neural network for time series classification. arXiv preprint
arXiv:1706.08838, 2017.

L. McInnes, J. Healy, and J. Melville. UMAP: Uniform Manifold Approximation and Projection for
Dimension Reduction. ArXiv e-prints, February 2018.

Meinard Müller. Dynamic time warping. Information retrieval for music and motion, pp. 69–84,
2007.

Saeed Amizadeh Nikolay Laptev, Y. B. A benchmark dataset for time series anomaly detec-
tion, 2015. URL https://yahooresearch.tumblr.com/post/114590420346/
a-benchmark-dataset-for-time-series-anomaly.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems 32, pp. 8024–8035.
Curran Associates, Inc., 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Johannes Pöppelbaum, Gavneet Singh Chadha, and Andreas Schwung. Contrastive learning based
self-supervised time-series analysis. Applied Soft Computing, 117:108397, 2022.

Hansheng Ren, Bixiong Xu, Yujing Wang, Chao Yi, Congrui Huang, Xiaoyu Kou, Tony Xing,
Mao Yang, Jie Tong, and Qi Zhang. Time-series anomaly detection service at microsoft. In
Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data
mining, pp. 3009–3017, 2019.

Matthew A. Reyna, Christopher S. Josef, Russell Jeter, Supreeth P. Shashikumar, M. Bran-
don Westover, Shamim Nemati, Gari D. Clifford, and Ashish Sharma. Early pre-
diction of sepsis from clinical data: The physionet/computing in cardiology chal-
lenge 2019. Critical Care Medicine, 48(2), 2020a. ISSN 0090=3493. URL
https://journals.lww.com/ccmjournal/fulltext/2020/02000/early_
prediction_of_sepsis_from_clinical_data__the.10.aspx.

11

https://yahooresearch.tumblr.com/post/114590420346/ a-benchmark-dataset-for-time-series-anomaly
https://yahooresearch.tumblr.com/post/114590420346/ a-benchmark-dataset-for-time-series-anomaly
https://journals.lww.com/ccmjournal/fulltext/2020/02000/early_prediction_of_sepsis_from_clinical_data__the.10.aspx
https://journals.lww.com/ccmjournal/fulltext/2020/02000/early_prediction_of_sepsis_from_clinical_data__the.10.aspx

Published as a conference paper at ICLR 2024

Matthew A Reyna, Christopher S Josef, Russell Jeter, Supreeth P Shashikumar, M Brandon West-
over, Shamim Nemati, Gari D Clifford, and Ashish Sharma. Early prediction of sepsis from
clinical data: the physionet/computing in cardiology challenge 2019. Critical care medicine, 48
(2):210–217, 2020b.

Alaa Sagheer and Mostafa Kotb. Unsupervised pre-training of a deep lstm-based stacked autoen-
coder for multivariate time series forecasting problems. Scientific reports, 9(1):19038, 2019.

Alban Siffer, Pierre-Alain Fouque, Alexandre Termier, and Christine Largouet. Anomaly detection
in streams with extreme value theory. In Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining, pp. 1067–1075, 2017.

Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust anomaly detection for
multivariate time series through stochastic recurrent neural network. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining, pp. 2828–2837,
2019.

Sindhu Tipirneni and Chandan K Reddy. Self-supervised transformer for sparse and irregularly
sampled multivariate clinical time-series. ACM Transactions on Knowledge Discovery from Data
(TKDD), 16(6):1–17, 2022.

Sana Tonekaboni, Danny Eytan, and Anna Goldenberg. Unsupervised representation learning for
time series with temporal neighborhood coding. arXiv preprint arXiv:2106.00750, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Michel Verleysen and Damien François. The curse of dimensionality in data mining and time series
prediction. In International work-conference on artificial neural networks, pp. 758–770. Springer,
2005.

Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun.
Transformers in time series: A survey. arXiv preprint arXiv:2202.07125, 2022.

Lingfei Wu, Ian En-Hsu Yen, Jinfeng Yi, Fangli Xu, Qi Lei, and Michael Witbrock. Random warp-
ing series: A random features method for time-series embedding. In International Conference on
Artificial Intelligence and Statistics, pp. 793–802. PMLR, 2018.

Qiang Yang and Xindong Wu. 10 challenging problems in data mining research. International
Journal of Information Technology & Decision Making, 5(04):597–604, 2006.

Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and
Bixiong Xu. Ts2vec: Towards universal representation of time series. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 8980–8987, 2022.

George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and Carsten Eick-
hoff. A transformer-based framework for multivariate time series representation learning. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp.
2114–2124, 2021.

Kexin Zhang, Qingsong Wen, Chaoli Zhang, Rongyao Cai, Ming Jin, Yong Liu, James Zhang,
Yuxuan Liang, Guansong Pang, Dongjin Song, et al. Self-supervised learning for time series
analysis: Taxonomy, progress, and prospects. arXiv preprint arXiv:2306.10125, 2023.

Wenrui Zhang, Ling Yang, Shijia Geng, and Shenda Hong. Cross reconstruction transformer for
self-supervised time series representation learning. arXiv preprint arXiv:2205.09928, 2022.

Lin Yiting Zhihan Yue. Ts2vec github repository, 2021. URL https://github.com/
yuezhihan/ts2vec.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

12

https://github.com/yuezhihan/ts2vec
https://github.com/yuezhihan/ts2vec

Published as a conference paper at ICLR 2024

A APPENDIX

A.1 LATENT SPACE STRUCTURE

This section aims to assess the representations produced by T-Rep in different settings, and show
their interpretability. We perform 2 experiments, the to examine the intra-instance latent space
structure as well as the inter-instance structure.

For the first experiment, we choose 2 datasets from the UCR archive (Dau et al., 2019) and create
one synthetic dataset. We then plot a time series sample for each dataset and show a heatmap of
the corresponding T-Rep representation evolving through time (only the 15 dimensions with highest
variance are shown for each representation vector).

Figure 3: Time series representation trajectories in the latent space. The top row shows the input
signal, and the bottom row shows a heatmap of the representations through time. Only the 15 most
varying dimensions are shown for each representation. Data for the two left-most figures comes
from UCR archive datasets, and the righ-most figure’s data is synthetic.

Figure 3 showcases a variety of input signal properties captured by T-Rep. The leftmost plot
showcases a sample from the Phoneme dataset (Dau et al., 2019), and we see that periodicity is
captured by T-Rep, in particular the change in frequency and decrease in amplitude. Plot (b) is
an extract of the Pig Central Venous Pressure medical dataset (Dau et al., 2019), where T-Rep
accurately detects an anomaly in the input signal, represented by a sharp change in value (illustrated
by a color shift from green to blue) at the corresponding spike. Finally, the rightmost plot showcases
a synthetic dataset with an abrupt distribution shift. T-Rep’s representation captures this with
lighter colors and a change in frequency, as in the original signal. Finally, we can observe how
T-Rep produces coherent representations for missing data in Figure 2.a (see section 5.4 for details).
This experiment highlights the interpretability of the representations learned by T-Rep, accurately
reflecting properties of the original signal.

To study the global latent space structure (inter-instance), we look at UMAP plots (McInnes et al.,
2018) of representations learned by T-Rep on five UCR datasets Dau et al. (2019). Each instance is
represented by a point, colored by the class it belongs to, to show whether the latent space structure
discriminates the datasets’ different classes. We include representations learned by TS2Vec to see
how the new components of T-Rep affect the learned latent space. Results are presented in Figure 4.

Looking at the UMAPs across the 128 UCR datasets, we noticed that the latent space structure of
T-Rep and TS2Vec is often similar, and/or of similar quality. This is shown in the two rightmost
plots of Figure 4, and can be explained by the fact that T-Rep focuses on learning temporal features
(and uses TS2Vec’s tasks for spatial features), resulting in stronger differences in the evolution of
representations through time (see Figure 3).

To focus on learning detailed temporal features, T-Rep puts a lower weight on TS2Vec’s spatial-
features pretext tasks. While one might intuitively think this results in lower quality spatial features,
this is not what our experiments show. Indeed, for none of the tested datasets did we observe
a significant downgrade in latent space structure, which is further supported by the classification
results presented in section 5.2, where T-Rep outperforms TS2Vec by a small margin. These results
show that learning a detailed temporal structure within an instance constitutes a useful feature to

13

Published as a conference paper at ICLR 2024

Figure 4: UMAP visualisations of the learned representations of T-Rep and TS2Vec on 5 UCR
datasets. Each color represents a different class. TS2Vec results are produced using the official code
(Zhihan Yue, 2021).

compare various instances. This is illustrated by the two leftmost plots of Figure 4, where we see
much more cohesive and separated clusters for T-Rep than TS2Vec. This experiment truly highlights
the versatile nature of T-Rep, improving the quality of representations at both the dataset scale (inter-
instance discrimination) and individual time series (timestep granularity).

A.2 EXPERIMENTAL DETAILS

The implementation of the models is done in Python, using Pytorch 1.13 (Paszke et al., 2019) for
deep learning and scikit-learn (Pedregosa et al., 2011) for SVMs, linear regressions, pre-processing
etc. We use the Adam optimizer (Kingma & Ba, 2014) throughout, and train all models on a single
NVIDIA GeForce RTX 3060 GPU with Cuda 11.7.

As mentioned in the Experiments section, no hyperparameter tuning was performed. We use a batch
size of 16, a learning rate of 0.001, set the maximum number of epochs to 200 across all datasets
and tasks. We use 10 residual blocks for the encoder network, and set hidden channel widths to
128. The kernel size of all convolution layers is set to 3. The weighting of pretext tasks is detail in
section A.2.1 below. As for the choice of time-embedding, we use a fully-connected two-layer MLP
with ReLU activations for the classification tasks, and Time2Vec for the forecasting and anomaly
detection tasks (see Appendix A.4 for additional information). For all experiments (unless stated
otherwise), models are trained and tested 10 times per dataset to mitigate stochasticity. No random
seed is used in any experiments.

A.2.1 PRETEXT TASK WEIGHTS

As shown in Figure 1, the loss passed to hierarchical loss computation framework is a linear combi-
nation of pretext task’s loss:

L “

4
ÿ

i“1

αi ¨ ℓi s.t.
4

ÿ

i“1

αi “ 1 ,

where αi designates task i’s weight. Choosing the task weights can be seen as a semantic as well
as an optimisation problem: the extracted features will of course depend on the weights attributed
to each task, but the choice of weights will also impact the optimisation landscape of the final

14

Published as a conference paper at ICLR 2024

loss. Balancing these two factors is a complex and interesting research direction, which we leave as
future work. For all pretext tasks (instance-wise contrasting, temporal contrasting, time-embedding
divergence prediction, time-embedding-conditioned forecasting), we use the same weights: αi “

0.25 @i P r1, 4s. This is the case across all downstream tasks, no task-specific tuning is performed.

A.2.2 FORECASTING

The multivariate forecasting task consists in taking the L previous points X “

txt´L`1, ...,xt´1,xtu P RLˆC and using them to predict the nextH points y “ txt`1, ...,xt`Hu P

RHˆC , where H is the prediction horizon. Such X and y are used to train the supervised fore-
casting baselines. For self-supervised models, the forecasting model is a simple ridge regression,
taking as input zt (the representation of xt), and trying to predict y. The input time series are
normalised using the z-score, each channel being treated independently. We use no covariates such
as minute, hour, day-of-the-week etc., to avoid interference with the temporal features learned by
the time-embeddings. To accurately evaluate the benefits of time-embeddings, we wanted to ensure
the model would not rely on other temporal features (the covariates).

The forecasting model is a ridge regression (linear regression with an L2 regularisation
term, weighted by a parameter α) trained directly on the extracted representations. α
is chosen using grid search on a validation set, amongst the following values: α P

t0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 500, 1000u.

The train/validation/test split for the ETT datasets is 12/4/4 months. The prediction horizon H
ranges from 1 to 30 days for the hourly data (ETTh1 and ETTh2), and from 6 hours to 7 days for
minute data (ETTm1 and ETTm2). The evaluation metrics, MSE and MAE, are respectively given
by:

MSE “
1

HB

H
ÿ

i“1

B
ÿ

j“1

pxjt`i ´ x̂jt`iq
2 , (6)

MAE “
1

HB

H
ÿ

i“1

B
ÿ

j“1

|xjt`i ´ x̂jt`i| , (7)

where xjt`i is the true value, x̂jt`i is the prediction, N is the number of time series instances indexed
by j. The reported MSE and MAE are thus averaged over all prediction horizons and instances. To
mitigate the effects of stochasticity during training, each model is trained and tested 10 times on
each dataset and prediction horizon, and the reported results are the mean.

A.2.3 ANOMALY DETECTION

Yahoo

The Yahoo anomaly detection task follows a streaming evaluation procedure (Ren et al., 2019),
where given a time series segment tx1, ..., xtu, the goal is to infer if the last point xt is anomalous.
To avoid drifting, the input data is differenced d times, following the number of roots d found by an
ADF test (Dickey & Fuller, 1979). For fair comparison, we follow the anomaly detection procedure
of Yue et al. (2022), which computes an anomaly score αt for xt. αt is given by the dissimilarity
between representations where the observation of interest xt has been masked vs. unmasked. Since
the model was trained with random masking, it should output a coherent representation even with
a masked input, resulting in a small αt. However, if the point xt presents an anomaly, the masked
representation will be very different from the unmasked representation, as it anticipated ‘normal’
behaviour, not an anomaly, resulting in a high value of αt. More precisely, αt is given by:

αt “ ||rut ´ rmt ||1 , (8)

where rut is the representation of the unmasked xt and rmt is the representation of the masked
observation. The anomaly score is adjusted by the average of the preceding Z points:

αadjt “
αt ´ ᾱt
ᾱt

, (9)

15

Published as a conference paper at ICLR 2024

where ᾱt “ 1
Z

řZ
i“t´Z αi. At inference time, anomalies are detected if the adjusted anomaly score

αadjt is above a certain threshold: αadjt ą µ`β¨σ, where µ and σ are the mean and standard deviation
of the historical scores, and β is a hyperparameter. If an anomaly is detected within a delay of 7
timesteps from when it occured, it is considered correct, following the procedure introduced in Ren
et al. (2019). To mitigate the effects of stochasticity during training, each model is trained and tested
10 times, and the reported results are the mean.

Sepsis

The anomaly detection procedure followed for Sepsis is different from Yahoo’s. We use a super-
vised method, since there is only one type of anomaly (sepsis) to detect, so we can fit a model to it,
obtaining higher scores than a purely unsupervised method (as is done for Yahoo). One could not do
that with a dataset like Yahoo, where there are various anomalies which cannot be explicitly classi-
fied. Despite being solved in a supervised manner, we believe sepsis detection remains an anomaly
detection task and is differs from classification because we are classifying individual timesteps
rather than entire time series, thus evaluating different characteristics of T-Rep. To perform well,
T-Rep must thus produce representations with accurate intra-instance structure, where healthy
timesteps are very different from abnormal (sepsis) timesteps (which is learned in a self-supervised
manner) . This is further supported by the very low number of positive samples (2.2%), so
training a classification model on raw data is not efficient. For these reasons, although we used a
supervised model on top of our representation, we consider this task to be an anomaly detection task.

The Sepsis dataset is firstly pre-processed by forward-filling all missing values and features which
have lower granularity than the pysiological data, to ensure we have data at all timesteps for all
features. The length of time-series is then standardised to 45 (patient ICU stay length varies in
the raw data), corresponding to the last 45 hours of each patient in the ICU. We then subselect ten
features based on medical relevance (’HR’, ’Temp’, ’Resp’, ’MAP’, ’Creatinine’, ’Bilirubin direct’,
’Glucose’, ’Lactate’, ’Age’, ’ICULOS’). We have found this to be rather ’light’ pre-processing
compared to what top-performers in the 2019 PhysioNet Challenge did. This is done on purpose, to
further highlight gaps between model performances.

We obtain a dataset X P RNˆ45ˆ10. We train self-supervised models TS2Vec and T-Rep on this
dataset, and then encode individual time series in sliding windows of length 6 (this window length
seemed like a medically sensible lookback period, but we performed no parameter tuning). We thus
obtain latent representations

zt´6:t “ fθpxt´6:tq (10)

where fθ is the self-supervised model (T-Rep or TS2Vec) and zt´6:t P R6ˆF , with latent dimen-
sionality F “ 32. A very small latent space is used since we pre-selected 32 features. Given zt´6:t,
we try to predict whether zt showcases sepsis, which is framed as a binary classification problem.
This classification task is then solved using an SVM classifier with RBF kernel is trained using
the representations. The penalty hyperparameter C is chosen through cross-validation, in the range
t10k|k P rr´4, 4ssu. The linear baseline uses the same method, but using the raw data xt´6:t instead
of learned representations zt´6:t.

A.2.4 CLASSIFICATION

The classification procedure for TS-TCC, TNC, and T-Loss is the same as in Franceschi et al.
(2019). Instance-level representations are produced by the self-supervised model, and an SVM
classifier with RBF kernel is trained using the representations. The penalty hyperparameter C is
chosen through cross-validation, in the range t10k|k P rr´4, 4ssu.

For T-Rep and TS2Vec, the procedure is slightly different, leveraging the fact that the temporal
granularity of representations is controllable by the user (from timestep-level to instance-wide),
thanks to the hierarchical loss framework Yue et al. (2022). We use this to produce representations
which maintain a temporal dimension, whose length is controlled by hyperparameter W : the
latent vectors z have dimension Rt T

W uˆF . This is achieved by applying a maxpool operation with
kernel size k “ t TW u and stride s “ t TW u to the timestep-level representation z P RTˆF . The

16

Published as a conference paper at ICLR 2024

representation z P Rt T
W uˆF is then flattened to obtain zflat P Rt T

W u¨F , which is fed to an SVM with
RBF kernel for classification, following the exact same protocol as in Franceschi et al. (2019). We
refer to this new procedure as TimeDim in Table 5.

Maintaining the temporal dimension in the representations is advantageous, as it gives a better
snapshot of a time series’ latent trajectory, compared to simply using one instance-wide vector.
This is especially important for T-Rep, whose innovation lies in the treatment of time and its
incorporation in latent trajectories. Because keeping some temporality increases the dimensionality
of the vector zflat passed to the SVM, we use a smaller latent dimension F to compensate. In
practice we use W “ 10 and F “ 128, but no hyperparameter tuning was performed, so these may
not be optimal parameters. As in all other experiments, the reported results are the mean obtained
after training and testing each model 10 times per dataset.

Interestingly, for TS2Vec, the TimeDim procedure does not result in a performance gain, so the
scores obtained with the original procedure from Franceschi et al. (2019) (using instance-wide
representations) are reported in Table 2. To summarise, for the results reported in Table 2 (in
the paper’s main body), T-Rep is the only model to use the TimeDim procedure. TS2Vec, TNC,
T-Loss, TS-TCC all use the procedure introduced by Franceschi et al. (2019). TS2Vec results for
both procedures are reported in Table 5, which contains scores on individual datasets, as well as
aggregate metrics.

A.3 REPRODUCTION DETAILS FOR BASELINES

TS2Vec: The results for TS2Vec (Yue et al., 2022) have been reproduced using the official code
(found here). The hyperparameters used for TS2Vec are exactly those of the original paper (except
for the batch size, set to 16 in our reproduction), and the same as T-Rep where possible. The
only notable difference in hyperparameters is that T-Rep uses slightly wider hidden channels to
accommodate the additional use of a time-embedding vector. The results published in the TS2Vec
paper weren’t used for the forecasting task because of slight changes we made to the experimental
setup, specifically removing the use of covariates in forecasting. For anomaly detection and
classification, we used our own reproduction because the results slightly differed from the originally
published results, which we attribute to the following reasons. Firstly, the change in batch size
from 8 to 16 for us, which the original paper says to be important (Yue et al., 2022). Secondly, we
introduced a new classification procedure, so we had to test TS2Vec in this new setup. Further, we
train and test all models 10 times to mitigate stochasticity and obtain more stable results, which is
not the case for the results of the original TS2Vec paper (Yue et al., 2022). Also, we do not use any
random seed, while the TS2Vec codebase Zhihan Yue (2021) shows a single run with a random
seed was used to produce their results.

Informer: For the ETTh1, ETTh2 and ETTm1 datasets, we use the results published in the Informer
paper (Zhou et al., 2021). However, the paper doesn’t include results on ETTm2, so we obtain these
results using the official code (found here) and the default hyperparameters (which are also used in
the original paper).

TCN: T-Rep’s encoder architecture is a TCN network (Bai et al., 2018), so we reused our
code to implement the forecasting TCN model, changing only the training part to use a supervised
MSE loss. The hyperparameters (channel widths, learning rate, optimiser) are the same as for T-Rep.

For the classification tasks, the results of TS-TCC (Eldele et al., 2021), TNC (Tonekaboni et al.,
2021), and DTW (Müller, 2007) are taken from the TS2Vec paper (Yue et al., 2022), based on their
own reproduction. The results for T-Loss (Franceschi et al., 2019) are taken from the T-Loss paper
directly (Franceschi et al., 2019).

17

https://github.com/yuezhihan/ts2vec
https://github.com/zhouhaoyi/Informer2020

Published as a conference paper at ICLR 2024

For the anomaly detection tasks, the baseline results of SPOT, DSPOT (Siffer et al., 2017), and SR
(Ren et al., 2019) are taken directly from the TS2Vec paper (Yue et al., 2022).

A.4 TIME-EMBEDDING CHOICE

The choice of architecture for the time-embedding varies depending on the temporal features one
wishes to extract. For users concerned with capturing periodicity and trend, a Time2Vec-like module
is ideal (Kazemi et al., 2019). Focusing on these features has helped it become the top performer for
anomaly detection and forecasting. If unsure about what features to extract, a fully-connect MLP
may also be used, leading to perhaps less interpretable but very flexible and expressive embeddings.
We found this to be the best time-embedding for classification tasks. We have also implemented a
time-embedding model based on RBF features, which performs well in anomaly detection. It is not
well understood when and why different time-embeddings perform better than others, beyond the
simple case of Time2Vec (Kazemi et al., 2019). We leave this as an area for future research.

A.5 CONTEXTUAL CONSISTENCY

TS2Vec introduces a new pair-sampling method for contrastive learning: contextual consistency.
The idea is to sample two overlapping segments of the time-series and encourage the representations
in the overlapping timesteps to be similar. Random transformations are applied to each sampled
segment, leading to different contexts for the overlapping window. Ideally, the encoder should
extract a representation of the window which is invariant to the surrounding context.

Given an input time-series x P RTˆF , random cropping is applied to obtain two overlapping
segments of x: xa1:b1 and xa2:b2 such that 0 ď a1 ď a2 ď b1 ď b2 ď T . a1, a2, b1, b2 are
sampled uniformly in the allowed ranges at each training iteration. Timestamp masking is then
randomly applied within each segment by the encoder, which outputs the respective representations
za1:b1 “ tza1 , ..., zb1u and za2:b2 “ tza2 , ..., zb2u. These representations in the overlapping
interval ra2, b1s correspond to the same timesteps, but were obtained using different contexts.
Timestep-wise and instance-wise contrasting tasks are then applied to them Yue et al. (2022).

The contextual consistency method is very powerful as it helps learn invariances to different sub-
sequence distributions (which might differ in the case of non-stationary data), without making any
underlying assumptions about the time-series distribution. This contrasts other SSL methods for
temporal data, which often feature inductive biases in the form of invariance assumptions to noise,
cropping, flipping etc. (Zhang et al., 2023).

A.6 HIERARCHICAL LOSS

The hierarchical loss framework applies and sums the model’s loss function at different scales,
starting from a per-timestep representation and applying maxpool operations to reduce the time-
dimension between scales (Yue et al., 2022). This gives users control over the granularity of the
representation used for downstream tasks, without sacrificing performance. It also makes the model
more robust to missing data, as it makes use of long-range information in the surrounding represen-
tations to reconstruct missing timesteps (Yue et al., 2022). Its precise algorithm is given in Figure 5
below, taken from Yue et al. (2022):

18

Published as a conference paper at ICLR 2024

Figure 5: Hierarchical loss algorithm (Yue et al., 2022)

A.7 UEA CLASSIFICATION FULL RESULTS

Table 5 presents the full results for the classification task on the 30 UEA multivariate time series
datasets Dau et al. (2019). The evaluated models are T-Rep, following the TimeDim procedure
detailed in Appendix A.2.4, TS2Vec Yue et al. (2022), following both the TimeDim procedure and
the original procedure introduced in Franceschi et al. (2019), T-Loss Franceschi et al. (2019), TNC
Tonekaboni et al. (2021), TS-TCC Eldele et al. (2021) and DTW Müller (2007).

Dataset T-Rep (Ours) TS2Vec TS2Vec (TimeDim) T-Loss TNC TS-TCC DTW Minirocket

ArticularyWordRecognition 0.968 0.974 0.969 0.943 0.973 0.953 0.987 0.980
AtrialFibrillation 0.354 0.287 0.313 0.133 0.133 0.267 0.2 0.2
BasicMotions 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
CharacterTrajectories 0.989 0.988 0.988 0.993 0.967 0.985 0.989 0.988
Cricket 0.958 0.953 0.938 0.972 0.958 0.917 1.0 0.972
DuckDuckGeese 0.457 0.434 0.368 0.65 0.46 0.38 0.6 0.540
ERing 0.943 0.899 0.936 0.133 0.852 0.904 0.133 0.933
EigenWorms 0.884 0.916 0.88 0.84 0.84 0.779 0.618 0.954
Epilepsy 0.97 0.963 0.962 0.971 0.957 0.957 0.964 1.0
EthanolConcentration 0.333 0.303 0.298 0.205 0.297 0.285 0.322 0.357
FaceDetection 0.581 0.541 0.577 0.513 0.536 0.544 0.529 0.569
FingerMovements 0.495 0.495 0.493 0.58 0.47 0.46 0.53 0.420
HandMovementDirection 0.536 0.418 0.527 0.351 0.324 0.243 0.231 0.405
Handwriting 0.414 0.463 0.424 0.451 0.249 0.498 0.286 0.241
Heartbeat 0.725 0.734 0.724 0.741 0.746 0.750 0.717 0.722
InsectWingbeat 0.328 0.323 0.327 0.156 0.469 0.264 0.1 0.319
JapaneseVowels 0.962 0.97 0.961 0.989 0.978 0.93 0.949 0.921
LSST 0.526 0.558 0.546 0.509 0.595 0.474 0.551 0.668
Libras 0.829 0.859 0.833 0.883 0.817 0.822 0.87 0.944
MotorImagery 0.495 0.5 0.497 0.58 0.5 0.61 0.5 0.470
NATOPS 0.804 0.897 0.824 0.917 0.911 0.822 0.883 0.916
PEMS-SF 0.8 0.772 0.794 0.675 0.699 0.734 0.711 0.896
PenDigits 0.971 0.977 0.975 0.981 0.979 0.974 0.977 0.974
PhonemeSpectra 0.232 0.243 0.228 0.222 0.207 0.252 0.151 0.280
RacketSports 0.883 0.893 0.865 0.855 0.775 0.816 0.802 0.875
SelfRegulationSCP1 0.819 0.79 0.819 0.843 0.799 0.823 0.775 0.884
SelfRegulationSCP2 0.591 0.554 0.563 0.539 0.55 0.532 0.539 0.494
SpokenArabicDigits 0.994 0.992 0.993 0.905 0.934 0.97 0.963 0.989
StandWalkJump 0.441 0.407 0.3 0.332 0.4 0.332 0.2 0.333
UWaveGestureLibrary 0.885 0.875 0.89 0.875 0.759 0.753 0.903 0.913

Avg. Accuracy 0.706 0.699 0.693 0.657 0.671 0.667 0.650 0.707
Ranks 1st 6 2 1 6 1 3 2 9
Avg. Acc. Difference (%) – 2.1 3.4 33.6 12.3 10.0 43.6 4.8

Table 5: Classification accuracy of T-Rep and other self-supervised models for time series on 30
UEA datasets.

The metrics used for evaluation are the following:

• Avg. Accuracy: The measured test set accuracy, averaged over all datasets.

19

Published as a conference paper at ICLR 2024

• Ranks 1st: This metric measures the number of datasets for which the given model is the
best amongst all compared models. For example, T-Rep is the best performing model on
10 out of 30 datasets.

• Avg. Acc. Difference: This measures the relative difference between T-Rep and a given
model M , averaged over all 30 datasets. It is calculated as:

Avg. difference “ 100 ¨

˜

30
ÿ

i“1

AccpT-Repqi ´AccpMqi

AccpMqi

¸

, (11)

where AccpMqi is the accuracy of model M on dataset i.
• Avg. Rank: For each dataset, we compute the rank of a model compared to other models

based on accuracy. The average rank over all 30 datasets is then reported.

A.8 ETT FORECASTING FULL RESULTS

Table 6 presents the full results for the forecasting task on the 4 ETT datasets Zhou et al. (2021). We
evaluate T-Rep against TS2Vec (Yue et al., 2022), a SOTA self-supervised model for time series, but
also Informer (Zhou et al., 2021), the SOTA in time series forecasting, as well as TCN (Bai et al.,
2018), a simpler model with the same backbone architecture as T-Rep, but trained with a supervised
MSE loss.

T-Rep (Ours) TS2Vec Informer TCN Linear Baseline

Dataset H MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

24 0.511 0.496 0.575 0.529 0.577 0.549 0.767 0.612 0.873 0.664
48 0.546 0.524 0.608 0.553 0.685 0.625 0.713 0.617 0.912 0.689

168 0.759 0.649 0.782 0.659 0.931 0.752 0.995 0.738 0.993 0.749
336 0.936 0.742 0.956 0.753 1.128 0.873 1.175 0.800 1.085 0.804
720 1.061 0.813 1.092 0.831 1.215 0.896 1.453 1.311 1.172 0.863

ETTh2

24 0.560 0.565 0.448 0.506 0.720 0.665 1.365 0.888 0.463 0.498
48 0.847 0.711 0.685 0.642 1.457 1.001 1.395 0.960 0.614 0.588

168 2.327 1.206 2.227 1.164 3.489 1.515 3.166 1.407 1.738 1.016
336 2.665 1.324 2.803 1.360 2.723 1.340 3.256 1.481 2.198 1.173
720 2.690 1.365 2.849 1.436 3.467 1.473 3.690 1.588 2.454 1.290

ETTm1

24 0.417 0.420 0.438 0.435 0.323 0.369 0.324 0.374 0.590 0.505
48 0.526 0.484 0.582 0.553 0.494 0.505 0.477 0.450 0.813 0.637
96 0.573 0.516 0.602 0.537 0.678 0.614 0.636 0.602 0.866 0.654

288 0.648 0.577 0.709 0.610 1.056 0.786 1.270 1.351 0.929 0.697
672 0.758 0.649 0.826 0.687 1.192 0.926 1.381 1.467 1.008 0.746

ETTm2

24 0.172 0.293 0.189 0.310 0.147 0.277 1.452 1.938 0.275 0.364
48 0.263 0.377 0.256 0.369 0.267 0.389 2.181 0.839 0.363 0.434
96 0.397 0.470 0.402 0.471 0.317 0.411 3.921 1.714 0.441 0.484

288 0.897 0.733 0.879 0.724 1.147 0.834 3.649 3.245 0.754 0.664
672 2.185 1.144 2.193 1.159 3.989 1.598 6.973 1.719 1.796 1.027

Avg. Rank 1.90 1.85 2.40 2.45 3.3 3.55 4.35 4.1 3.05 3.05
Ranks 1st 8 8 2 1 3 3 1 1 6 7
Avg. MSE 0.986 0.702 1.004 0.712 1.300 0.820 2.012 1.205 1.017 0.727

Table 6: Multivariate time series forecasting results on the four ETT datasets. The ’Ranks 1st’
metric measures the number of situations where the given model is the best amongst all compared
models.

20

Published as a conference paper at ICLR 2024

A.9 TIME SERIES ANOMALY DETECTION FULL RESULTS

F1 Prec. Rec.

SPOT 0.338 0.269 0.454
DSPOT 0.316 0.241 0.458
SR 0.563 0.451 0.747
TS2Vec 0.733 0.706 0.762
T-Rep (Ours) 0.757 0.796 0.723

Table 7: Time series anomaly detection results, on the Yahoo Webscope dataset. Anomalies include
outliers as well as changepoints. TS2Vec results are reproduced using the official source code (Zhi-
han Yue, 2021), while all other baseline results are taken directly from Yue et al. (2022).

F1 Acc.

Raw data 0.241 0.676
TS2Vec 0.619 0.771
T-Rep (Ours) 0.665 0.790

Table 8: Time series segment-based anomaly detection results on the Sepsis dataset Reyna et al.
(2020b). TS2Vec results are reproduced using the official source code (Zhihan Yue, 2021).

21

	Introduction
	Related Work
	Background
	Problem Definition
	Contextual Consistency
	Hierarchical Loss

	Method
	Encoder Architecture
	Pretext Tasks
	Time-embedding Divergence Prediction
	Time-embedding-conditioned Forecasting

	Experiments
	Time Series Anomaly Detection
	Time Series Classification
	Time Series Forecasting
	Robustness to Missing Data
	Ablation Study

	Conclusion
	Appendix
	Latent Space Structure
	Experimental Details
	Pretext Task Weights
	Forecasting
	Anomaly Detection
	Classification

	Reproduction Details for Baselines
	Time-Embedding Choice
	Contextual Consistency
	Hierarchical Loss
	UEA Classification Full Results
	ETT Forecasting Full Results
	Time Series Anomaly Detection Full Results

