
Supplementary Material for Accelerated Modelling of
Interfaces for Electronic Devices using Graph Neural

Networks

Pratik Brahma1∗, Krishnakumar Bhattaram1∗, Sayeef Salahuddin1,2

1 Department of Electrical Engineering and Computer Sciences
University of California Berkeley

2 Materials Science Division, Lawrence Berkeley National Laboratory
{pratik_brahma, Krishna Bhattarai, sayeef}@berkeley.edu

1 Neural Network Architecture

This section discusses the architecture of our graph neural network used to predict atomic forces,
density of states, and injection velocity. This neural network architecture combines SchNet[S4] and
SpookyNet[S7]. For completeness, we describe each neural network layer here and the acronyms
present in Figure 2 of the main text.

Atom Embeddings The atomistic device structure is described by the atomic numbers of all atoms
Z = (Z1, ..., ZN ) and their atomic positions R = (r⃗1, ..., r⃗N ), where N is the total number of atoms
in the device. An atom embedding is a random vector initialized by an embedding layer depending
on the atom type.

xi = aZi aZi ∈ RF (S1)

In the above equation, F is the dimension of the embedding space.

Linear Layer A linear layer (lin) is defined by:

xo
i = lin(xi) = Wxi + b (S2)

Linear Layer with Shifted Softplus Activation A linear layer with a shifted soft plus activation
(lssp) is defined as:

xo
i = lssp(xi) = ssp(Wxi + b)

ssp(x) = log (0.5ex + 0.5) (S3)

Radial Basis Function Neural Network Firstly, we calculate distance vectors (r⃗ij) to all neighbors
of every atom within a given cutoff rc. The radial basis functions take the inter-atomic distance vector
(r⃗ij) as inputs and generate features that capture the symmetries in the atomistic device structure.
These functions are defined as follows:

gs(r⃗) =

 0g
0
0

...
K−1g

0
0

 (S4)

* These authors contributed equally to this work

Preprint. Under review.



g⃗p(r⃗) =

 0g
−1
1 0g

0
1 0g

1
1

...
...

...
K−1g

−1
1 K−1g

0
1 K−1g

1
1

 (S5)

g⃗d(r⃗) =

 0g
−2
2 0g

−1
2 0g

0
2 0g

1
2 0g

2
2

...
...

...
...

...
K−1g

−2
2 K−1g

−1
2 K−1g

0
2 K−1g

1
2 K−1g

2
2

 (S6)

kg
m
l = ρk(∥r⃗ij∥) · Y m

l (r⃗ij) (S7)

Y m
l (r⃗ij) represents the spherical harmonics features. K represents the total number of radial basis

function network features.

ρk(r) = bk,K−1 (exp(−γr)) · fcut(r) (S8)

bk,K−1(x) =

(
K − 1

k

)
xk(1− x)K−1−k (S9)

fcut(r) =

{
exp

(
− r2

(rcut−r)(rcut+r)

)
, r < rcut

0, r ≥ rcut

(S10)

In the above equation, bk,K−1 are the Bernstein polynomials. We use a Gaussian filter cutoff (fcut) to
emulate decreasing contribution to output properties with increasing neighbor distance.

Local Interaction Block The local interaction block generates messages with the inter-atomic
distance vectors as inputs. These messages contain the local chemical environment information of
each atom. The equations are as follows:

ci = lssp(xi) (S11)

si =
∑

j∈N (i)

lins(xj)⊙ (Gsgs(r⃗ij)) (S12)

p⃗i =
∑

j∈N (i)

linp(xj)⊙ (Gpg⃗p(r⃗ij)) (S13)

d⃗i =
∑

j∈N (i)

lind(xj)⊙ (Gdgs(r⃗ij)) (S14)

li = lssp
(
ci + si + (P1p⃗i)

T
(P2p⃗i) +

(
D1d⃗i

)T (
D2d⃗i

))
(S15)

In the above equations, N (i) represents the neighbors of atom i within a cutoff rc. Gs,Gp,Gd ∈
RF×K are matrices which calculates the linear combinations of features si ∈ RF , p⃗i ∈ RF×3 and
d⃗i ∈ RF×5, where F is the number of filters. The matrices P1,P2,D1 and D2 provide linear
projections for the rotationally equivariant features p⃗i and d⃗i. In the end, a message li is generated,
which contains the local environment information to update the state vector of atom i.

Message Update Using the generated message li for atom i, we update the state vector (xt
i) by

using the following equation:
xt+1
i = lssp

(
lssp

(
xt
i

)
+ li

)
(S16)

Energy and Atomic Forces Output After performing the message update phase T times, we use
the final state vectors xT

i to predict the desired property, assuming that the global property is obtained
from the summation of its local parts.

Rglobal =
∑

Rlocal =
∑
i

fNN (Ai) (S17)

2



In the above equation, fNN is the neural network that predicts the local property from the local
atomic environment Ai for every atom i. Under this assumption, we predict the total energy as a
summation of local atomic energies as follows:

Egs =
∑
i

Egs
i =

∑
i

lssp
(
xT
i

)
(S18)

A linear layer with shifted softplus activation transforms the state vector of every atom i to its local
atomic energy contribution Egs

i . Since the graph neural network is composed of smooth differentiable
functions, the atomic force on all atoms can be calculated by differentiating the total ground state
energy output with respect to their atomic positions.

F⃗i (Z1, ..., ZN , r⃗1, ..., r⃗N ) = −∂Egs

∂r⃗i
(Z1, ..., ZN , r⃗1, ..., r⃗N ) (S19)

Density of States Output In this section, we provide brief details on how the neural network
converts the state vector xT

i to its local contribution of D(E) and Jx(E) = vx(E)D(E). Notably,
the Density of States (DOS) needs vector-valued outputs; as a result, the readout neural network
has to predict multiple output values. The vector is generated by sampling D(E) and Jx in some
energy windows. The training convergence deteriorates with increased points in the energy space of
DOS. Thus, reducing the dimension of the DOS and Jx vector becomes necessary using Principal
Component Analysis (PCA) [S1]. The training dataset containing the DOS vectors is first normalized,
such that the ith energy window is yi = di − d̄, where d̄ is the mean of the whole dataset.
Subsequently, the eigenvalues (λp) and the eigenvectors (up) of the covariance matrix S = YTY (Y
are matrices with columns as yi) are found:

Sup = λpup (S20)

d ≈
P∑

p=1

(
yTup

)
up +

P∑
p=1

(
d̄Tup

)
up =

P∑
p=1

αT
p up (S21)

The highest P eigenvalue vectors are chosen to reconstruct the DOS pattern in energy space from
the PCA basis. Thus, the neural network is then trained to predict only the P PCA coefficients as
follows:

DOS =

N∑
i=1

LDOS (Ai) =

N∑
i=1

P∑
p=1

αT
p,iup (S22)

αp,i = lssp
(
xT
i

)
(S23)

The above equation lssp is a neural network layer whose output dimensions are P and αp,i are
the predicted PCA coefficients by the neural network for atom i. Notably, in this case, the output
neural network predicts the local density of states (LDOS) for every atom, whose summation gives
us the total DOS of the atomistic device. The same procedure is used to predict the current density
Jx(E) = vx(E)D(E) where vx(E) is the bandstructure velocity and D(E) is the density of states.
With the two predicted properties, we can calculate the injection velocity of the transistor as follows
[S2]:

vinj =

∫
dEJx(E)f(E + U − Ef )∫
dED(E)f(E + U − Ef )

(S24)

Ninv =

∫
dED(E)f(E + U − Ef ) (S25)

f(x) is the fermi distribution function, U is the electrostatic potential at the source-channel barrier,
and Ef is the fermi level of the source. Consequently, we can obtain drain current through the
transistor channel as ID = qNinvvinj

2 Dataset Generation

This section covers the training datasets used to train our graph neural network architecture. We have
two different kinds of datasets: i) Molecular dynamics of the transistor heterostructure for training

3



Figure S1: Molecular Dynamics Trajectory: a) Melting, Reshaping, and Quenching crystalline
silica to obtain its amorphous structure, b) Melting, Reshaping, and Quenching crystalline hafnia to
obtain its amorphous structure c)Relaxing the Si-SiO2 interface and relaxing transistor heterostructure

energy and atomic forces and ii) Empirical tight-binding calculations of nanoslab silicon channel to
predict the density of states (DOS) and current density (Jx).

2.1 Atomic Forces and Energy

The transistor gate stack consists of crystalline silicon, amorphous silica, and amorphous hafnia.
This structure is generated using classical molecular dynamics and the Charge Optimized Many
Body (COMB) potential [S5] to estimate the forces between the atoms. The molecular dynamics is
performed using a timestep of 0.1 fs.

Generating Amorphous Silica : We start with β-cristobalite silicon oxide crystal structure. The
silicon substrate of the transistor heterostructure contains two unit cells in the x and y direction.
Therefore, the idea is to melt and reform the silica crystal structure such that the base dimensions
of amorphous silica match the base dimensions of the silicon substrate. The initial crystalline silica
contains one unit cell in the x and y directions and two unit cells along the z. It is melted using constant
number, pressure, and temperature (NPT) dynamics from 300K to 2700K for 20 ps. Subsequently,
we reshape the silica melt to match the silicon substrate dimensions using non-equilibrium constant
number, volume, and temperature (NVT, nvt/sllod in LAMMPS) dynamics at 2700K for 30 ps.
Finally, we quench the melt using a damped force minimizer followed by an NPT annealing at 300K
for 20 ps. This whole procedure is shown in Figure S2a).

Generating Amorphous Hafnia : Similar to the previous case, we start with the orthorhombic
crystal form of hafnia with, two unit cells in the x, y, and z directions. Following this, the crystal is
melted from 300K to 3700K for 20 ps. Subsequently, we reshape the melt so that the base dimensions
match the silicon substrate base dimensions using the non-equilibrium NVT process at 3700K for 40
ps. Finally, the melt is quenched using a damped force minimizer followed by an NPT annealing at
300K for 20 ps. This whole molecular dynamics procedure is shown in Figure S2b)

Generating Si-SiO2 interface : To generate the interface, the previously generated amorphous
silica is placed on top of the silicon substrate at a distance "d". Then the composite structure is
relaxed using a damped force minimizer. The distance "d" is estimated such that the relaxed structure
has the lowest energy. The potential energy relaxation is shown in Figure S2c).

Generating Si-SiO2-HfO2 heterostructure : Similar to the interface generation procedure above,
the generated amorphous hafnia HfO2 is placed on top of the generated Si-SiO2 interface at a distance
"d". Subsequently, the whole heterostructure is relaxed using a damped force minimizer. The distance
"d" is estimated such that the relaxed transistor heterostructure has the lowest energy. The potential
energy relaxation is shown in Figure S2c).

Using all the above-generated structures, we obtain a dataset containing around 200k training
structures for training energy and molecular forces.

4



Figure S2: Generated intermediary structures and final transistor heterostructure: a) Generated
amorphous silica structure, b) Generated amorphous hafnia structure, c) Relaxed silicon-silica
structure, d) Relaxed transistor heterostructure

2.2 Density of States and Injection Velocity

Density of states and injection velocity calculations are conducted for the crystalline nanoslab silicon
channels. We generate the dataset by varying the strain and thickness of the target structures and
simulate electronic structure using a semiempirical tight-binding calculator available in QuantumATK
[S6]. Nanoslabs are created by cleaving bulk silicon along the [100] direction, with thicknesses
ranging from 5 to 19 layers of silicon, inclusive. Strain is introduced by varying the unit cell size, with
unit cell sizes ranging between 0.9 to 1.035 times the unstrained bulk silicon unit cell, with steps of
0.002. The electronic Hamiltonian is constructed using QuantumATK’s SemiEmpiricalCalculator
with the Bassani SiH parameter dataset, with self-consistent calculation turned off. We derive two-
dimensional bandstructure defined by a Monkhorst-Pack mesh at 150x150 k-points. Density of states
is calculated through the DensityOfStates class using the tetrahedral sampling method.

The data from QuantumATK are then post-processed to derive quantities of interest that or to make
quantities simpler for training and inference. Bandstructure velocity is calculated through a numerical
first-order derivative on bandstructure energies from QuantumATK, which are Gaussian-broadened
by 0.01 eV. Density of states energy scales are shifted such that the conduction band minimum Ec is
at zero, and values (in eV −1) are normalized by the total number of silicon atoms.

The statistics of the above two generated datasets are shown in Figure S3.

3 Training Neural Network

This section covers the training loss function of the neural network, the training parameters, and the
neural network architecture size.

3.1 Atomic Forces and Energy

The neural network architecture size is depicted in Table 1: The loss function for training the neural

5



Figure S3: Statistics of the generated datasets: (a) Histogram of energy per atom of a structure for
the molecular dynamics generated dataset (b) Histogram of mean absolute forces of a structure for
the molecular dynamics generated dataset (c) Histogram of mean absolute value of the DOS PCA
coefficients for the tight binding generated dataset (d) Histogram of mean absolute value of the Jx
PCA coefficients for the tight binding generated dataset

Table 1: Graph Neural Network Size for Molecular Dyanamics

Neural Network Parameter Value

Cutoff Radius (rc) 3.0 Å
Number of atomic basis (F ) 32
Number of radial basis functions (K) 32
Number of interaction blocks (T ) 6

network to predict energy (Egs) and forces F⃗ (R⃗i) for a material structure represented by R⃗i is the
weighted mean square error as follows:

L = γ
∑
i

(
Egs

θ (R⃗i)− Egs(R⃗i)
)2

+ (1− γ)
∑
i

∥F⃗ gs
θ (R⃗i)− F⃗ gs(R⃗i)∥2 (S26)

In the above equation, the variables with subscripts θ are the predicted neural network properties and
the remaining variables are ground truth values from the dataset. For our training, we use γ = 0.1.
All the training parameters are provided in table 3. For training energy and atomic forces, the dataset
was split into 80-10-10 for training, validation, and testing respectively. All the neural network code
was written in PyTorch-CUDA [S3]. Training and inference were performed on an NVIDIA A100
GPU. Finally, we get a mean absolute error of 3.0e-2 eV/Å (0.26 % error) on the training of forces.

6



Table 2: Graph Neural Network Size for predicting DOS and Jx

Neural Network Parameter Value

Cutoff Radius (rc) 5.0 Å
Number of atomic basis (F ) 16
Number of radial basis functions (K) 16
Number of interaction blocks (T ) 6
Number of PCA coefficients for DOS (P ) 200
Number of PCA coefficients for Jx 15

Table 3: Training Parameters

Training Parameter Value

Optimizer Adam
Learning Rate 0.01
Learning Rate Schedule Reduce lr on Plateau
Learning Rate multiplier 0.8
Batch Size 32

3.2 Density of States

Using the neural network architecture in table 2, we train on a weighted mean-squared error loss on
the density of states (D(E)) and x-component of current density (Jx) as follows:

L = γ
∑
i

∥∥∥Dθ(R⃗i)−D(R⃗i)
∥∥∥2 + (1− γ)

∑
i

∥Jx
θ (R⃗i)− Jx(R⃗i)∥2 (S27)

In this case, Dθ and Jx
θ are the reconstructed vector-valued energy-space density of states and

injection velocity from the PCA coefficients that the network predicts. We use γ = 0.5 to equally
weight the loss terms, and train on all structures with layer count between 5 to 18 -excluding 13-
with lattice constant scaling from 0.9 to 1.035 with steps of 0.002, and validate on structures with 13
and 19 layers with the unscaled lattice constant 1.0 (not included in the training set). All the neural
network code was written in PyTorch-CUDA [S3]. All the training parameters are provided in table
3. Training and inference were performed on an NVIDIA A100 GPU. We find a final mean absolute
error of 9.0e-4 /eV (0.18% error) for D(E) and 4.9e4 cm/s-eV (0.82% error) for Jx(E).

Figure S4: Training Loss Curve: The training loss curve for the (a) molecular dynamics dataset and
the (b) density of states dataset

7



Figure S5: Scaling of computational time for calculating DOS: The Graph Neural Network
accelerates the empirical tight binding model in the order of 102-104 for 0.5-6nm of nanoslab silicon
thickness

4 Inference Timing

4.1 Atomic Forces and Energy

Molecular Dynamics to generate the dataset were performed using LAMMPS on an Intel Xenon
Gold 6330 with 30 parallel threads. All the neural network code was written in PyTorch-CUDA and
training and inference were performed on an NVIDIA A100 GPU. The prediction time of the neural
network only includes the inference time and not the model loading time.

4.2 Density of States and Injection Velocity

QuantumATK codes for density of states generation were multithreaded and further parallelized
across 16 processes on an Intel Xenon Gold 6330 with 112 cores and two threads per core. All the
neural network code was written in PyTorch-CUDA and training and inference were performed on an
NVIDIA A100 GPU. The prediction time of the neural network only includes the inference time and
not the model loading time.

References
[S1] K. Bang, B. C. Yeo, D. Kim, S. S. Han, and H. M. Lee. Accelerated mapping of electronic density of states

patterns of metallic nanoparticles via machine-learning. Scientific Reports, 11, 12 2021.

[S2] Y. Liu, N. Neophytou, T. Low, G. Klimeck, and M. S. Lundstrom. A tight-binding study of the ballistic
injection velocity for ultrathin-body soi mosfets. IEEE Transactions on Electron Devices, 55:866–871, 3
2008.

[S3] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep learning library,
2019.

[S4] K. T. Schütt, H. E. Sauceda, P. J. Kindermans, A. Tkatchenko, and K. R. Müller. Schnet - a deep learning
architecture for molecules and materials. Journal of Chemical Physics, 148, 6 2018.

[S5] T. R. Shan, B. D. Devine, T. W. Kemper, S. B. Sinnott, and S. R. Phillpot. Charge-optimized many-body
potential for the hafnium/hafnium oxide system. Physical Review B - Condensed Matter and Materials
Physics, 81, 3 2010.

8



[S6] S. Smidstrup, K. Stokbro, A. Blom, T. Markussen, J. Wellendorff, J. Schneider, T. Gunst, B. V. v Petr
A Khomyakov, U. G. Vej-Hansen, M. Brandbyge, et al. Quantumatk: An integrated platform of electronic
and atomic-scale modelling tools. J. Phys: Condens. Matter (APS), 32:015901, 2020. doi: 10.1088/
1361-648X/ab4007.

[S7] O. T. Unke, S. Chmiela, M. Gastegger, K. T. Schütt, H. E. Sauceda, and K. R. Müller. Spookynet: Learning
force fields with electronic degrees of freedom and nonlocal effects. Nature Communications, 12, 12 2021.

9


	Neural Network Architecture
	Dataset Generation
	Atomic Forces and Energy
	Density of States and Injection Velocity

	Training Neural Network
	Atomic Forces and Energy
	Density of States

	Inference Timing
	Atomic Forces and Energy
	Density of States and Injection Velocity


