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A APPENDIX

A.1 PRELIMINARIES: REGION MIXUP

Region mixup (Saha & Garain, 2024) aims to generate a new training pair (X̃, ỹ) by mixing regions
from multiple training samples (XA, yA), (XB1 , yB1), (XB2 , yB2), . . . , (XBk2 , yBk2 ). The mixing
process is described as follows:

X̃ =

k2∑
j=1

λjMj ⊙XA + (1− λj)Mj ⊙XBj
, and ỹ =

1

k2

k2∑
j=1

λjyA + (1− λj)yBj
, (7)

where Mj ∈ {0, 1}W×H is a binary mask indicating which region to mix from XA and XBj ,

ensuring that
∑k2

j=1 Mj = 1. Here, ⊙ represents element-wise multiplication. Setting k = 1
simplifies the approach to standard mixup regularization. As the region selection process, Region
mixup divides an image evenly into k × k non-overlapping regions (Mj’s). This requires that the
original image dimensions be divisible by k to ensure all regions are of equal size. Mathematically,

Mj ∈
{
1Bil

∣∣∣ i, l ∈ {0, . . . , k − 1}
}

where

Bil =

[
iH

k
,
(i+ 1)H

k
− 1

]
×
[
lW

k
,
(l + 1)W

k
− 1

]
.

However, this fixed grid setup leads to suboptimal performance.

A.2 LABEL CALIBRATION FOR CROSS-ENTROPY

When inputs are mixed, the targets must be mixed in the same proportions; with cross-entropy
this is mathematically exact because the loss is affine in the label. Specifically, since ℓCE(p, y) =
−y⊤ log p is linear in y, any convex combination of labels satisfies

ℓCE

(
p,
∑
a

way
(a)

)
=

∑
a

wa ℓCE

(
p, y(a)

)
.

In StoRM, the mixed label Ỹ =
∑

i,j αij

(
λijY +(1−λij)Y

∗
ij

)
is exactly such a convex combination

with nonnegative coefficients {αijλij} ∪ {αij(1− λij)} that sum to 1, hence

ℓCE(p, Ỹ ) =
∑
i,j

αij

(
λij ℓCE(p, Y ) + (1− λij) ℓCE(p, Y

∗
ij)

)
.

Thus the same tile weights used to mix the image also mix the label, guaranteeing that the loss
on the mixed pair equals the corresponding mixture of losses on unmixed pairs (evaluated at the
same prediction p). This label–input coherence prevents target mismatch, stabilizes gradients, and
underpins the second-order analysis (first-order terms cancel in expectation); global mixup is the
special case with a single weight λ and no tiling .

B THEORETICAL PROOFS

Proof of the Lemma 1. Since the supports are disjoint, (Mij)u(Mi′j′)u = 0 for all coordinates u,
whence ⟨Mij ⊙A, Mi′j′ ⊙B⟩ =

∑D
u=1(Mij)uAu (Mi′j′)uBu =

∑D
u=1(Mij)u(Mi′j′)u AuBu =

0. If
∑

i,j cijVij = 0, taking the inner product with Vkl yields ckl∥Vkl∥22 = 0, so ckl = 0 for every
(k, l) with Vkl ̸= 0.

Proof of the Proposition 1. Consider the affine map Φ : [0, 1]k
2 → RD, Φ(t) = X +

∑
i,j tijVij .

By Lemma 1, the supports of the Vij’s are disjoint, so varying tij changes only the coordinates inside
tile (i, j) and leaves all other coordinates fixed. Therefore, Φ decomposes as a block-diagonal map:
the output coordinates split into k2 disjoint blocks, the (i, j)-th block being the one-dimensional
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segment {Xblock + tij(Vij)block : tij ∈ [0, 1]}. The image of a Cartesian product of intervals under
such a block-diagonal affine map is the Cartesian product of those intervals in disjoint coordinate
blocks—an axis-aligned hyper-rectangle (orthotope). The vertex set of the orthotope in image space
is exactly Φ

(
{0, 1}k2)

=
{
X +

∑
i,j ϵijVij : ϵij ∈ {0, 1}

}
. Finally, the affine dimension equals

rank{Vij}; by orthogonality, this rank is the number of nonzero Vij’s.

C ADDITIONAL EXPERIMENTS

C.1 TRANSFER LEARNING

Transfer learning is a common strategy for adapting large architectures with limited resources and
quick experimentation. While most image-mixing augmentation methods, except DiffuseMixIslam
et al. (2024), lack evaluations in this setting, we evaluate StoRM in fine-tuning with Flower102, Air-
craft, and Stanford Cars using an ImageNet-pretrained ResNet-50 from PyTorch, reporting results
in Table 6.

Table 6: Top-1 (%) accuracy of StoRM on fine-tuning experiments with ResNet-50 pretrained on
ImageNet.

Method Aircraft Cars
Vanilla 81.60 88.08
DiffuseMix 85.65 93.17
StoRM 89.58 93.48

StoRM achieved an accuracy of 89.58% on the Aircraft dataset, outperforming DiffuseMix, which
recorded 85.65%. A comparable pattern emerges in the Cars dataset, where StoRM attained 93.48%
accuracy. Given that fine-tuning is far more computationally efficient than training from scratch,
these results underscore the practical benefits of StoRM.

C.2 DATA SCARCITY

Deep neural networks are highly susceptible to overfitting when faced with data scarcity, limiting
their ability to generalize effectively. With only a few training examples per class, these models
often struggle to learn meaningful patterns. Since data augmentation is crucial in mitigating overfit-
ting by expanding the effective training set, we investigate generalization performance under such
constrained conditions. To explore this, we assess the performance of ResNet-18 on the Flower102
dataset Nilsback & Zisserman (2008) using just 10 images per class.

Table 7: Top-1 accuracy on the Flower102 dataset under data scarcity (10 images per class) using
ResNet-18.

Method Validation Acc (%) Test Acc (%)
Vanilla 64.48 59.14
Mixup 70.55 66.81
CutMix 62.68 58.51
SaliencyMix 63.23 57.45
SnapMix 65.71 59.79
PuzzleMix 71.56 66.71
Co-Mixup 68.17 63.20
Guided-SR 72.84 69.31
Guided-AP 74.74 70.44
DiffuseMix 77.14 74.12
StoRM 79.51 76.80

As shown in Table 7, our proposed method, StoRM, outperforms other mixup-based augmentation
techniques under this limited data condition, achieving a test accuracy of 76.80% and a validation
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accuracy of 79.51%. This demonstrates that StoRM enriches the training data diversity, strengthen-
ing the model’s robustness in data-limited scenarios.

C.3 WEAKLY-SUPERVISED OBJECT LOCALIZATION (WSOL)

Weakly Supervised Object Localization (WSOL) seeks to identify the location of an object in an
image using only class labels, without relying on bounding boxes during training. It achieves this by
capturing distinctive visual features that help the classifier concentrate on the most relevant regions
of the image.

We train StoRM following the standard image classification procedure. During inference, as de-
scribed in Venkataramanan et al. (2022), we generate a saliency map using Class Activation Map-
ping (CAM), apply a threshold of 0.15 to binarize it, and extract the bounding box from the result-
ing mask. Our experiments utilize a ResNet-50 model pretrained on ImageNet, which we fine-tune
on the CUB200-2011 dataset. For evaluation, we adopt the methodology proposed in Choe et al.
(2022), reporting localization performance via top-1 localization accuracy at an Intersection-over-
Union (IoU) threshold of 0.5, as well as Maximal Box Accuracy (MaxBoxAcc-v2). We compare
StoRM against the baseline CAM (without mixup), as well as Mixup, CutOut, CutMix.As shown in
Table 8, StoRM surpasses Input Mixup, CutOut, and CutMix by 5.9%, 2.8%, and 0.4%, respectively.

Table 8: Weakly supervised object localization results on CUB200-2011. Top-1 Loc.: Top-1 lo-
calization accuracy (%,), MaxBoxAcc-v2: Maximum box accuracy. Higher values indicate better
performance.

Top-1 Loc. MaxBoxAcc-v2
Baseline CAM 49.4 59.7
Input 49.3 60.6
CutMix 54.8 64.8
CutOut 52.4 —

StoRM 55.2 65.2

C.4 ABLATION STUDY

StoRM relies on two key hyperparameters—the tiling factor k and the Beta-distribution concentra-
tion parameters β—which we hold constant across all experiments. To gauge sensitivity efficiently,
we sweep each hyperparameter individually with a ResNet-18 classifier on CIFAR-10 and report the
resulting Top-1 error rate. When varying β ∈ {0.1, 0.5, 1, 2, 5}, we fix k = 2; conversely, when
varying k ∈ {1, 2, 3, 4}, we fix α = 2.

1 2 3 4
Tiling factor k

95.5

95.6

95.7

95.8

95.9

96.0

To
p-

1 
Ac

cu
ra

cy
 (%

) ResNet-18, = 2

Figure 3: Ablation study on CIFAR-10 with ResNet-18. Left: accuracy as a function of the tiling
factor k. Right: accuracy as a function of β with k = 2.

Tiling-factor sweep (β = 2, Fig. 3, left)- Accuracy peaks at k = 2 (96.0%) and drops when the
grid is either coarsened (k = 1) or made finer (k = 3–4). A 2× 2 grid offers the best trade-off: each
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tile is still large enough to preserve spatial context yet small enough to introduce beneficial diversity.
Importantly, all multi-tile settings outperform the vanilla MixUp baseline (k = 1); even the finer
grids with k = 3 and k = 4 reach 95.79% and 95.57%, respectively, surpassing the single-tile
accuracy of 95.51%.

β-parameter sweep (k = 2, Fig. 3 Right) – The model performs best at the smallest β = 0.1
(96.35 %), stays almost flat for β ∈ {0.5, 1, 2}, and drops noticeably at β = 5. A low β skews the
Beta distribution toward the end-points.
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