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A Theorem 3.1 and Proof

Before proving Theorem 3.1, we first provide a lemma that demonstrate the lower bound of node
influence between two nodes. In the following proof, we will follow [18] and [44] to use GCNs [19]
as the exemplar GNN for simplicity. Moreover, it is noteworthy that our proof can be naturally
generalized to different types of GNNs (e.g., GAT [32] and GraphSAGE [16]) by assigning different
values for edge weights. Specifically, the l-th layer propagation process can be represented as
H(l+1) = σ(ÂH(l)W(l). Here H(l) and W(l) denote the node representation and weight parameter
matrices, respectively. Â = D−1A is the adjacency matrix after row normalization, which means
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each row of Â sums up to 1. Following [18], [34], and [44], we set σ as an identity function and W an
identity matrix. Moreover, we assume that the propagation process is conducted in a sufficient number
of steps. As a result, the output representation of one node can be represented by representations of
its neighbor nodes.

Lemma A.1. Consider the expectation of node influence between node vi and node vj , i.e.,
E (I(vi, vj)). Assume that the node degrees are distributed uniformly for each node with the mean
value d̄. Then, E (I(vi, vj)) ≥ d̄(SPD(vi,vj)), where SPD(vi, vj) is the shortest path distance between
vi and vj .

Proof. Based on the GCN propagation strategy, we know that on G, the representation of node vi
can be represented as

hi =
1

Dii

∑
k∈N (i)

aikhk,

where N (i) denotes the set of neighbor nodes of node vi. Then we can expand the equation by
incorporating 2-hop neighbors of node vi:
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1

Dii

∑
k∈N (i)

aik
1

Dkk

∑
l∈N (k)
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In this way, the expectation of node influence Ii,j = ∥∂hi/∂hj∥ can be represented as:
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(7)

In the above equation, we first substitute the term hi by the iterative expansion of neighbors. In this
expansion, we only keep m paths that start from vi to vj , where ni is the number of intermediate
nodes on the i-th path. The reason is that since we are considering the gradient between vi and vj ,
the derivative on paths that do not contain vj will be 0 and thus can be ignored. Then we can further
extract the common term ∥∂hj/∂hj∥:∥∥∥∥ ∂hi
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(8)

In this equation, we first utilize ∥∂hj/∂hj∥ = 1. This is because ∥∂hj/∂hj∥ = ∥I∥ =
sup∥h∥=1{∥Ih∥} = 1. The resulting term is the expectation that sums up the node degree products
of all paths between vi and vj . Therefore, it is larger than the value on the path with the maximum
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node degree product:∥∥∥∥ ∂hi
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If we assume the node degrees are uniformly distributed, then the expectation of node degree products
on this path p∗ is d̄(n∗+1), where n∗ + 1 is the length, and d̄ is the expectation of node degrees.
Moreover, we know p∗ is exactly the shortest path between vi and vj . Therefore,

E

(∥∥∥∥ ∂hi

∂hj

∥∥∥∥) ≥
(
1/d̄
)(n∗+1)

= d̄−(SPD(vi,vj)), (10)

where SPD(vi, vj) denotes the shortest path distance between node vi and node vj .

Now with Lemma A.1, we can prove Theorem 3.1.
Theorem 3.1. Consider the node influence from node vk to the i-th class (i.e., Ci) in a meta-task
T . Denote the geometric mean of the node influence values to all support nodes in Ci as ICi

(vk) =
K

√∏K
j=1 I(vk, si,j), where si,j is the j-th support node inCi. Assume the node degrees are randomly

distributed with the mean value as d̄. Then, E(log ICi
(vk)) ≥ − log d̄·

∑K
j=1 SPD(vk, si,j)/K, where

SPD(vk, si,j) denotes the shortest path distance between vk and si,j .

Proof. We know log IC(vk) can be represented as follows:

log IC(vk) =
1

K

K∑
j=1

log I(vk, si,j) (11)

Based on Lemma A.1, we know:
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−SPD(vk, si,j) · log d̄, (12)

where SPD(vi, vj) denotes the shortest path distance between node vi and node vj . By rearranging
the term, we can obtain the final inequality:

E (log IC(vk)) ≥ − log d̄

K

K∑
j=1

SPD(vk, si,j). (13)

B Theorem 3.2 and Proof

Theorem 3.2 (Node Influence within Classes). Consider the expectation of node influence from the j-
th node vj to all nodes in its same class C onG, where vj ∈ C. Assume that |C| = K > 2. The overall

node influence is E
(∑

vi∈C\{vj} I(vi, vj)
)
=
∑
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K−2
n−1 h
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hk/∥hj∥2, where n is the number of nodes in G.

Proof. Following the expansion of node representations based on the neighbors in Lemma A.1, we
can represent hi as follows:

hi =

n∑
k=1

Iikhk, (14)
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where Iik is node influence from vi to vk. Then, we have
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We can further sum up the node influence from nodes in the same class of vj to it since we aim to
calculate the total node influence of a set of support nodes. Here we denote the support nodes set of
vj class as C, where |C| = K. Therefore, we can obtain:∑

i∈C\{j}

h⊤
j · hi/∥hj∥2 =

∑
i∈C\{j}

Iij +
∑

i∈C\{j}

∑
k∈V\({i}∪{j})

Iikh
⊤
j · hk/∥hj∥2 (16)

We can move the same terms from the RHS to the LHS:∑
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Rearranging the LHS, we can obtain:

LHS =
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Rearranging the RHS, we can obtain:
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We further assume that the expectation of each Iij is 1/(n− 1) since the sum of probabilities of all
paths starting from vi equals 1. Therefore,
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C Theorem 3.3 and Proof

Theorem 3.3 (Absorbing Probabilities and Node Influence). Consider the Markov chain with a
transition matrix Ã derived from a graph G. Denote the probability of being absorbed in the j-th
state (absorbing state) when starting from the i-th state as bi,j . Then, I(vi, vj) = bi,j , where I(vi, vj)
is the node influence from the j-th node vi to the i-th node vj on G.
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Proof. Following Lemma A.1, we can obtain:
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(21)

As illustrated in Lemma A.1, ∥∂hj/∂hj∥ = 1 because ∥∂hj/∂hj∥ = ∥I∥ = sup∥h∥=1{∥Ih∥} = 1.
On the other hand, utilizing the total probability law and the properties of Markov chains, we know

bi,j =

n∑
k=1

bk,jpik,

where pik is the (i, j)-entry of P. The reason is that assuming the current state is i, we know the next
state will be k with probability pik. Then we can iteratively expand the expression as follows:
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In the above equation, we apply the similar expansion idea as in Eq. (7). The result is obtained by
accumulating all products of transition probabilities on all possible paths from state i to state j. It
is noteworthy that there are multiple absorbing states on this Markov chain. However, we ignore
the paths absorbed in other absorbing states, since the corresponding absorbing probability bk,j is
0, where k and j are two absorbing states. In this way, we further incorporate bj,j = 1 and obtain
the final result. Considering Eq. (21) and Eq. (22), we can find that by setting pik = aik/Dii, we
can obtain ∥∂hi/∂hj∥ = bi,j . Moreover, we know

∑n
k=1 pik =

∑n
k=1 aik/Dii = 1, i = 1, 2, . . . , t.

Therefore, these transition probabilities satisfy the requirements of Markove chains, which completes
the proof.

D Theorem 3.4 and Proof

Theorem 3.4 (Approximation of Absorbing Probabilities). Denote t as the number of non-absorbing
states in the Markov chain, i.e., t = |VT | − |S|, where |VT | is the node set in GT . Denote Q ∈ Rt×t

as the transition probability matrix for non-absorbing states in the Markov chain. Estimating bi,j
with b̃i,j =

∑t
k=1 Ãk,j ·

∑m
h=0

(
Qh
)
i,k

, then the absolute error is upper bounded as |bi,j − b̃i,j | ≤
C/tm−1(t− 1), where m controls the upper bound, and C is a constant.

Proof. Considering the transition probability matrix P as

P =

(
Q R
0 Ir

)
,
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where Q ∈ Rt×t and R ∈ Rt×r. 0 is a t× r zero matrix, and It is an r× r identity matrix. Basically,
the absorbing probability bi,j (i.e., the probability of being absorbed in the j-th state when starting
from the i-th state) can be represented as

bi,j =

t∑
k=1

P (Xt+1 = j|Xt = k) · E(N(k)|X0 = i)
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)
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,
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where N(k) is the umber of visits to state k. Nevertheless, directly calculating
∞∑
h=0

Qh can be

inefficient. Thus, we propose to estimate it by the sum of the first h values. Specifically, we know(
Qh
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which is the sum of transition probability products on all possible paths of length h from state i to
state j. Furthermore, (
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where C is the extracted constant, and GM(p
(h)
ik∗) denotes the geometric mean of the path with the

transition probability products. Based on the inequality of arithmetic and geometric means (i.e., the
AM-GM inequality), we know the geometric mean is always less than or equal to the arithmetic
mean. Therefore, GM(p

(h)
ik∗) ≤ AM(p

(h)
ik∗) = 1/t. This inequality holds because there are totally t

non-absorbing states in the Markov chain, and the transition probabilities to all states sum up to 1. As
a result, we can obtain: (

Qh
)
ik

≤ C ∗
(

GM(p
(h)
ik )
)h

≤ C/th. (25)

Recalling Eq. (23), if we only keep the terms with power less than or equal to m, the estimation error
can be presented as follows:
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∞∑

h=m+1

(
Qh
)
i,k

≤
t∑

k=1

pkj ·
∞∑

h=m+1

C/th. (26)

Since pkj < 1 is a transition probability, we know
∑t

k=1 pkj < t. Therefore,
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In this way, we can obtain the final inequality:

|bi,j − b̃i,j | ≤
t∑

k=1

pkj ·
∞∑

h=m+1

C/th ≤ C

tm−1(t− 1)
(28)
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E Details on Experiments

In this section, we introduce the datasets, parameter settings for our framework and baselines, and
training and evaluation details.

E.1 Datasets

In this section, we provide further details on the five datasets used in the experiments. (1)
Tissue-PPI [49] consists of 24 protein-protein interaction (PPI) networks from different tissues.
The node features are obtained based on gene signatures, and node labels are gene ontology func-
tions [16]. Each label corresponds to a binary classification task, where the total number of such
labels is 10. (2) Fold-PPI [18] is a dataset provided by G-Meta, constructed from 144 tissue networks.
The labels are assigned based on the corresponding protein structures defined in the SCOP database.
Specifically, fold groups with more than nine unique proteins are selected, resulting in 29 unique
labels. Node features are conjoint triad protein descriptors [26]. Different from Tissue-PPI where all
nodes are assigned labels, the labeled nodes in Fold-PPI are relatively scarce, which better fits into
the few-shot scenario. (3) DBLP [30] is a citation network, where each node represents a paper, and
links between nodes are created based on the citation relationship. The node features are generated
from the paper abstracts, and the class labels denote the paper venues. (4) Cora-full [2] is a citation
network with node labels assigned based on the paper topic. This dataset extends the prevalent small
dataset via extracting original data from the entire network. (5) ogbn-arxiv [17] is a directed citation
network which consists of all CS arXiv papers indexed by MAG [35], where nodes represent arXiv
papers, and edges indicate citation relationships. The node labels are assigned based on 40 subject
areas of arXiv CS papers.

E.2 Parameter Settings

In this section, we introduce the detailed parameter settings for our experiments. For the ogbn-arxiv
dataset, the number of update steps is 40 with a meta-learning rate of 0.005 and a base learning rate
of 0.1. For other single-graph datasets, the number of update steps is 20 with a meta-learning rate
of 0.005 and a base learning rate of 0.1. For the Tissue-PPI dataset, the number of update steps is
20 with a meta-learning rate of 0.005 and a base learning rate of 0.01. For the Fold-PPI dataset, the
number of update steps is 20 with a meta-learning rate of 0.005 and a base learning rate of 0.1. The
hidden dimension sizes of GNNs are set as 16. The dropout rate is set as 0.5. The weight decay rate
is set as 10−4. For the approximation of absorbing probabilities, we set the value of m as 2. For the
common sampling, we set the value of C as 10. For the local sampling, we set the value of h as 2
(i.e., 2-hop neighbors). The activation functions are all set as the ReLU function.

E.3 Baseline Settings

In this section, we introduce the detailed settings for baselines used in the experiments. (1) KNN [13]:
We follow the settings in G-Meta to first train a GNN on all training data as an embedding function.
During test, we assign a label for each query node based on the voted K-closest node in the support
set. (2) ProtoNet [27]: This baseline classifies query nodes based on their distances to the learned
prototypes (i.e., the average embedding of support nodes in a specific class). We set the learning rate
as 0.005 with a weight decay of 0.0005. (3) MAML [14]: This baseline performs several update steps
within each meta-task and meta-updates the parameter based on query loss. The meta-learning rate is
set as 0.001 and the number of update steps is 10 with a learning rate of 0.01. (4) Meta-GNN [48]:
This baseline combines MAML with Simple Graph Convolution (SGC) [40]. Following the original
work, we set the learning rate and meta-learning rate as 0.5 and 0.003, respectively. (5) G-Meta [18]:
This baseline leverages the local subgraphs to learn node embeddings while combining ProtoNet
and MAML. Following the original work, we set the numbers of update steps for meta-training and
meta-test as 10 and 20, respectively. The inner learning rate is 0.01 while the outer learning rate is
0.005. The hidden dimension size is set as 128. (6) GPN [10]: This baseline learns node importance
and utilizes the ProtoNet to classify query nodes. We follow the setting in the source code and set
the learning rate as 0.005 with a weight decay of 0.0005. The dimension sizes of two GNNs used in
GPN are set as 32 and 16, respectively. (7) RALE [21]: This baseline learns node embeddings based
on the relative and absolute locations of nodes. We set the learning rates for training and fine-tuning
as 0.001 and 0.01, respectively. The hidden size of used GNNs is 32.
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E.4 Details on Training and Evaluation

We train our model on a single 16GB Nvidia V100 GPU. The GNNs used in our experiments are
implemented with Pytorch [24], which is under a BSD-style license. The required packages are listed
as below.

• Python == 3.7.10
• torch == 1.8.1
• torch-cluster == 1.5.9
• torch-scatter == 2.0.6
• torch-sparse == 0.6.9
• torch-geometric == 1.4.1
• numpy == 1.18.5
• scipy == 1.5.3

For the training and evaluation setting, we adopt different choices for single-graph and multiple-graph
settings. Specifically, for the single-graph datasets, we adopt two settings: 5-way 3-shot (i.e., N = 5
and K = 3) and 10-way 3-shot (i.e., N = 10 and K = 3). For the multiple-graph datasets, we adopt
3-way 3-shot (i.e., N = 3 and K = 3) for Fold-PPI and 2-way 5-shot (i.e., N = 2 and K = 5) for
Tissue-PPI. This is because Tissue-PPI consists of 10 binary classification tasks. The number of
training epochs is set as 500. Furthermore, to keep consistency, the meta-testing tasks are identical
for all baselines. For the class split setting in the single-graph datasets, we set training/validation/test
classes as 15/5/20 for ogbn-arxiv, 25/20/25 for Cora-full, and 80/27/30 for DBLP. For the class split
setting in the multiple-graph datasets, the class split setting on the disjoint label task is 21/4/4 for
Fold-PPI and 8/1/1 for Tissue-PPI (each label in Tissue-PPI corresponds to a binary classification
task). The graph split setting is 80%/10%/10%, which follows the same setting as G-Meta.

F Supplementary Discussion

F.1 Limitations

This paper aims at learning task-specific structures for each meta-task to promote few-shot node
classification performance. Nevertheless, certain disadvantages exist in our specific design. First, the
learned task-specific structures is tailored for one meta-task (including the support set and the query
set) and cannot be easily generalized to other meta-tasks. In consequence, when a scenario setting
requires a significantly larger query set than the support set, the generalization to all these query nodes
can be difficult due to the large query set size. Second, when the graph size is relatively small, the
original graph can be sufficient for conducting few-shot tasks. As a result, the learned task-specific
structures can potentially lead to loss of useful information when the graph size is excessively small.

F.2 Negative Impacts

This paper studies the problem of graph few-shot learning, which exists widely in real-world appli-
cations. For example, certain protein structures maintain scarce labeled proteins, which increases
the difficulty of classification on such protein structures [18]. Moreover, the technique is novel and
suitable for various scenarios. Therefore, we currently do not foresee any negative impacts in our
proposed framework.

F.3 Potential Improvements

Preserving the Original Graph. In our design, we select a specific number of nodes to construct
the task-specific structure for each meta-task. Nevertheless, during this process, useful information
in other nodes can be lost. Although through our design, we can maintain the majority of useful
information in the selected nodes, the nodes that are not selected can still be helpful. Therefore, a
potential strategy for improvements can be keeping the original graph while learning flexible edge
weights among all the nodes. In this way, the information inside all nodes will be preserved for better
performance. This strategy is especially helpful for datasets with small graphs, where all the nodes
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can be potentially informative. Nevertheless, when the graph size becomes larger, such a strategy can
lead to scalability problems.

Introducing Multiple GNNs. Although the learned task-specific structure is tailored for the meta-
task, the GNNs are only applied to this structure. As a result, the information propagation process is
restricted in the task-specific structure. A possible improvement strategy is to leverage another GNN
that propagates messages on the original graph. Meanwhile, the learned features can be incorporated
into the task-specific structure. In this way, the incorporated features are task-agnostic and can
help the learning in each meta-task in a comprehensive manner. Nevertheless, such a strategy is
not suitable for the multiple-graph setting, since learning GNNs across different graphs can lead to
suboptimal performance.
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