
A NOTATIONS

Our notation is based on index notation and Einstein summation conventions. Notation of functions
and matrices in our algorithm is as follows.

X : Vector
Xµ : Vector Field

dxµ : Basis
Xµ : Dual Vector Field

dxµ : Dual Basis
T : Tensor

T
ν1···νp

µ1···µq : (p, q) Tensor Field

gµν : Metric Tensor
δµν : Kronecker Delta
∇µ : Covariant Derivative
LX : Lie Derivative

Γρ
µν : Christoffel Symbol

All indices are raised and lowered by a metric gµν . For instances,

gµν = gµρgρν (1)

where

gµνgµν = δµν = D (2)

Here D is the number of dimensions.

B PROOFS AND DERIVATIONS

B.1 THE DEFINITION OF RIEMANNIAN MANIFOLD

A curved space is complicated to comprehend in general. Since late 19th century, there has been
immense development in differential geometry to interpret curved spaces formally. One of the best-
known intuitive geometrys is the Riemannian. Riemannian geometry enjoys a handful of useful
mathematical characters that can be utilized in the real world. The formal definition of Riemannian
is as follows:

Definition B.1 (Riemannian Manifold). A Riemannian metric on a smooth manifold M is a choice
at each point x ∈ M of a positive definite inner product gp : TpM × TpM → R on TxM . The
smooth manifold endowed with the metric g is a Riemannian manifold, denoted (M, g).

As it is expressed above, a Riemannian manifold is smooth and differentiable everywhere on the
manifold and its derivative as well. Also, a Riemannian enjoys diffeomorphism invariances, induced
by the Lie derivative LX . One can easily notice that the adjoint operation between two different Lie
derivatives forms a group, namely the diffeomorphism group. This isometry ensures coordinate
choices without changing the global geometry of the space.

X ′ = X ′µdX ′
µ = X ′µ ∂Xν

∂X ′µ dXν = XνdXν = X (3)

As it is depicted in eq. 3, transformed vector remains unchanged. Moreover, one can always fix the
transformed coordinate in a locally flat space.

ξµ =
∂ξµ

∂Xν
Xν (4)
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Where ξµ is a vector on a locally flat frame. To ensure the vector is on a flat frame, one must impose
the following condition:

∂2

∂t2
ξµ(t) ≡ 0 (5)

Since a vector is on a flat frame, it should be in a free-falling motion, so its acceleration should be
trivial. On a locally flat frame, the metric also becomes flat Euclidean metric

gµν = 1µν (6)

B.2 COVARIANCE

The vector should be transformed in the same manner in any coordinate frame. However, if the
space is no longer flat, the ordinary derivative no longer guarantees it. Let us consider a derivative
of a vector in a general curved space.

∂µ → ∂′
µ =

∂xµ

∂x′ν ∂ν (7)

Where ∂µ = ∂
∂xµ , then the vector transformation can be written as follows:

∂νX
µ → ∂′

νX
′µ =

∂xλ

∂x′ν
∂

∂xλ
(
∂x′µ

∂xρ
V ρ) (8)

=
∂x′ν

∂xλ

(∂x′ρ

∂xν
∂λV ρ +

∂2x′µ

∂xλ∂xρ
V ρ

)
(9)

As it is shown above, a transformation of a vector on a curved space with an ordinary derivative is
no longer covariant. Thus, one must impose an additional factor to make it covariant, namely an
Affine connection. With this factor, one can define a covariant derivative, replacing an ordinary one.

∇µ = ∂µ + Γλ
µν (10)

By requiring a covariance condition on the covariant derivative,

∇λ → ∇′
λV

′µ =
∂xρ

∂x′ν
∂x′µ

∂xν
∇ρV

ν (11)

Then one can induce the explicit form of a connection.

∇µV
ν = ∂µV

ν + Γν
µλV

λ (12)

Under coordinate transformation,

∂

∂x′µ (
∂x′ν

∂xλ
V λ) + Γ′ν

µσV
′σ =

∂xρ

∂x′µ
∂x′ν

∂xλ
∂ρV

λ +
∂xρ

∂x′µ
∂2x′ν

∂xρ∂xλ
V λ + Γ′ν

µσV
′σ (13)

Here, to make the derivative of a vector covariant, the following equation must hold:

∂xρ

∂x′µ
∂2x′ν

∂xρ∂xλ
V λ + Γ′ν

µσV
′σ =

∂xρ

∂x′µ
∂x′ν

∂xλ
Γλ

ρσV
σ (14)

Which is

Γ′ν
µσ(

∂x′σ

∂xτ
V τ ) =

∂xρ

∂x′µ
∂′ν

∂xλ
Γλ

ρσV
σ − ∂xρ

∂x′µ
∂xρ

∂x′µ
∂2x′ν

∂xρ∂xλ
V λ (15)

Γ′ν
µκV

τ =
∂xρ

∂x′κ
∂xρ

∂x′µ
∂x′ν

∂xλ
Γλ

ρσV
σ − ∂xτ

∂x′κ
∂xρ

∂x′µ
∂2x′ν

∂xρ∂xλ
V λ (16)

This leads us to the explicit form of how the Christoffel symbol transforms under coordinate
changes.

Γ′ν
µκ =

∂xτ

∂x′κ
∂xρ

∂x′µ
∂x′ν

∂xλ
Γλ

ρτ −
∂xτ

∂x′κ
∂xρ

∂x′µ
∂2x′ν

∂xρ∂xτ
(17)

Since the Kronecker delta is a constant matrix, it is obvious that the derivative of the delta should
be trivial. Then one can apply the chain rule to the delta and find the following relation, which can
simplify the above transformation rule.

∂

∂x′µ δ
ν
κ =

∂

∂x′µ
∂x′ν

∂x′κ =
∂

∂x′µ (
∂xτ

∂x′κ
∂x′ν

∂xτ
) = 0 =

∂xτ

∂x′κ
∂xρ

∂x′µ
∂2x′ν

∂xρ∂xτ
+

∂x′ν

∂xτ

∂x′ν

∂xτ

∂2xτ

∂x′µ∂x′ρ
(18)
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Finally, the transformation rule for a Christoffel symbol is as follows:

Γ′ν
µκ =

∂xτ

∂x′κ
∂xρ

∂x′µ
∂x′ν

∂xλ
Γλ

ρτ +
∂x′ν

∂xτ

∂2xτ

∂x′µ∂x′ρ (19)

By the same logic, one can easily find out how covariant derivatives act on forms.

∇µVν = ∂µVν − Γλ
µνVλ (20)

B.3 EXPLICIT FORM OF CHRISTOFFEL SYMBOL

The metric is a ruler of a given geometry; it should not vary under position on a coordinate. The
Euclidean is trivial to see since the metric on Euclidean space is mere δµν , which is a constant
matrix.

∂

∂xλ
δµν = 0 (21)

However, in the curved case, the above statement should also hold to interpret the metric as a ruler,
yet the statement does not hold for an ordinary derivative. There, the covariant derivative kicks in to
replace an ordinary derivative instead. By taking covariant derivative to the curved metric, the term
diminishes.

∇λgµν = 0 (22)

One can express this in terms of a flat metric with a diffeomorphism transformation factor.

gµν(x) =
∂ξλ

∂xµ

∂ξρ

∂xν
δλρ(ξ) (23)

If we take a derivative of x on both sides, the above equation becomes:

∂

∂xσ
gµν(x) =

∂2xλ

∂xσ∂xµ

ξρ

∂xν
δλρ +

∂2ξρ

∂xσ∂xν

∂ξλ

∂xµ
δλρ (24)

=
∂2ξρ

∂xσ∂xν

∂xτ

∂ξρ
∂ξρ

∂xτ

∂ξλ

∂xµ
δλρ +

∂2ξλ

∂xσ∂xµ

∂xτ

∂ξλ
∂ξλ

∂xτ

∂ξρ

∂xν
δλρ (25)

=
∂2ξρ

∂xσ∂xν

∂xτ

∂ξρ
gµτ +

∂2ξλ

∂xσ∂xµ

∂xτ

∂ξλ
gτν (26)

From eq 22, one can easily find out the specific form of the Christoffel symbol in terms of derivatives
of curved and flat coordinates.

∂

∂xσ
gµν = Γτ

σµgτν + Γτ
νσgµσ (27)

Γτ
σµ =

∂2ξλ

∂xσ∂xµ

∂xτ

∂ξλ
(x) (28)

Since the metric should always be symmetric, the lower indices of the Christoffel symbol should also
be symmetric. It is called a torsion-free condition. Furthermore, by utilizing a simple mathematical
trick, one can obtain the Christoffel symbol in terms of the metric gµν .

∂

∂xσ
gµν = Γτ

σµgτν + Γτ
σνgµτ (29)

∂

∂xµ
gνσ = Γτ

µνgτσ + Γτ
µσgντ (30)

∂

∂xν
gσµ = Γτ

νσgτµ + Γτ
νµgστ (31)

Adding the first two equations and subtracting the last one leads to

Γλ
µν =

1

2
gλρ(

∂

∂xµ
gνρ +

∂

∂xν
gρµ −

∂

∂xρ
gµν) (32)
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B.4 GEODESIC EQUATIONS

The shortest path between two points is simple in flat space. However, in curved space, the notion
becomes rather complicated. The shortest path in a curved space is defined as a geodesic. There are
several ways to induce a geodesic equation. One is by requiring a free-falling condition.

∂2ξµ(τ)

∂τ2
= 0 (33)

By diffeomorphism, one can transform a coordinate into an arbitrary coordinate x.

0 =
∂

∂τ
(
∂ξµ

∂xν

∂xν

∂τ
) =

∂ξµ

∂xν

∂2xν

∂τ2
+

∂2ξµ

∂xλ∂xν

∂xλ

∂τ

∂xν

∂τ
(34)

∂2xρ

∂τ2
+

∂2ξµ

∂xλ∂xν

∂xρ

∂ξµ
∂xλ

∂τ

∂xν

∂τ
=

∂2xρ

∂τ2
+ Γρ

λν

∂xλ

∂τ

∂xν

∂τ
= 0 (35)

Another way to derive the equation is by finding the minimum value of the distance in curved space.

S =

∫ √
gµν

dxµ

dτ

dxν

dτ
dτ (36)

By varying the above equation and requiring it to be 0, one can compute its minimum value, and
after tedious calculation, the geodesic equation can be obtained.

C BASE GRAPH NEURAL NETWORK MODEL

In general, molecule is represented in a graph form. Therefore, in order to handle molecule dataset,
it is inevitable to utilize graph neural networks. We chose directional message passing network
(DMPNN) (Yang et al., 2019) for our backbone, since it outperforms other GNN architectures in
molecular domain. Given a graph, DMPNN initializes the hidden state of each edge (i, j) based
on its edge feature Eij with node feature Xi. At each step t, directional edge summarizes incident
edges as a message mt+1

ij and updates its hidden state to ht+1
ij .

mt+1
ij =

∑
k∈N (i)\j

ht
ki (37)

ht+1
ij = ReLU(h0

ij +Wem
t+1
ij ) (38)

Where N (i) denotes the set of neighboring nodes and We a learnable weight.he hidden states of
nodes are updated by aggregating the hidden states of incident edges into message mt+1

i , and passing
its concatenation with the node feature Xi into a linear layer followed by ReLU non-linearity

mt+1
i =

∑
j∈N (i)

ht
ij (39)

ht+1
i = ReLU(Wnconcat(Xi,m

t+1
i )) (40)

Similarly, Wn denotes a learnable weight. Assuming DMPNN runs for T timesteps, we use
(Xout, Eout) = GNN(A,X,E) to denote the output representation matrices containing hidden
states of all nodes and edges, respectively (i.e., Xout,i = hT

i and Eout,ij = hT
ij).

For graph-level prediction, the node representations after the final GNN layer are typically sum-
pooled to obtain a single graph representation hG =

∑
i hi, which is then passed to a FFN prediction

layer.

D ARCHITECTURE AND HYPERPARAMETERS

Detailed steps of training GATE is described in Algorithm 1. The architecture of our model is
composed of five distinct networks and their parameter sizes are depicted in Table 1. As illustrated in
Figure ??, one embedding network is shared across tasks, and encoder, transfer, inverse transfer, and
head network exists for each task. The embedding network embedd(·) has the DMPNN architecture
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Algorithm 1 GATE
1: Initialize encoder network fe, transfer network ft, inverse transfer network fi, head network fh

with random parameters θ
2:
3: for epoch i = 1, 2, . . . n do
4: for each t ∈ Tasks do
5: for each batch b = (xt, yt) ∈ dataset D do
6: at ← embedd(xt)
7: {āt} ← perturb(at)
8:
9: zt ← f t

e(a
t)

10: mt ← f t
t (z

t)
11: {z̄t} ← f t

e({āt})
12: {m̄t} ← f t

t ({z̄t})
13:
14: Lreg ←MSELoss(yt, f t

h(z
t))

15: Lauto ←MSELoss(f t
i (m

t), zt)
16:
17: for each s ∈ Subtasks do
18: zs ← fs

e (a
t)

19: ms ← fs
t (z

s)
20: {z̄s} ← fs

e ({ās})
21: {m̄s} ← fs

t ({z̄s})
22:
23: Lmap ← Lmap +MSELoss(yt, f t

h ◦ f t
i (m

s))
24: Lcons ← Lcons +MSELoss({m̄t} ,ms)
25: Ldist ← Ldist +MSELoss(mt − {m̄t} ,ms − {m̄s})
26: end for
27:
28: Compute Ltotal = Lreg + αLauto + βLmap + γLcons + δLdist

29: Update θ using Ltotal

30: end for
31: end for
32: end for

with depth 2 and converts the input molecule representation x into a new representation a in a
common embedding space. We apply perturbation perturb(·) to a for a number of perturbations,
which is set to 10 in this paper. All of the perturbed representation {ā} along with a are then fed
into the encoder network. The encoder network is composed of backbone network and bottleneck
network. Backbone network has the DMPNN architecture with depth 2 and the bottleneck network
has an autoencoder structure with MLP layers. The output from the encoder fe(a) becomes the
input to the transfer network and head network. The output of transfer network ft(z), notated as m,
is used to calculate consistency loss and distance loss. It is also fed into inverse transfer network,
so that the output from inverse transfer network fi(m) can be used to calculate autoencoder loss.
The output from head network fh ◦ fi(m) is used to calculate regression loss and mapping loss.
We trained 600 epochs with batch size 512 while using AdamW (Loshchilov & Hutter, 2017) for
optimization with learning rate 5e-5. The hyperparameters for α, β, γ, δ are 1, 1, 1, 1 respectively.

Table 1: Network parameters

network layer input, output size hidden size dropout
backbone DMPNN [134,149], 100 200 0
bottleneck MLP layer 100, 50 50 0

transfer MLP layer 50, 50 100,100,100 0.2
inverse transfer MLP layer 50, 50 100,100,100 0.2

head MLP layer 50, 1 25,12 0.2

5



Table 2: Hyperparameters

learning rate 0.00005
optimizer AdamW
batch size 512

epoch 600
# of perturbation 10

α, β, γ, δ 1, 1, 1, 1

E DETAILED EXPLANATION OF DATASETS AND EXPERIMENTAL SETUPS

E.1 DATASETS

Table 3: Detailed information about the datasets.
name acronym source count mean std

Abraham Descriptor S AS Ochem 1925 1.05 0.68
Boiling Point BP Pubchem 7139 198.99 108.88
Collision Cross Section CCS Pubchem 4006 205.06 57.84
Critical Temperature CT Ochem 242 626.04 120.96
Dielectric Constant DK Ochem 1007 0.80 0.41
Density DS Pubchem 3079 1.07 0.29
Enthalpy of Fusion EF Ochem 2188 1.32 0.32
Ionization Potential IP Pubchem 272 10.00 1.63
Kovats Retention Index KRI Pubchem 73507 2071.20 719.34
Log P LP Pubchem 28268 11.17 9.89
Polarizability POL CCCB 241 0.84 0.26
Surface Tension ST Pubchem 379 29.01 10.36
Viscosity VS Pubchem 294 0.47 0.87
Heat of Vaporization HV Pubchem 525 43.77 18.08

We used 14 different molecular property datasets from three different open databases, described
in Table 3 and below explanations for evaluation of the GATE. Before the training process, the
data were purified to exclude data with incorrectly specified units, typos, and extreme measurement
environments. All datasets were normalized by mean and standard deviation before the training
process. We selected 23 pairs of source and target tasks among the 14 datasets, considering the
number of data points in each dataset. We also tried to select task pairs with diversity in correlation
as shown in the Figure 1 for a fair and unbiased examination. Hereby, we explicitly describe the
physical meaning of each dataset.

• AS : The solute dipolarity/polarizability.

• BP : The temperature at which this compound changes state from liquid to gas at a given
atmospheric pressure.

• CCS : The effective area for the interaction between an individual ion and the neutral gas
through which it is traveling.

• CT : The temparature when no gas can become liquid no matter how high the pressure is.

• DK : The ratio of the electric permeability of the material to the electric permeability of
free space.

• DS : The mass of a unit volume of a compound.

• EF : The change in enthalpy resulting from the addition or removal of heat from 1 mole of
a substance to change its state from a solid to a liquid.
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Figure 1: Pearson correlation between overlapping data points in target dataset and source dataset.

• IP : The amount of energy required to remove an electron from an isolated atom or
molecule.

• KRI : The rate at which a compound is processed through a gas chromatography column.
• LP : Logarithmic form of the ratio of concentrations of a compound in a mixture of octanol

and water at equilibrium.
• POL : The tendency of matter, when subjected to an electric field, to acquire an electric

dipole moment in proportion to that applied field.
• ST : The property of the surface of a liquid that allows it to resist an external force
• VS : A measure of a fluid’s resistance to flow.
• HV : The quantity of heat that must be absorbed if a certain quantity of liquid is vaporized

at a constant temperature.

E.2 EXPERIMENTAL SETUPS

For evaluation of the GATE, we compared the performance of six baseline methods, including STL,
MTL, KD, global structure preserving loss based KD (GSP-KD), and transfer learning (retrain all or
head network only). All of the baselines share the same base architecture, with a few different details
according to methods. The MTL shares parameters of backbone and bottleneck for given two tasks,
and only head networks are separated. In the case of the KD, latent vectors from the bottleneck
are used as labels for the distillation, and the distillation loss ratio is set to 0.1. Graph Contrastive
Representation Distillation (G-CRD) contains contrastive loss as well as the GSP loss (Joshi et al.,
2022). However, we only adopt GSP loss since the contrastive loss term is not applicable for regres-
sion tasks. For the GSP-KD, node features from the last layer of the backbone network are used to
calculate pairwise distances, which are the labels of the distillation process. The loss ratio of the
distillation process of the GSP is also set to 0.1. The maximum epoch is set to be 600, and the best
models are selected by early stopping.

F EXPERIMENTAL RESULTS

We express explicit test results in this section. A total of 23 task pairs from 14 distinct datasets were
tested thoroughly with seven different models. Four tables are depicted to show the full experimental
results. The best result is emphasized by bold and underlined on each individual result, and the
second-best result is underlined. The GATE outperforms other conventional methods by a noticeable
margin. In a random split setup, the GATE wins 52.17% out of total tasks, and for up to second, the
GATE wins 78.26% out of total. In scaffold setup, the GATE wins 56.52% and 78.26% respectively.
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Table 4: Random Split Result (part 1)

Tasks GATE STL MTL KD
RMSE STD RMSE STD RMSE STD RMSE STD

hv← ds 0.9221 0.0612 0.9574 0.0519 0.9782 0.0782 1.3726 0.2930
as← bp 0.4583 0.0193 0.5125 0.0085 0.4370 0.0119 0.5426 0.0335
ds← kri 0.4145 0.0172 0.4154 0.0045 0.4172 0.0102 0.4403 0.0119
hv← vs 0.9116 0.0522 0.9574 0.0519 0.9700 0.1052 1.1995 0.1419
vs← hv 0.5471 0.0719 0.5947 0.0357 0.5535 0.0353 0.5878 0.0264
st← as 0.6689 0.0413 0.9902 0.0729 1.0272 0.0244 1.1601 0.0396
ds← lp 0.4046 0.0142 0.4154 0.0045 0.4133 0.0135 0.4378 0.0086

pol← ds 0.3431 0.0475 0.3460 0.0291 0.4367 0.1213 0.3089 0.0270
vs← bp 0.4457 0.0151 0.5947 0.0357 0.4516 0.0366 0.6076 0.0241
dk← ef 0.4331 0.0140 0.4331 0.0358 0.4498 0.0126 0.3852 0.0238
as← ccs 0.4648 0.0139 0.5125 0.0085 0.4677 0.0220 0.5364 0.0211
ct← bp 0.1742 0.0034 0.2549 0.1247 0.1707 0.0132 0.1690 0.0079
st← ccs 0.9546 0.0452 0.9902 0.0729 1.0361 0.0737 1.1731 0.0730
ccs← kri 0.2476 0.0034 0.2936 0.0110 0.2524 0.0042 0.2622 0.0117
hv← bp 0.7251 0.0581 0.9574 0.0519 0.7550 0.0432 1.1983 0.1815
vs← ccs 0.5233 0.0323 0.5947 0.0357 0.5792 0.0228 0.6027 0.0127
st← hv 0.7647 0.0622 0.9902 0.0729 0.7179 0.0259 1.1270 0.0184
hv← ct 0.9399 0.0896 0.9574 0.0519 1.1118 0.1633 1.5114 0.1845
ip← bp 0.5476 0.0642 0.6695 0.0660 0.6067 0.0345 0.5624 0.0273
hv← ef 0.6131 0.0966 0.9574 0.0519 0.8296 0.0999 1.3659 0.2587
hv← kri 0.5410 0.0732 0.9574 0.0519 0.8631 0.0354 1.3739 0.2487
ct← kri 0.1658 0.0136 0.2549 0.1247 0.1716 0.0090 0.1586 0.0102
ip← dk 0.6510 0.0381 0.6695 0.0660 0.7083 0.0226 0.5508 0.0100

mean 0.5592 0.0271 0.6642 0.0320 0.6263 0.0414 0.7667 0.0908
Count Ratio Count Ratio Count Ratio Count Ratio

1st 12 52.17% 0 0.00% 1 4.35% 2 8.70%
2nd 18 78.26% 1 4.35% 7 30.43% 5 21.74%
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Table 5: Random Split Result (part 2)

Tasks GSP-KD Transfer Retrain All Transfer Retrain Head
RMSE STD RMSE STD RMSE STD

hv← ds 0.9321 0.0487 1.0428 0.1165 1.1166 0.0024
as← bp 0.5315 0.0151 0.4325 0.0104 0.7712 0.0105
ds← kri 0.4147 0.0063 0.4414 0.0154 0.8842 0.0049
hv← vs 0.9154 0.0130 0.9937 0.0821 1.0091 0.0181
vs← hv 0.5619 0.0223 0.5712 0.0232 0.7215 0.0392
st← as 0.9938 0.0141 1.1296 0.1302 1.0045 0.0220
ds← lp 0.4106 0.0077 0.4280 0.0136 0.9111 0.0022

pol← ds 0.2603 0.0270 0.3741 0.0303 0.9060 0.0141
vs← bp 0.5932 0.0097 0.5445 0.0239 0.7220 0.0645
dk← ef 0.4230 0.0133 0.3936 0.0164 0.9380 0.0026
as← ccs 0.5457 0.0150 0.4741 0.0148 0.9935 0.0033
ct← bp 0.2018 0.0093 0.1563 0.0044 0.6847 0.0186
st← ccs 0.9595 0.0405 1.1334 0.0687 1.1039 0.0046
ccs← kri 0.2698 0.0095 0.2273 0.0016 0.6166 0.0567
hv← bp 0.9051 0.0571 0.8267 0.0417 0.8829 0.0499
vs← ccs 0.5269 0.0167 0.4868 0.0119 0.8684 0.0116
st← hv 0.9618 0.0086 1.0290 0.0945 1.0102 0.0138
hv← ct 0.9207 0.0112 1.2072 0.0460 1.0302 0.0186
ip← bp 0.4631 0.0037 0.9816 0.2334 0.8732 0.0293
hv← ef 0.8112 0.0463 1.0818 0.1021 0.9616 0.0478
hv← kri 0.9191 0.0676 0.9080 0.0510 1.0715 0.0145
ct← kri 0.2080 0.0057 0.1661 0.0075 0.8349 0.0279
ip← dk 0.5257 0.0192 0.6099 0.0273 1.0336 0.0085

mean 0.6198 0.0212 0.6800 0.0540 0.9108 0.0181
Count Ratio Count Ratio Count Ratio

1st 4 17.39% 4 17.39% 0 0.00%
2nd 10 43.48% 5 21.74% 0 0.00%
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Table 6: Scaffold Split Result (part 1)

Tasks GATE STL MTL KD
RMSE STD RMSE STD RMSE STD RMSE STD

hv← ds 0.6939 0.0996 0.6744 0.1079 0.6465 0.0776 0.5920 0.0466
as← bp 1.0495 0.0256 1.2828 0.0724 1.1677 0.1068 1.3580 0.0136
ds← kri 0.4395 0.0108 0.4477 0.0052 0.4849 0.0061 0.5409 0.0480
hv← vs 0.7174 0.0796 0.6744 0.1079 0.9954 0.2059 0.8948 0.2294
vs← hv 0.6120 0.0639 0.9816 0.1267 0.8535 0.0558 1.2597 0.3638
st← as 0.7540 0.0660 0.8041 0.1062 1.0254 0.0251 1.7083 0.1608
ds← lp 0.4049 0.0102 0.4477 0.0052 0.4517 0.0184 0.5221 0.0328
pol← ds 0.9040 0.0852 0.9604 0.1056 1.4198 0.0796 1.3309 0.1998
vs← bp 0.6121 0.0297 0.9816 0.1267 0.5686 0.0276 0.9371 0.2386
dk← ef 0.7122 0.0545 0.7028 0.0391 0.6549 0.0210 0.8189 0.0462
as← ccs 1.1313 0.0496 1.2828 0.0724 1.1197 0.0558 1.3773 0.0781
ct← bp 0.3883 0.0203 1.4436 0.1150 0.4359 0.0126 1.2459 0.1199
st← ccs 0.7281 0.0586 0.8041 0.1062 0.9905 0.0737 1.5402 0.1418
ccs← kri 0.5292 0.0094 0.5489 0.0107 0.5297 0.0083 0.5534 0.0190
hv← bp 0.4821 0.0132 0.6744 0.1079 0.4668 0.0169 0.6271 0.0868
vs← ccs 0.6126 0.0671 0.9816 0.1267 0.8186 0.0790 1.3034 0.5354
st← hv 0.7209 0.0412 0.8041 0.1062 0.7237 0.0276 1.5256 0.1906
hv← ct 0.6579 0.0678 0.6744 0.1079 0.6633 0.0660 0.7925 0.2694
ip← bp 0.4668 0.0179 0.5780 0.1475 0.5540 0.0587 0.4205 0.0240
hv← ef 0.6406 0.0335 0.6744 0.1079 0.7879 0.0643 0.6773 0.1553
hv← kri 0.5084 0.0264 0.6744 0.1079 0.6204 0.0269 0.6710 0.1524
ct← kri 0.3902 0.0140 1.4436 0.1150 0.5173 0.0927 1.3392 0.1076
ip← dk 0.4335 0.0119 0.5780 0.1475 0.5335 0.1016 0.4975 0.0769

mean 0.6343 0.0270 0.8313 0.0408 0.7404 0.0441 0.9797 0.1218
Count Ratio Count Ratio Count Ratio Count Ratio

1st 13 56.52% 0 0.00% 3 13.04% 2 8.70%
2nd 18 78.26% 3 13.04% 9 39.13% 2 8.70%
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Table 7: Scaffold Split Result (part 2)

Tasks GSP-KD Transfer Retrain All Transfer Retrain Head
RMSE STD RMSE STD RMSE STD

hv← ds 0.7606 0.0810 0.8659 0.0788 0.9584 0.0339
as← bp 1.2340 0.0294 1.1478 0.0264 1.0935 0.0079
ds← kri 0.4467 0.0104 0.8753 0.1134 1.0928 0.0482
hv← vs 0.6536 0.0345 0.7520 0.1666 0.7924 0.0595
vs← hv 0.6377 0.0253 0.9217 0.1575 0.9179 0.0539
st← as 0.9335 0.0954 1.2604 0.0946 1.0780 0.0613
ds← lp 0.4685 0.0111 0.4664 0.0121 1.0410 0.0026

pol← ds 0.8475 0.0627 1.0385 0.2146 1.3204 0.0491
vs← bp 0.6599 0.0204 1.1532 0.1766 1.0135 0.0820
dk← ef 0.6353 0.0171 0.7417 0.0384 0.7963 0.0071
as← ccs 1.1272 0.0778 1.2925 0.0606 1.4530 0.0143
ct← bp 1.1837 0.0586 0.5644 0.053 0.9347 0.0316
st← ccs 0.7344 0.0187 0.9075 0.0431 1.2596 0.0287
ccs← kri 0.5356 0.0115 0.5640 0.0137 0.7904 0.0159
hv← bp 0.7403 0.0889 0.6093 0.0422 0.8111 0.0251
vs← ccs 0.8027 0.0159 0.7271 0.0828 1.2282 0.0243
st← hv 0.7417 0.0206 1.4243 0.0627 1.0047 0.0813
hv← ct 0.6428 0.008 0.9499 0.2579 0.8089 0.0532
ip← bp 0.4579 0.0207 0.4419 0.0371 0.9704 0.0399
hv← ef 0.5862 0.0375 1.0003 0.1719 0.9503 0.0307
hv← kri 0.5509 0.0252 0.6560 0.0408 0.9998 0.0311
ct← kri 1.2358 0.0373 1.1124 0.1265 1.2769 0.0193
ip← dk 0.4376 0.0255 0.5248 0.0471 1.0165 0.0521

mean 0.7415 0.0363 0.8694 0.0671 1.0265 0.0217
Count Ratio Count Ratio Count Ratio

1st 5 21.74% 0 0.00% 0 0.00%
2nd 11 47.83% 2 8.70% 1 4.35%
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